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What Happens to Polymers with Age?

"Great Pacific Garbage Patch"

https://phys.org/news/2018-03-pacific-plastic-dump-larger.html
L. Lebreton et al., Scientific Reports, 2018, 8 4666

News reports and scholarly articles alike tell us about the accumulation of plastics in 
landfills and oceans—will they ever go away?

https://www.washingtonpost.com/news/energy-environment/wp/2018/06/20/a-giant-wave-of-plastic-
garbage-could-flood-the-u-s-in-10-years-a-study-says/?noredirect=on&utm_term=.419f1f949e74
R. Geyer et al., Science Advances, 2017, 3 e1700782
A. Brooks et al., Science Advances, 2018, 4 eaat0131

China’s Recycling Efforts

But we also hear about plastics “falling apart” in places that they are meant to last forever

https://www.nytimes.com/2018/08/28/science/plastics-preservation-getty.html

The Devil-is-in-the-Details Regarding the Situation at Hand

Neil Armstrong’s 
Spacesuit 
at the Smithsonian’s National Air 
and Space Museum in Washington, 
D.C.

https://phys.org/news/2018-03-pacific-plastic-dump-larger.html
https://www.washingtonpost.com/news/energy-environment/wp/2018/06/20/a-giant-wave-of-plastic-garbage-could-flood-the-u-s-in-10-years-a-study-says/?noredirect=on&utm_term=.419f1f949e74
https://www.nytimes.com/2018/08/28/science/plastics-preservation-getty.html
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OUO/ECIWho Cares if Polymers Age?
The US-DOE mission requires guaranteeing the functional operation of

specialized devices over lifetimes that are decades long.
Polymers change via multiple mechanisms over this time sale

Contributing Mechanisms: physical aging, chemical oxidation, outgassing, reactive interactions, etc.
Resulting Effects: material embrittlement, evolving residual stress, cohesive/interfacial cracking, etc.

Need: predictive computational model to assess the broad range of geometries and conditions over lifetimes
(the wide design space and long lifetimes are intractable experimentally)
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There are Hundreds of “Plastics”--Why Epoxies?  And Why Now?

Doesn’t the high cross-link density 
keep epoxies from “falling apart”?

Likely true for step-growth polymerizations, such as 
in typical epoxy-amine materials, but not necessarily 
for chain growth polymerizations (e.g., 828/DEA, 
anhydride-cured epoxies).  Plus, the material may not 
need to “fall apart” to cause failure.

Can small strains associated with 
physical aging even cause failure?

A very definite MAYBE!

(Glassy Modulus) x (Aging Strain)
O(10 GPa)       x      O(0.01)

O(100 MPa) > Yield Stress

The wide use of epoxy thermosets in high-reliability applications, often in 
regions of high consequence should the epoxy fail, makes it important to 
distinguish the consequences of aging processes within these materials

Sandia National Laboratories has a unique predictive capability to help assess consequences of aging in glasses

“Failure modes of polymers can change 
from ductile to brittle failure with aging”

S.L. Simon and G.B. McKenna, in Polymer Glasses, 2017, pg. 46

R.N. Haward et al., Polymer, 1983, 24 1245
D.G. Legrand, J. Appl. Pol. Sci., 1969, 13 2129
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Embrittlement Crack Initiation/Propagation

Celina et al., Polymer 54 (2013) 3290

Epoxy Mold Compound (EMC)

Kropka et al., in prep

Arechederra et al., Polymer 185 (2019) 121937

interfacial

Examples of Polymer Aging  Effects and Relevant Applications

Kropka et al., in prep
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Topics

• Background
o Glass Formation and Structural Recovery/Relaxation 
o Signatures and Impact of Structural Recovery/Relaxation
o What is lacking in our understanding and what is left to do?

• Highlights of Current Work
o Materials
o Volume changes
o Linear viscoelastic (LVE) dynamics evolution
o Nonlinear response evolution
o Role of chemical oxidation on mechanical response
o Prediction of material evolution 
o Simple structural response tests to validate predictive tools
o Assessment of impact of aging on stress and failure in application relevant geometries
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Glass Formation and Structural Recovery/Relaxation

Simon and McKenna, Structural recovery and physical aging of polymeric glasses, in Polymer Glasses, 2017

cool

This aging leads to (1) increased residual stress in and (2) embrittlement of the polymer glass
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1Mix ratio, cure schedule, and more can be found in SAND2013-8681
2Mix ratio, cure and typical properties can be found at: http://www.sandia.gov/polymer-properties/828_DEA.html
3Mix ratio, cure and typical properties can be found at:  http://www.sandia.gov/polymer-properties/828_DEA_GMB.html

Materials

EPON® Resin 828
Diglycidylether of Bisphenol-A

Diethanolamine

828/DEA2 and 828/GMB/DEA3

Tg ~ 70C

828/T4031 and 828/GMB/T403

EPON® Resin 828
Diglycidylether of Bisphenol-A

Jeffamine® T-403 Polyetheramine

Tg ~ 90C
(when mixed stoichiometrically epoxy-amine)

3M D32 glass microballoons

McCoy et al. Polymer 2016, 105, 243-254
Arechederra et al., Polymer, 2019, 185 121937Clarkson et al., Polymer, 2016, 94 19

Wilson, MS Thesis, 2018, NMTech

http://www.sandia.gov/polymer-properties/828_DEA.html
http://www.sandia.gov/polymer-properties/828_DEA_GMB.html


Direct Assessment of the Evolution of the LVE Shear 
Dynamic Shift Factor During Isothermal Aging
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Evolution of the Nonlinear Viscoelastic Response During 
Isothermal Aging
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4 Distinguishable Changes in Compressive Stress-Strain Response Include:
• Increase in “elastic” compressive modulus
• Increase in “yield” stress
• Narrowing of “yield” peak
• Increase in “flow” stress
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Chemical + Physical Aging MechanismsPhysical Aging Only?

Arechederra et al., Polymer, 2019, 185 121937
Wilson, MS Thesis, 2018, NMTech
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Initial linear fits no 
longer accurate at 
long time

initial increase proportional 
to logarithm of aging time

unique behavior associated 
with aging/testing 
temperature initially above Tg

Initial linear fits no longer 
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Findings:
•At a given T-Tg, 828/DEA exhibits a higher yield stress than 828/T403 (at all aging times).  Molecular details influence the stress-strain response.
•At approximately equivalent distances from Tg, 828/DEA exhibits more marked narrowing of the “yield” peak (previous slide) with aging
•When aged close to Tg, the evolution of yield stress with time changes (and possibly stops) at long times for both materials.  For 828/T403, the 

increase in the time at which the change in evolution behavior occurs (t*) is apparent as the aging temperature is decreased further below Tg.  
For 828/DEA, such a trend is less distinct.

Arechederra et al., Polymer, 2019, 185 121937
Wilson, MS Thesis, 2018, NMTech
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Chemical and Physical Contributions to the Evolution of Yield Stress

By thermally annealing the samples above the glass transition temperature (after aging), the physical history of the 
sample is erased and the chemical-only contributions to the evolution of the yield stress are resolved.  Physical-only 
contributions are calculated by subtracting the chemical-only contributions from the total change in yield stress.

Arechederra et al., Polymer, 2019, 185 121937

17
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Prediction of Material Evolution: SPEC(tacular) Model

Helmholtz Free Energy

Stress

History Dependent Shift Factor

D.B. Adolf, et al., Polymer, 2004, 45, 4599
D.B. Adolf, et al., Polymer, 2009, 50, 4257



Volume Relation Spectrum and
Bulk Moduli Temperature Dependencies

Heat Capacity Relaxation Spectrum
and Temperature Dependence
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Shear Relation Spectrum and
Moduli Temperature Dependencies

Thermal Expansion Relaxation Spectrum
and Temperature Dependence
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Prediction of Material Evolution: SPEC(tacular) Model Calibration

Non-linear Response:
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Prediction of Material Evolution: SPEC(tacular) Model Results for 828/T403
Compressive Yield Stress EvolutionCalibration 1 Calibration 2

Enthalpy Recovery

Findings:
•SPEC can qualitatively predict a wide variety of viscoelastic and physical aging phenonmena
•No single calibration protocol best captures ALL aging responses

Calibration 1 Calibration 2

Cundiff et al., SAND2021-11193, 2021
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Summary

• Demonstrated ability to resolve in-situ material dimensional changes associated with isothermal aging under 
no mechanical load 

• Illustrated differences in dimensional changes between materials associated with the specifics of a given 
material (e.g., remaining reaction potential that can occur under the aging conditions)

• Demonstrated ability to resolve the evolution of the LVE shear dynamic shift factor during isothermal aging 
with “pure” physical aging at low temperature, while at high temperature chemical contributions occur 

• Resolved substantial changes in the compressive yield stress (as high as 115%) of the 828/DEA and 828/T403 
materials over relatively short times (~30 days) when aged and tested below, but near, the glass transition 
temperature (e.g., Tg-10oC, Tg-20oC)

• Resolved the apparent attainment of equilibrium, at which time there is no further change (associated with 
physics) in yield stress

• Discriminated between the chemical and physical contributions to the evolution of the yield stress and 
fracture toughness during isothermal aging

• Distinguished the importance of molecular structure on yield stress and yield stress evolution with aging (e.g., 
limitations to material equivalence at same T-Tg)

• Identified a “model”, physical aging only, epoxy material
• Demonstrated the ability of NLVE model to qualitatively predict aspects of aging phenomena and sensitivities 

of the predictions to calibration protocol.  Known “issues” with model under investigation:
• Implementation of non-diverging equilibrium shift factor definition
• Relaxation function evolution with age
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Back-up
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Our Vision: Validated Model-Based Lifecycle Engineering for 
Packaging Design
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cycling

mechanical 
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What can go wrong?
(Constitutive Eqns)

(Cure Chemistry)
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Adhesive

Polymer Nonlinear Viscoelastic (NLVE) Model

Current talk

Predict Stress/Strain and Understand Impact on Performance

J.M. Caruthers, et al., Polymer, 2004, 45, 4577
D.B. Adolf, et al., Polymer, 2004, 45, 4599
D.B. Adolf, et al., Polymer, 2009, 50, 4257

G.K. Arechederra, J.D. McCoy and J.M. Kropka, Polymer, 2019, 185 121937
J.M. Kropka and K.N. Long, Polymer, 2018, 145, 54
C.M. Clarkson, J.D. McCoy and J.M. Kropka, Polymer, 2016, 94 19
G. Arechederra, Evolution of Mechanical Properties during Structural Relaxation of 828/DEA MS Thesis, 2017.
K. Wilson, Physical Aging in a Polyether-amine Cured DGEBA Epoxy MS Thesis, 2018.

J.D. McCoy et al., Polymer, 2016, 105, 243
J.M. Kropka et al., SAND2016-5543
J.M. Kropka et al., SAND2013-8681
G. K. Arechederra et al., Thermochimica Acta, 2017, 656, 144
J.M. Kropka et al., SAND2017-13680
J.D. McCoy et al., Thermochimica Acta, 2019, 671, 149

J.M. Kropka et al., SAND2018-10582
J.M. Kropka et al., Int. J. Adhn. & Adhs, 2015, 63, 14
J.M. Kropka et al., SAND2013-8681



What is left to do?

“Further work and direct measurement of the volume and enthalpy along with the 
mechanical (physical aging) experiments should be undertaken on the same samples”

• Currently probing epoxy volume/enthalpy relaxation plus changes in mechanical 
response AND using this information to design “strength” experiments in 
application relevant geometries  

“…because the (KAHR and TNM) models do still exhibit some difficulties in quantitative 
prediction with model parameters showing a dependence on thermal history…” efforts 
are necessary to improve upon these models

• Currently testing Sandia’s non-linear viscoelastic modeling capabilities against 
aging data

S.L. Simon and G.B. McKenna, in Polymer Glasses, 2017

S.L. Simon and G.B. McKenna, in Polymer Glasses, 2017

Is physical aging a concern in terms of stress evolution in application designs?

24



Prediction of Material Evolution: SPEC(tacular) Model Calibration

Shear Mastercurve

Dilatometry
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