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P Overview

Prophage Biology

* Precise Prophage Mapping
« TIGER

- TIGER database speedup
« TIGER2

- bigDNA

* Phage Factory
- For therapeutic applications applied to Pseudomonas aeruginosa

- For energy applications applied to Burkholderia cepacia complex
« HES-PICI




Prophages are a subclass of mobile genetic elements

Mobile genetic elements

Integrative
conjugative
elements

Mature Reviews | Microbiology

Langille, Hsiao, Brinkman, Nature Reviews Microbiology, 2010 ‘
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/" Prophages mined from bacterial genomes yield far more phages
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Traditional Way

Fishing approach can have low yield
Not necessarily host-adapted (may be

better adapted to other host bacteria)

~17,500 uniqgue genomes in GenBank

Our WAY

Bacterial genomes are nets that catch phages

Phages are host-adapted because we choose

them from close relatives
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/" Our software discovers genomic islands precisely
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TIGERV2 (Mageeney et al,, 2022, Frontiers in Bioim‘ormatics)‘
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Euk Chromatophore

o Genomic Island Discovery for the
tree-of-life
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- Treated all ~48000 GTDB species comprised of
>350K genomes

St = pa— / + Found 969,929 Gls = 2.8 Gls/genome
o 382,576 Prophages = 1.1 prophage/genome
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Archaea =

Bacteria =

varies greatly

Halobacteriota(1268)
Thermoplasmatota(1023)
Thermoproteota(1027)
Other Archaea(1146)

[~ Protecbacteria(154323)

Campylobacterota(33231)
Bacteroidota(14094)
Nitrospirota(329)
Verrucomicrobiota(2142)
Planctomycetota(1164)
Chlamydiota(552)
Spirochaetota(1695)
Fusobacteriota(318)
Patescibacteria(3932)
Cyanobacteria(2351)
Firmicutes(96522)
Acidobacteriota(1208)
Actinobacteriota(24303)
Deinococcota(255)
Chloroflexota(1668)
Other Bacteria(7827)
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// The breakdown of island type across different host taxonomic groups




// « Tested on 58K Salmonella genomes

~ « Used three databases: 58K, a 200 member and 500 member

« Maximize diversity

* 10% out of GTDB species tested
« Speed up was >250x faster

« Original - 706.4 hours

« 500DB - 2.78 hours

« 200DB -1.17 hours

« Lost small Gls which contained non-canonical integrases
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Size Distribution of Salmonella Gls with each database
type. Smaller Gls (<8kbp) were predominantly lost
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/Usmg smaller, carefully-chosen databases speeds up TIGER more than
7/~ 250x without the loss of prophages or large Gls

The largest group of Gls fost Using smart databases were those

which could not be classified as ICE or Prophages.




rd

‘& » Allowed for expansion to MAGs
e |ncreased Gl count 2x

Complete genome (with all Gls intact)

Intact mode => 3 S
CircleOrigin mode =>3
B ¢ e .
omplete genome (with origin-spanning Gl)
Intact mode => 2 — g ik - -
CircleOrigin mode => 3
C Fragmented genome
-_ . Missing middle
Intact mode => 1 -—
Cross mode => 3 =
A ®m Phagel mPhage? wPhageFil PhagelCE wICE1 wICE2 mOther
All

0% 20% 40% 60% 80% 100%

/ TIGERv2 allows Gl searches across scaffolds and expands precise Gl
detection into metagenomes

 Needed to detect Gls across scaffolds
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TIGERV2 (Mageeney et al,, 2022, Frontiers in Bioim‘ormatics)‘



// A genomic island database allows new understanding and asks
4 further questions
4

«  Mapping all genomic islands allows

o Better understanding of horizontal gene transfer
o Delimits natural mechanisms for loss of biocontainment

o Better understanding of prophage host ranges

o Understand cross talk between prophages/MEs and prophage genome mosaicism
o Gene flows between host and ME, between MEs

o Mapped att sites for 1M+ integrases

o Diversity of prophages across the tree of life
o Currently only mapped well in Mycobacterium

«  We can begin to ask questions such as
o Why some bacterial species have large numbers of prophages and others do not?

o Annotation problem
o Biological mechanism
o Poor sequence quality
o What mechanisms regulate HGT in different species?
o Do integrases have the same host ranges as the islands that contain them?




// Phage Factory: Bacteria-Agnostic Phage Discovery and Engineering
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ESKAPE ~

Tier 1

Select Agents™

Other HHS
and Overlap -
Select Agents
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Enterococcus faecium
Staphylococcus aureus
Klebsiella pneumoniae

Acinetobacter baum annii
Pseudomonas aeruginosa
Enterobacter spp.
Bacillus anthracis
Burkholderia mallei
Burkholderia pseudomallei
Clostridium botulinum
Francisella tularensis
Yersinia pestis

Brucella abortus

Brucella melitensis
Brucella suis

Coxiella burnetii

Rickettsia spp.
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7 Prophage yields are higher than average for pathogens
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Unpublished Data




Active prophages can be identified by PCR ...
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Mageeney et al., 2020 mSystems



/" Deep sequencing can detect active prophages
4
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/ Deep sequencing reveals differential island induction behaviors

/ Pae1505 Prophages
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/" Engineered phages kill Pseudomonas aeruginosa in liquid culture
4
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/" Engineered phages save waxworms in phage therapy trials
/4

rd

4
Uninjected, Phage
100%

80% 3X, PB, 44GA
© 5x, 42argFA, 64LA
=
S 52SA
.5 60%

X 41ZA

40%

PAO1

20%

0%
0 16 20 24 48 72 96

Hours Post Induction

—Ul PB PhageOnly —PAO1 —41ZA —42argFA 44GA —525A —64LA —3x 5x

Mageeney et al., 2020 mSystems



// Precise prophage end mapping allows for better phage engineering
74
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design
A Splicing Rebuilding Rebuilding
. Joint Joint Joint
«  We typically build large Gibson l l i
Assemblies for our Phage Engineering BCR A PCR B1 PCR B2 PCR B3
* Needed a high throughput way to ——————

accomplish this

» Designed bigDNA software to use
recursion/backtracking to design long

Segment A Segment B, too long for single PCR

PCR primers that will be capable of B 10 kbp 10 kbp
synthetic phage Gibson Assembly Recursel: PCRB1 A= = A"
~ PCRB1I <, PCRB2 > PCRB3
* bigDNA can design WT phages, igB __________________ |
phages with gene deletions or gene S
additions
Recurse 2: PCR B2 from 1a |'| FAIL:
13 (No PCR 2’s for 1a)
___________________ |- Backtrack !

2b

SUCCEED:

Recurse 3: PCR B2 with 1b 23[
1b i Recurse 4: PCR B3

Vuong et al., Submitted to Phage
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Alternatives
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Pseudomonas putida
Soil consortia, biomanufacturing

Burkholderia cepacia complex
Soil consortia, hard to transform

Bacillus subtilis
Soil consortia, biomanufacturing

Synechococcus
Product biosynthesis

, Streptomyces venezuelae
Soil consortia, secondary metabolites

Rhodococcus
Soil consortia

— :
Pseudomonas deruginosa

Soil consortia, large prophage pool

Pseudomonas syringae
Plant Pathogen

Pseudomonas fluorescens
Soil consortia

 Nostoc
Soil consortia

o
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3 4
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Unpublished Data

/7~ We have treated many bacteria that are related to energy applications




Bst25_stagnalis_MSMB1543
Bub1l_ubonensis_MSMB2
Bdol4_dolosa_AU0158

Bps402_pseudomultivorans_MSMB0607
Bmu2_multivorans_ATCC17616

/ B. cePGCia Complex Strains harbor ] |: Bmu29_multivorans_AU1185

Bmul89_multivorans_LMG29310

/ m a ny p ro p h age S Bmul2_multivorans_ATCCBAA247

Bam13_ambifaria_ AMMD
{ Bdi1l9_diffusa_RF2nonBP9
Bte36_territorii_MSMB2203WGS
Blal4_latens_AU17928
Bvil_vietnamiensis_G4
Bvill_vietnamiensis_LMG1092

e 16 strains treated

Bse8_seminalis_FL5410S1D7

—————— Ban158_anthina_MSMB649WGS
. . . Bcel69_cepacia_Bu72
* 9 cepacia, 2 cenocepacia, 2 multivornas, - sce132 cenocepacia 2315
cell5_cenocepacia_|
1 vietnamiensis, 1 stabilis, 1 pyrrocinia Bce202_cepacia_LMG16656

Bce208_cenocepacia_K562
e 123 Genomic Islands Discovered s e ArceaA
* 39 Prophages sov7 owrocnia. 2

« 30 Active Full Length - sssisubis A

Bst81_stabilis_LA20W

° ZO |nduced by M MC Bme346_metallica_A53

_|: Bco23_contaminans_LMG23361
Blal_lata_383
Bce248_cepacia_UCB717
¢ /I O NOt teSted 4'_7[ Bce328_cepacia_MSMB648WGS
* 6 Decayed

Bce320_cepacia_MSMB2211WGS
Bce291_cepacia_ MSMB1829WGCS
Bce334_cepacia_ MSMB1533WCS
1 Bce300_cepacia_MSMB1061WGS
¢ 3 Fl | a m e nto u S Bce379_cepacia_INT3_BP177
Bce431_cepacia_ ATCC17759
Bce298_ cepacia_MSMB1339WGS
Bce310_cepacia_ MSMB1063WGS
.02 Bce292_cepacia_MSMB1824WGS
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//Prophage isolation suggests Burkholderia prophages have a large
host range
7
/

We have isolated 3 prophages from various Burkholderia strains on
o B. cepacia 1829: Bce334.40.R and Bce328.59.V

o B. cenocepacia K56-2: Bmu2.37amn

.-'_-ﬁ

BC634.40.R Bce328.59V

BmuZB?amn.




phages

P / Precise prophage mapping allows for discovery of new satellite

A. PICI EcCICFTO73  'Mtegrase  AlpA Primase ori SSB Capsid HDPD

(Eco160.11.phoQ)

Discovered small Gl in our database (11capE)
that appeared to be integrated into the capsid ol b Capsid__Alph

protein of another prophage (55icd) in a E. coli o o T
NRG857c

« This Gl resembled the previously described
PICls
. . Eccﬁlﬁctl).gi'lfsé
*  New class of satellite discovered helper-
embedded satellite phage-induced-
chromosomal islands (HES-PICI) C. HEShelber quiiite b D
« Found 491HES-PICI in Enterobacterales sp.
Phage lambda ~(#44 - Hptd P - P g e BERE o o
A:Terminase_1:132 (36) E:Phage_cap_E:80 (201) A BCE
A:Terminase_1:246 (61) E:TIGR1554:92 (3)
B:Phage_portal_2:38 (1|) V:Phage_TTP_13:49 (1) [ ] Integrase I Recombination [ 7] Lysis I Head Il Other
B;::zi:;i;f:zz:zﬁt)loo) i (1I::C065281:695 (2) [ Lysogeny [C] Replication [ JApA [ Tail (B Unknown
C:Peptidase_S78:27 (3) L:Phage_tail_L:147 (1)
C:CLP pﬁ)tease :110 (80) J: Phage_tlail_3:153 (1)
o=zt >—nu%i>f>i>i>ﬁ>i>:>ii>:> :>c>» s

Terminase Portal Prohead Major Talltube T Tail Iength Mmor Tail fiber L . . Lo .
IorER GlibADIE protease  capsid Tail assembly  tape measure tail Tommasini et al., Submitted to NAR Genomics and Bioinformatics a

chaperone




P Conclusions

Prophages can be mined for every known bacterial species
«  MAGs contain less Gls than isolates
- Engineered prophages can treat P. geruginosa infections both in vitro and in vivo
« Burkholderia prophage have large host ranges

« HES-PICI can be found in numerous lambda cognate locations and are widespread in
Entrobacteriales
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