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What Happens to Polymers with Age?

News reports and scholarly articles alike tell us about the accumulation of plastics in m
landfills and oceans—will they ever go away?

"Great Pacific Garbage Patch"

s

https://www.washingtonpost.com/news/energy-environment/wp/2018/06/20/a-giant-wave-of-plastic- hitps://phys.ore/news/2018-03-pacific-plastic-dump-larger.html
garbage-could-flood-the-u-s-in-10-years-a-study-says/?noredirect=on&utm_term=.419f1f949¢74 L. Lebreton et al., Scientific Reports, 2018, 8 4666

R. Geyer et al., Science Advances, 2017, 3 ¢1700782 -

A. Brooks et al., Science Advances, 2018, 4 eaat0131

But we also hear about plastics “falling apart” in places that they are meant to last forever

Neil Armstrong’s
Spacesuit

at the Smithsonian’s National Air
and Space Museum in Washington,
D.C.

https://www.nytimes.com/2018/08/28/science/plastics-preservation-getty.html

The Devil-is-in-the-Details Regarding the Situation at Hand I


https://phys.org/news/2018-03-pacific-plastic-dump-larger.html
https://www.washingtonpost.com/news/energy-environment/wp/2018/06/20/a-giant-wave-of-plastic-garbage-could-flood-the-u-s-in-10-years-a-study-says/?noredirect=on&utm_term=.419f1f949e74
https://www.nytimes.com/2018/08/28/science/plastics-preservation-getty.html

Who Cares if Polymers Age?

The US-DOE mission requires guaranteeing the functional operation of
specialized devices over lifetimes that are decades long.

Polymers change via multiple mechanisms over this time sale

Contributing Mechanisms: physical aging, chemical oxidation, outgassing, reactive interactions, etc.
Resulting Effects: material embrittlement, evolving residual stress, cohesive/interfacial cracking, etc.

Need: predictive computational model to assess the broad range of geometries and conditions over lifetimes
(the wide design space and long lifetimes are intractable experimentally)
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There are Hundreds of “Plastics”--Why Epoxies? And Why Now?

Doesn’t the high cross-link density Can small strains associated with
keep epoxies from “falling apart”? physical aging even cause failure?

(Glassy Modulus) x (Aging Strain)

O(10 GPa) x 0(0.01)
O(100 MPa) > Yield Stress

A very definite MAYBE!
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Chain-growth Step-growth

Likely true for step-growth polymerizations, such as
in typical epoxy-amine materials, but not necessarily T .
for chain growth polymerizations (e.g., 828/DEA, Failure n?odes 01_: polyn_19rs ca_n Cha_nge
anhydride-cured epoxies). Plus, the material may not from ductile to brittle failure with aglng”

] ” H
need to fa" apart to cause fallure' S.L. Simon and G.B. McKenna, in Polymer Glasses, 2017, pg. 46

R.N. Haward et al., Polymer, 1983, 24 1245
D.G. Legrand, J. Appl. Pol. Sci., 1969, 13 2129

The wide use of epoxy thermosets in high-reliability applications, often in I
regions of high consequence should the epoxy fail, makes it important to I
distinguish the consequences of aging processes within these materials

Sandia National Laboratories has a unique predictive capability to help assess consequences of aging in glasses I



Examples of Polymer Aging Effects and Relevant Applications
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Glass Formation and Structural Recovery/Relaxation
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This aging leads to (1) increased residual stress in and (2) embrittlement of the polymer glass

Simon and McKenna, Structural recovery and physical aging of polymeric glasses, in Polymer Glasses, 2017 I



‘ Materials

828/T403! and 828/GMB/T403

EPON® Resin 828
Diglycidylether of Bisphenol-A

LY oaaeVeny

Jeffamine® T-403 Polyetheramine

CH3

(x+y+z) = 5-6
/H\/ kﬂig" \/Jj\NHz

Clarkson et al., Polymer, 2016, 94 19
Wilson, MS Thesis, 2018, NMTech

T, ~90C

(when mixed stoichiometrically epoxy-amine)

IMix ratio, cure schedule, and more can be found in SAND2013-8681

828/DEA? and 828/GMB/DEA3

3M D32 glass microballoons
1

2Mix ratio, cure and typical properties can be found at: http://www.sandia.gov/polymer-properties/828 DEA.html|

3Mix ratio, cure and typical properties can be found at: http://www.sandia.gov/polymer-properties/828 DEA GMB.html

Diglycidylether of Bisphenol-A

oo e,

EPON® Resin 828

Diethanolamine

HO\/\N/\/OH

H

McCoy et al. Polymer 2016, 105, 243-254
Arechederra et al., Polymer, 2019, 185 121937 I

T,~70C


http://www.sandia.gov/polymer-properties/828_DEA.html
http://www.sandia.gov/polymer-properties/828_DEA_GMB.html
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Direct Assessment of the Evolution of the LVE Shear
Dynamic Shift Factor During Isothermal Aging



‘ Shear Dynamic Shift Factor Evolution: Technique Definition
10

~ Test Set-up Struik Loading Protocol

tas td2 tas

- T, +30°Coo 180s 360s 7205
Conditions &
*  temperature stability: -.F/-O.l C 2°C/min
*  sample geometry: torsion rectangular
* Strainin linear response regime (~0.1%)
. either N, or air convection Toge
t=0 fe. te.2 te3
“—F —> «—> <
18005 16205 32405 6480s

Struik, Physical Aging in Amorphous Polymers and Other Materials, 1978
Zhao and McKenna, J. Chem. Phys. 136 154901 (2012)

Example Stress Relaxation Results
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The above effects are “pure” physical aging, reversible upon annealing above T, I
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Chemical contributions (DLO) to the changes in dynamics must be discriminated from physical contributions I
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Evolution of the Nonlinear Viscoelastic Response During
Isothermal Aging
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Anatomy of Compressive Stress-Strain Response of Glassy Polymers

Engineering Stress (MPa)

2. “Yield” Stress, oy

\ Compression

3. “Yield” Peak Width /L X

L~1”

2 4 6 8 10 12 14 16

Engineering Strain (%)

Arechederra et al., Polymer, 2019, 185 121937

o
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Compressive Stress-Strain Response: Thermal Aging Effects

Engineering Stress (MPa)

Physical Aging Only?
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4 Distinguishable Changes in Compressive Stress-Strain Response Include:

Increase in “elastic” compressive modulus
Increase in “yield” stress

Narrowing of “yield” peak

Increase in “flow” stress

Arechederra et al., Polymer, 2019, 185 121937 I

Wilson, MS Thesis, 2018, NMTech



Evolution of Yield Stress during Thermal Aging
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Findings:

*At a given T-T,, 828/DEA exhibits a higher yield stress than 828/T403 (at all aging times). Molecular details influence the stress-strain response.

* At approximately equivalent distances from T,, 828/DEA exhibits more marked narrowing of the “yield” peak (previous slide) with aging

*When aged close to T,, the evolution of yield stress with time changes (and possibly stops) at long times for both materials. For 828/T403, the
increase in the time at which the change in evolution behavior occurs (t*) is apparent as the aging temperature is decreased further below T,.
For 828/DEA, such a trend is less distinct.

Arechederra et al., Polymer, 2019, 185 121937
Wilson, MS Thesis, 2018, NMTech
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Yield Stress {MPa)

Chemical and Physical Contributions to the Evolution of Yield Stress
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By thermally annealing the samples above the glass transition temperature (after aging), the physical history of the
sample is erased and the chemical-only contributions to the evolution of the yield stress are resolved. Physical-only
contributions are calculated by subtracting the chemical-only contributions from the total change in yield stress.

Arechederra et al., Polymer, 2019, 185 121937



Prediction of Material Evolution: SPEC.cuy Model
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Helmholtz Free Energy
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Prediction of Material Evolution: SPEC ...y Model Calibration
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Shear Relation Spectrum and

Moduli Temperature Dependencies
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Non-linear Response:




Prediction of Material Evolution: SPEC....n Model Results for 828/T403
Enthalpy Recovery
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Findings:

*SPEC can qualitatively predict a wide variety of viscoelastic and physical aging phenonmena
*No single calibration protocol best captures ALL aging responses

Cundiff et al., SAND2021-11193, 2021 I



Summary
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Demonstrated ability to resolve the evolution of the LVE shear dynamic shift factor during isothermal aging
with “pure” physical aging at low temperature, while at high temperature chemical contributions occur
Resolved substantial changes in the compressive yield stress (as high as 115%) of the 828/DEA and 828/T403
materials over relatively short times (~30 days) when aged and tested below, but near, the glass transition
temperature (e.g., 7,-10°C, T.-20°C)

Resolved the apparent attainment of equilibrium, at which time there is no further change (associated with ‘

physics) in yield stress

Discriminated between the chemical and physical contributions to the evolution of the yield stress and

fracture toughness during isothermal aging

Distinguished the importance of molecular structure on yield stress and yield stress evolution with aging (e.g., |
limitations to material equivalence at same 7-T,)

Identified a “model”, physical aging only, epoxy material |
Demonstrated the ability of NLVE model to qualitatively predict aspects of aging phenomena and sensitivities
of the predictions to calibration protocol. Known “issues” with model under investigation:

* Implementation of non-diverging equilibrium shift factor definition I

* Relaxation function evolution with age I
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How does it perform? f‘

(Constitutive Eqns)
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What is left to do?

24

“Further work and direct measurement of the volume and enthalpy along with the
mechanical (physical aging) experiments should be undertaken on the same samples”
S.L. Simon and G.B. McKenna, in Polymer Glasses, 2017
« Currently probing epoxy volume/enthalpy relaxation plus changes in mechanical
response AND using this information to design “strength” experiments in
application relevant geometries

“...because the (KAHR and TNM) models do still exhibit some difficulties in quantitative
prediction with model parameters showing a dependence on thermal history...” efforts
are necessary to improve upon these models

S.L. Simon and G.B. McKenna, in Polymer Glasses, 2017

» Currently testing Sandia’s non-linear viscoelastic modeling capabilities against I
aging data I
Is physical aging a concern in terms of stress evolution in application designs? I
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