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A Deterministic Inverse Problem

Modelx * *
*

Problem
Given some observed data, find λ ∈ Λ that best predicts the data.

Solutions may not be unique without additional assumptions.

Requires solving several deterministic forward problems.
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A Stochastic Inverse Problem

Model
Noise

* *
*

Problem
Given some observed data and an assumed noise model, find the parameters that
are most likely to have produced the data.

Solutions may not be unique without additional assumptions.

Requires solving several deterministic forward problems.
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A Different Stochastic Inverse Problem
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Problem
Given a probability density on observations, find a probability density on Λ such
that the push-forward matches the given density on the observed data.

Solutions may not be unique without additional assumptions.

We only need to solve a single stochastic forward problem.
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Notation

We assume we are given:
1 A finite-dimensional parameter space, Λ.

2 A parameter-to-observation/data map, Q : Λ→ D = Q(Λ)

3 A observed/target probability measure on (D,BD), denoted Pobs
D , with

density πobs
D (typically from experimental data)

4 An initial probability measure on (Λ,BΛ), denoted Pinit
Λ , with density πinit

Λ

(typically from prior beliefs or expert knowledge)

We need to compute:
1 The push-forward of the initial density through the model.

In other words, we need to solve a forward UQ problem using the initial.

We use πpred
D to denote this push-forward density.
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A Key Assumption

Predictability Assumption

We assume that the observed probability measure, Pobs
D , is absolutely continuous

with respect to the push-forward of the initial, Ppred
D .

⇡obs
D

⇡
Q(prior)
D

⇡obs
D

⇡
Q(prior)
D
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A Solution to the Stochastic Inverse Problem

Theorem

Given an initial probability measure, Pinit
Λ on (Λ,BΛ) and an observed probability

measure, Pobs
D , on (D,BD), the probability measure Pup

Λ on (Λ,BΛ) defined by

Pup
Λ (A) =

∫
D

(∫
A∩Q−1(q)

πinit
Λ (λ)

πobs
D (Q(λ))

πpred
D (Q(λ))

dµΛ,q(λ)

)
dµD(q), ∀A ∈ BΛ

solves the stochastic inverse problem.

The updated density is:

πup
Λ (λ) = πinit

Λ (λ)
πobs
D (Q(λ))

πpred
D (Q(λ))

.

Both πinit
Λ and πobs

D are given.

Computing πpred
D requires a forward propagation of the initial density.
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A Parameterized Nonlinear System

Example

Consider a parameterized nonlinear system of equations:

λ1u
2
1 + u2

2 = 1,

u2
1 − λ2u

2
2 = 1

Quantity of interest is the second component: Q(λ) = u2.

Given πobs
D ∼ N(0.3, 0.0252).

Given a uniform initial density.

Use 10,000 samples from the initial and a standard KDE to approximate the
push-forward.

Use standard rejection sampling to generate samples from πup
Λ .
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A Parameterized Nonlinear System
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Figure: Samples from the updated density (left) and a comparison of πobs
D , πpred

D and
push-forward of the updated density (right).
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Why do we care about approximate models?

All are computationally expensive and require some form of approximation ...
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Convergence of Inverse Solutions

Recall that the updated density is given by

πup
Λ (λ) = πinit

Λ (λ)
πobs
D (Q(λ))

πpred
D (Q(λ))

The updated density using a surrogate model, QS(λ), is given by

πup,S
Λ (λ) = πinit

Λ (λ)
πobs
D (QS(λ))

πpred,S
D (QS(λ))

Theorem (B.J.W. SISC 2018b)

Under the the assumptions in [B.J.W., 2018b], QS(λ)→ Q(λ) in L∞(Λ) =⇒
πup,S

Λ (λ)→ πup
Λ (λ) in L1(Λ).

Extensions to convergence in Lp have also been developed recently [Butler, Wildey,

Zhang, IJUQ, 2022].
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Does this include data-driven models?

Theorem (W. Zhang Thesis 2021)

Suppose Q ∈ C (Λ) and the assumptions in [B.J.W., 2018b] are satisfied. Then
there exists a sequence of single hidden layer Neural Networks defined on Λ such
that (amongst other results):

πup,S
Λ (λ)→ πup

Λ (λ) in L1(Λ).

Similar results can be shown for Neural Networks with arbitrary depth and fixed
width by combining this result with the UAT from [Zhou et al 2017].

Does this help me add error bars or confidence intervals to the stochastic
inverse problem using a given surrogate?

No, but let’s see what we can do ...
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Estimating Error/Uncertainty in Surrogate Models

Data-driven models tend to have many sources of error/uncertainty:

Discretization/architecture (epistemic)

Sparse/uninformative data (epistemic)

Noisy data (aleatoric)

Optimization/solver variability (aleatoric)

Extrapolation/OoD (epistemic)

From [Hüllermeier and Waegeman 2021]:

... a trustworthy representation of uncertainty is desirable and should be
considered as a key feature of any machine learning method ...

From [Abdar et al 2021]:

... predictions made without UQ are usually not trustworthy.

Dropout/Bayesian [Neal 2012; Gal et al 2016; ...] and ensemble-based [Lakshminarayanan

et al 2017; Ashukha et al 2021, ...] approaches are the most common.
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From [Hüllermeier and Waegeman 2021]:

... a trustworthy representation of uncertainty is desirable and should be
considered as a key feature of any machine learning method ...

From [Abdar et al 2021]:

... predictions made without UQ are usually not trustworthy.

Dropout/Bayesian [Neal 2012; Gal et al 2016; ...] and ensemble-based [Lakshminarayanan

et al 2017; Ashukha et al 2021, ...] approaches are the most common.

Tim Wildey (tmwilde@sandia.gov) ML for DCI SIAM MDS 2022 14 / 36



Using the proper ensemble for DCI

Suppose we compute an ensemble of data-driven surrogate models,
{
Q

(i)
S (λ)

}M

i=1
.

Let g denote an ensemble-averaged quantity, e.g.,

QS(λ) =
1

M

M∑
i=1

Q
(i)
S (λ)

How can we construct a data-consistent measure/density?

Each member of the ensemble can be used to compute a data-consistent solution:

πup,S,i
Λ (λ) = πinit

Λ (λ)
πobs
D (Q

(i)
S (λ))

πpred,S,i
D (Q

(i)
S (λ))

Use the ensemble-averaged surrogate model, QS(λ), to compute the update:

πup,S
Λ (λ) = πinit

Λ (λ)
πobs
D (QS(λ))

πpred,S
D (QS(λ))
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A simple example

Consider the following partial differential equation used in [Butler, W., IJUQ 2018]{
−∇ · (K∇u) + b(λ1, λ2, x) · ∇u = g(x), x ∈ Ω = (0, 1)× (0, 1)

u = 0, x ∈ ∂Ω

The quantity of interest is a mollified point-evaluation:

Q(u(λ)) =

∫
Ω

100

π
e−100(x1−0.5)2−100(x2−0.5)2

u(x) dx .

Discretization details:

Finite element on 50× 50 mesh,

πinit
Λ is uniform on [0, 1]2

Build feedforward NN surrogate: 2→ 20→ 20→ 1 with ReLU activation

Use 1,000 samples split 80/20 for training/testing

Use 20,000 samples evaluated using surrogate to approximate push-forward

Observed distribution is N(0.033,0.0012)
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Approximations and Errors

Figure: Top row: true response, approximation and error. Bottom row: true solution to
the inverse problem, approximation and error.
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Uncertainty Characterization Using Dropout(0.01)
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Uncertainty Characterization Using Ensembles
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Uncertainty Characterization Using Ensemble of Dropouts
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More Formal Verification Techniques

Dropout and ensembles characterize the predictive uncertainty, i.e., the
precision of the model.

We are more interested in the accuracy of a particular surrogate model.

Why not use a formal solution verification [Eca et al 2010, Xind et al 2010, Rider

et al 2016] procedure?

Richardson extrapolation, regularized/weighted least squares, etc.

All require an ansatz and perform best in asymptotic regime.

More work leads to smaller error

Not necessarily true for NN surrogates!

Can we develop an error estimation scheme that does not require monotonic
behaviour?
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Error Estimates for Surrogates of Quantities of Interest
from Physics-based Models

Let’s assume:

we have a QoI from a deterministic physics-based model,

we have an adjoint for the physics-based model,

What is an adjoint?

Definition
Let X and Y be Banach spaces and L denote a linear operator L : X → Y . The
adjoint operator L∗ : Y ∗ → X ∗ is defined such that

〈Lx , y〉 = 〈x , L∗y〉 , ∀x ∈ X , y ∈ Y .

Given a functional of the forward state, J(u), the adjoint problem is given by:

L∗φ = DuJ.

Often used in optimization and a posteriori error estimation.
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Error Estimates for Surrogates of Quantities of Interest
from Physics-based Models

We can use a generalization of adjoint-based techniques to estimate the error in
point-wise evaluations of the surrogate model [Butler, Dawson, W. 2011].

Let u denote the true solution to the model, Ũ be an approximation and R(Ũ) the
residual.

The error in a functional of the solution is given by:

J(u)− J(Ũ) =
〈
R(Ũ), φ

〉
+ higher order terms,

where φ is the adjoint solution.

Given an approximate adjoint solution, φ̃, we have:

J(u)− J(Ũ) ≈
〈
R(Ũ), φ̃

〉
+
〈
R(Ũ), φ− φ̃

〉
︸ ︷︷ ︸

higher order

,
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Error Estimates for Surrogates

Such error estimates are higher-order and can be used to:

Define an improved surrogate model [Butler, Dawson, W. 2013]

Drive adaptivity in the surrogate model [Jakeman, W. 2015]

Decompose errors into various contributions [Bryant, Prudhomme, W. 2015]

Derive better MCMC sampling strategies [Butler, Dawson, W. 2015]

Estimate errors in probabilities of rare events [Butler, W. 2018]

But what is the drawback?

Requires a surrogate of the forward and adjoint states!

Not a significant issue for GPCE, pseudo-spectral projection, sparse grids, etc.

Challenging for NN models ...

Tim Wildey (tmwilde@sandia.gov) ML for DCI SIAM MDS 2022 24 / 36



Error Estimates for Surrogates

Such error estimates are higher-order and can be used to:

Define an improved surrogate model [Butler, Dawson, W. 2013]

Drive adaptivity in the surrogate model [Jakeman, W. 2015]

Decompose errors into various contributions [Bryant, Prudhomme, W. 2015]

Derive better MCMC sampling strategies [Butler, Dawson, W. 2015]

Estimate errors in probabilities of rare events [Butler, W. 2018]

But what is the drawback?

Requires a surrogate of the forward and adjoint states!

Not a significant issue for GPCE, pseudo-spectral projection, sparse grids, etc.

Challenging for NN models ...

Tim Wildey (tmwilde@sandia.gov) ML for DCI SIAM MDS 2022 24 / 36



Error Estimates for Surrogates

Such error estimates are higher-order and can be used to:

Define an improved surrogate model [Butler, Dawson, W. 2013]

Drive adaptivity in the surrogate model [Jakeman, W. 2015]

Decompose errors into various contributions [Bryant, Prudhomme, W. 2015]

Derive better MCMC sampling strategies [Butler, Dawson, W. 2015]

Estimate errors in probabilities of rare events [Butler, W. 2018]

But what is the drawback?

Requires a surrogate of the forward and adjoint states!

Not a significant issue for GPCE, pseudo-spectral projection, sparse grids, etc.

Challenging for NN models ...

Tim Wildey (tmwilde@sandia.gov) ML for DCI SIAM MDS 2022 24 / 36



Compression/Recovery of States

We seek to build a compressed representation of the states and a map from
parameters to the latent space.

Set up and train:

Autoencoders for compression
into the latent space

Feedforward NN for the
parameter-to-latent mapping

Repeat for adjoint states
For a new parameter λ ∈ Λ, we

Evaluate the
parameter-to-latent maps

Pass latent representations
through decoders

Compute approximate QoI

Compute error estimate
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Validation of Forward Autoencoder

Autoencoder architecture: 2601→ 128→ 16→ 128→ 256→ 2601 with ReLU
activations in hidden layers and tanh output activation.

Figure: The true states (top row), the recovered states (middle row) and the error
(bottom row) for validation states.
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Validation of Adjoint Autoencoder

Autoencoder architecture: 2601→ 128→ 16→ 128→ 256→ 2601 with ReLU
activations in hidden layers and tanh output activation.

Figure: The true states (top row), the recovered states (middle row) and the error
(bottom row) for validation states.
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Validation of Forward Parameter-to-latent Map/Decoder

Parameter-to-latent architecture: 2→ 32→ 32→ 16 with ReLU activations in
hidden layers and tanh output activation.

Figure: The true states (top row), the recovered states (middle row) and the error
(bottom row) for validation states.
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Validation of Adjoint Parameter-to-latent Map/Decoder

Parameter-to-latent architecture: 2→ 32→ 32→ 16 with ReLU activations in
hidden layers and tanh output activation.

Figure: The true states (top row), the recovered states (middle row) and the error
(bottom row) for validation states.
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Estimating the Error in the Surrogate

Figure: The true error (left) and the estimated error (right).
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Error Estimates for Data-consistent Solutions

Suppose we are given

A surrogate model, QS(λ) ≈ Q(λ).

A set of samples (not training data), {λi}Ni=1, generated from πinit
Λ , where we

want to evaluate QS(λ).

An estimate of the error ei ≈ Q(λi )− QS(λi )

Then, we can defined the improved surrogate approximation:

QS+(λi ) = QS(λi ) + ei ,

and the improved data-consistent solution:

πup,S+
Λ (λi ) = πinit

Λ (λi )rS+(λi ), rS+(λi ) =
πobs
D (QS+(λi ))

πpred,S+
D (QS+(λi ))
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Error Estimates for Data-consistent Solutions

The improved ratio, rS+(λi ), can be used to estimate the error in the updated
density in the total variation metric:∫

Λ

∣∣∣πup
Λ (λ)− πup,S

Λ (λ)
∣∣∣ dµΛ ≈

∫
Λ

∣∣∣πup,S+
Λ (λ)− πup,S

Λ (λ)
∣∣∣ dµΛ

≈ 1

N

N∑
i=1

|rS+(λi )− rS(λi )|

We can also it to evaluate the reliability in the updated density on a point-wise
basis.
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Estimating the Error in the Surrogate

Figure: The true error (left) and the estimated error (right).

True L1 Error 0.29135
Estimated L1 Error 0.30101
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Can We Assess OOD Errors?
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Conclusions and Future Work

Errors and uncertainties can significantly affect the solution to inverse
problems.

Affects the accept/reject of samples
Affects subsequent predictions

If an adjoint model is available, then the affect of surrogate errors on
updated density can be estimated by using dual-weighted residuals.

Requires forward and adjoint state approximations.

We used standard autoencoders with parameter-to-latent NN surrogates.
Better compression methods may be required for transient and multiple QoI.

Future work to limit dependence on dual-weighted residual for each
evaluation.

Previous papers limited these evaluations by projecting error onto higher-order
surrogate.
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Thanks! Questions?

Acknowledgments
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Thank you for your attention!

Questions?
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