This paper describes obijective technical results and analysis. Any subjective views or opinionsithatbmight.be}expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Estimating the Error in Solutions to Stochastic Inverse

Problems When Using Machine Learning Surrogates

Tim Wildey

Sandia National Laboratories
Center for Computing Research
Scientific Machine Learning Department

SIAM Conference on the Mathematics of Data Science
September 25-30, 2022

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of
Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear
Security Administration under contract DE-NA-0003525. SAND2022-****

boratories is a multimission laboratory managed and operated by National Technology & Engineering. Solutlonsl'_ﬂSandm L
U.S. Ener 's,National N A



Data-informed Physics-Based Predictions

OBSERVED

Optimization,
[DJAYPAY

Inversion,
Data-assimilation

INPUTS,
FORCINGS,
ASSUMPTIONS

Forward

Simulation Data-informed

physics-based
predictions

Tim Wildey (tmwilde@sandia.gov) ML for DCI SIAM MDS 2022 2/36



Data-informed Physics-Based Predictions

Optimization, OBSERVED
Inversion, DATA

Data-assimilation ’

INPUTS,
FORCINGS,
ASSUMPTIONS

Tim Wildey (tmwilde@sandia.gov) ML for DCI SIAM MDS 2022 2/36



Data-informed Physics-Based Predictions

Optimization, OBSERVED
Inversion, DATA

Data-assimilation ’

INPUTS, DATA-

FORCINGS, DRIVEN
ASSUMPTIONS SURROGATE

Tim Wildey (tmwilde@sandia.gov) ML for DCI SIAM MDS 2022



A Deterministic Inverse Problem

» m) SIS

Problem
Given some observed data, find A € A that best predicts the data.
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Given some observed data, find A € A that best predicts the data.

@ Solutions may not be unique without additional assumptions.

@ Requires solving several deterministic forward problems.
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A Stochastic Inverse Problem

Problem

Given some observed data and an assumed noise model, find the parameters that
are most likely to have produced the data.
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A Stochastic Inverse Problem
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Given some observed data and an assumed noise model, find the parameters that
are most likely to have produced the data.

@ Solutions may not be unique without additional assumptions.

@ Requires solving several deterministic forward problems.
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A Different Stochastic Inverse Problem
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Problem

Given a probability density on observations, find a probability density on A such
that the push-forward matches the given density on the observed data.
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A Different Stochastic Inverse Problem

N-- -

Problem

Given a probability density on observations, find a probability density on A such
that the push-forward matches the given density on the observed data.

@ Solutions may not be unique without additional assumptions.
@ We only need to solve a single stochastic forward problem.
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Notation

We assume we are given:

@ A finite-dimensional parameter space, A.
@ A parameter-to-observation/data map, Q : A — D = Q(A)
© A observed/target probability measure on (D, Bp), denoted PS5, with

density 7% (typically from experimental data)

@ An initial probability measure on (A, By), denoted P't, with density it
(typically from prior beliefs or expert knowledge)
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Notation

We assume we are given:

@ A finite-dimensional parameter space, A.

@ A parameter-to-observation/data map, Q : A — D = Q(A)

© A observed/target probability measure on (D, Bp), denoted PS5, with
density 7% (typically from experimental data)

@ An initial probability measure on (A, By), denoted P't, with density it
(typically from prior beliefs or expert knowledge)

We need to compute:

@ The push-forward of the initial density through the model.

@ In other words, we need to solve a forward UQ problem using the initial.

o We use wged to denote this push-forward density.

Tim Wildey (tmwilde@sandia.gov) ML for DCI SIAM MDS 2022 6/36



A Key Assumption

Predictability Assumption

We assume that the observed probability measure, Pobs s absolutely continuous
with respect to the push-forward of the initial, P%ed.

s

pred
D

Good Initial Bad Initial
(Cannot predict all observations)
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A Solution to the Stochastic Inverse Problem

Given an initial probability measure, Pi" on (A, Bp) and an observed probability

measure, P, on (D, Bp), the probability measure Py¥ on (A, By) defined by

up init ﬂ.obs Q A
B = [ ([ o, OB T dn ) dun(a). ¥A < By

solves the stochastic inverse problem.
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A Solution to the Stochastic Inverse Problem

Given an initial probability measure, Pt on (A, Bp) and an observed probability
measure, P9, on (D, Bp), the probability measure Py¥ on (A, Bp) defined by

up _ 7I_init ﬂ-'ons( Q()‘))
rea = [ ([ oy TSN Q()\))dMA,q(A)) dun(q), YA € By

solves the stochastic inverse problem.

The updated measure of N\ is 1.
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A Solution to the Stochastic Inverse Problem

Given an initial probability measure, Pt on (A, Bp) and an observed probability
measure, P9, on (D, Bp), the probability measure Py¥ on (A, Bp) defined by

up _ 7I_init ﬂ-'ons( Q()‘))
rea = [ ([ oy TSN Q()\))dMA,q(A)) dun(q), YA € By

solves the stochastic inverse problem.

The updated measure of N\ is 1.

PPy¥ is stable with respect to perturbations in P%* and in Pit.

For details: [Combining Push-forward Measures and Bayes’ Rule to Construct Consistent
Solutions to Stochastic Inverse Problems, BJW. SISC 40 (2), 2018.]
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A Solution to the Stochastic Inverse Problem

Given an initial probability measure, Pi" on (A, Bp) and an observed probability
measure, P, on (D, Bp), the probability measure Py¥ on (A, By) defined by

up init ﬂ.obs Q A
B = [ ([ o, OB T dn ) dun(a). ¥A < By

solves the stochastic inverse problem.

The updated density is:

71_up _ 7_l,init 7T':)DbS(Q()‘))
R S C)

e Both 7ifit and 7% are given.

o Computing 72 requires a forward propagation of the initial density.
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A Parameterized Nonlinear System

Consider a parameterized nonlinear system of equations:

)\1U% + U% = ].7

v — Ui =

Quantity of interest is the second component: Q(\) = us.
Given 725 ~ N(0.3,0.0252).

Given a uniform initial density.

Use 10,000 samples from the initial and a standard KDE to approximate the
push-forward.

Use standard rejection sampling to generate samples from 7,".
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A Parameterized Nonlinear System
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Figure: Samples from the updated density (left) and a comparison of 73, wged and

push-forward of the updated density (right).
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Why do we care about approximate models?

Flow in Nuclear Reactor (Turbulent CFD) Tokamak Equilibrium (MHD)

Climate Modeling Multi-scale Materials Modeling
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Convergence of Inverse Solutions

Recall that the updated density is given by

5 (Q(N)

OO

The updated density using a surrogate model, Qs()), is given by

o obs
oW =W SR
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Convergence of Inverse Solutions

Recall that the updated density is given by

P(N) = T (n) 2 Q)

The updated density using a surrogate model, Qs()), is given by

o obs
oW =W SR

Theorem (B.J.W. SISC 2018b)

Under the the assumptions in [B.J.W., 2018b], Qs(A) = Q(A) in L*(A) =
A2 () = (A in LY(A).

Extensions to convergence in LP have also been developed recently [Butler, Wildey,
Zhang, 1JUQ, 2022].
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Does this include data-driven models?

Theorem (W. Zhang Thesis 2021)

Suppose @ € C(N) and the assumptions in [B.J.W., 2018b] are satisfied. Then
there exists a sequence of single hidden layer Neural Networks defined on N\ such
that (amongst other results):

T2 (X) = wP(N) in L1(N).

Similar results can be shown for Neural Networks with arbitrary depth and fixed
width by combining this result with the UAT from [Zhou et al 2017].
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that (amongst other results):

T2 (X) = wP(N) in L1(N).

Similar results can be shown for Neural Networks with arbitrary depth and fixed
width by combining this result with the UAT from [Zhou et al 2017].

Does this help me add error bars or confidence intervals to the stochastic
inverse problem using a given surrogate?
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Does this include data-driven models?

Theorem (W. Zhang Thesis 2021)

Suppose @ € C(N) and the assumptions in [B.J.W., 2018b] are satisfied. Then
there exists a sequence of single hidden layer Neural Networks defined on N\ such
that (amongst other results):

T2 (X) = wP(N) in L1(N).

Similar results can be shown for Neural Networks with arbitrary depth and fixed
width by combining this result with the UAT from [Zhou et al 2017].

Does this help me add error bars or confidence intervals to the stochastic
inverse problem using a given surrogate?

No, but let's see what we can do ...
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Estimating Error/Uncertainty in Surrogate Models

Data-driven models tend to have many sources of error/uncertainty:
o Discretization/architecture (epistemic)
@ Sparse/uninformative data (epistemic)
o Noisy data (aleatoric)
e Optimization/solver variability (aleatoric)
o Extrapolation/OoD (epistemic)
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Estimating Error/Uncertainty in Surrogate Models

Data-driven models tend to have many sources of error/uncertainty:
o Discretization/architecture (epistemic)
@ Sparse/uninformative data (epistemic)
@ Noisy data (aleatoric)
e Optimization/solver variability (aleatoric)
o Extrapolation/OoD (epistemic)
From [Hiillermeier and Waegeman 2021]:

. a trustworthy representation of uncertainty is desirable and should be
considered as a key feature of any machine learning method ...

From [Abdar et al 2021]:
... predictions made without UQ are usually not trustworthy.

Dropout/Bayesian [Neal 2012; Gal et al 2016; ...] and ensemble-based [Lakshminarayanan
et al 2017; Ashukha et al 2021, ...] approaches are the most common.
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Using the proper ensemble for DCI

. M
Suppose we compute an ensemble of data-driven surrogate models, {Qé')()\)}. .
=

Let g denote an ensemble-averaged quantity, e.g.,

_ 1 &
Qs() = - > QW)
i=1
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Using the proper ensemble for DCI

. M
Suppose we compute an ensemble of data-driven surrogate models, {Qé')()\)}. .
=

Let g denote an ensemble-averaged quantity, e.g.,
1 L
Qs() = - > QW)
i=1

How can we construct a data-consistent measure/density?
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Using the proper ensemble for DCI

. M
Suppose we compute an ensemble of data-driven surrogate models, {Qé')()\)}. .
=

Let g denote an ensemble-averaged quantity, e.g.,
1 L
Qs() = - > QW)
i=1

How can we construct a data-consistent measure/density?

Each member of the ensemble can be used to compute a data-consistent solution:

205" (V)

up,S,i _ _init 5 (
™ )\ =T A — = N
A ( ) A ( )W%«ed,S,I(Qg)()\))
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Using the proper ensemble for DCI

. M
Suppose we compute an ensemble of data-driven surrogate models, {Qé')()\)}. .
=

Let g denote an ensemble-averaged quantity, e.g.,
1 L
Qs() = - > QW)
i=1

How can we construct a data-consistent measure/density?

Each member of the ensemble can be used to compute a data-consistent solution:

obs ()
WRRSJ()‘) :Winit()\) D (QS ()‘))

A d,S,i; A
TS ()
Use the ensemble-averaged surrogate model, Qs()\), to compute the update:

7TUP’S _ ﬂ_init 71-’C>Dbs(65(>‘))
o0 =N S B
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A simple example

Consider the following partial differential equation used in [Butler, W., 1JUQ 2018]

=V - (KVu) 4+ b(A1, A2, x) - Vu=g(x), xe€Q=(0,1)x(0,1)
u=0, x € 00

The quantity of interest is a mollified point-evaluation:

1 2 2
Q(u()\)) :/ ﬂe—loo(xl—O.S) —100(x,—0.5) LI(X) dx.
Q

™

Discretization details:
o Finite element on 50 x 50 mesh,
e 7Nt is uniform on [0, 1]2
o Build feedforward NN surrogate: 2 — 20 — 20 — 1 with RelLU activation
@ Use 1,000 samples split 80/20 for training/testing
o Use 20,000 samples evaluated using surrogate to approximate push-forward
@ Observed distribution is N(0.033,0.0012)

Tim Wildey (tmwilde@sandia.gov) ML for DCI SIAM MDS 2022 16 /36



Approximations and Errors

True Response Surrogate Approximation Error in Surrogate Approximation
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Figure: Top row: true response, approximation and error. Bottom row: true solution to
the inverse problem, approximation and error.
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Uncertainty Characterization Using Dropout(0.01)

Error in Surrogate Approximation
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Uncertainty Characterization Using Ensembles

Error in Surrogate Approximation
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Uncertainty Characterization Using Ensemble of Dropouts

Error in Surrogate Approximation Variance over Ensemble
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More Formal Verification Techniques

o Dropout and ensembles characterize the predictive uncertainty, i.e., the
precision of the model.

@ We are more interested in the accuracy of a particular surrogate model.
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More Formal Verification Techniques

@ Dropout and ensembles characterize the predictive uncertainty, i.e., the
precision of the model.
@ We are more interested in the accuracy of a particular surrogate model.

Low accuracy Low accuracy

Low precision High precision
High accuracy High accuracy
Low precision High precision
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More Formal Verification Techniques

o Dropout and ensembles characterize the predictive uncertainty, i.e., the
precision of the model.

@ We are more interested in the accuracy of a particular surrogate model.

@ Why not use a formal solution verification [Eca et al 2010, Xind et al 2010, Rider

et al 2016] procedure?
o Richardson extrapolation, regularized/weighted least squares, etc.
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More Formal Verification Techniques

Dropout and ensembles characterize the predictive uncertainty, i.e., the
precision of the model.

We are more interested in the accuracy of a particular surrogate model.

Why not use a formal solution verification [Eca et al 2010, Xind et al 2010, Rider
et al 2016] procedure?
o Richardson extrapolation, regularized/weighted least squares, etc.

All require an ansatz and perform best in asymptotic regime.
o More work leads to smaller error

@ Not necessarily true for NN surrogates!
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More Formal Verification Techniques

Dropout and ensembles characterize the predictive uncertainty, i.e., the
precision of the model.

We are more interested in the accuracy of a particular surrogate model.

Why not use a formal solution verification [Eca et al 2010, Xind et al 2010, Rider
et al 2016] procedure?
o Richardson extrapolation, regularized/weighted least squares, etc.

All require an ansatz and perform best in asymptotic regime.
o More work leads to smaller error

@ Not necessarily true for NN surrogates!

Can we develop an error estimation scheme that does not require monotonic
behaviour?

Tim Wildey (tmwilde@sandia.gov) ML for DCI SIAM MDS 2022



Error Estimates for Surrogates of Quantities of Interest

from Physics-based Models

Let's assume:
@ we have a Qol from a deterministic physics-based model,
@ we have an adjoint for the physics-based model,
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Error Estimates for Surrogates of Quantities of Interest

from Physics-based Models

Let's assume:
@ we have a Qol from a deterministic physics-based model,
@ we have an adjoint for the physics-based model,

What is an adjoint?
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Error Estimates for Surrogates of Quantities of Interest

from Physics-based Models

Let's assume:
@ we have a Qol from a deterministic physics-based model,
@ we have an adjoint for the physics-based model,

What is an adjoint?

Definition

Let X and Y be Banach spaces and L denote a linear operator L : X — Y. The
adjoint operator L* : Y* — X* is defined such that

(Lx,y) = (x,L"y), V¥xeX,yeY.
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Error Estimates for Surrogates of Quantities of Interest

from Physics-based Models

Let's assume:
@ we have a Qol from a deterministic physics-based model,
@ we have an adjoint for the physics-based model,

What is an adjoint?

Definition

Let X and Y be Banach spaces and L denote a linear operator L : X — Y. The
adjoint operator L* : Y* — X* is defined such that

(Lx,y) = (x,L"y), V¥xeX,yeY.

Given a functional of the forward state, J(u), the adjoint problem is given by:
L*¢ =D,J.

Often used in optimization and a posteriori error estimation.
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Error Estimates for Surrogates of Quantities of Interest

from Physics-based Models

We can use a generalization of adjoint-based techniques to estimate the error in
point-wise evaluations of the surrogate model [Butler, Dawson, W. 2011].

Let u denote the true solution to the model, U be an approximation and R(U) the
residual.

The error in a functional of the solution is given by:
J(u) - J(0) = <R(U),¢> + higher order terms,

where ¢ is the adjoint solution.

Given an approximate adjoint solution, ¢~> we have:

J(u) = 4(0) = (R(0),8) + (R(D), 6= 3.
AR

higher order
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Error Estimates for Surrogates

Such error estimates are higher-order and can be used to:
@ Define an improved surrogate model [Butler, Dawson, W. 2013]
@ Drive adaptivity in the surrogate model [Jakeman, W. 2015]
@ Decompose errors into various contributions [Bryant, Prudhomme, W. 2015]
@ Derive better MCMC sampling strategies [Butler, Dawson, W. 2015]
o Estimate errors in probabilities of rare events [Butler, W. 2018]
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But what is the drawback? J

Requires a surrogate of the forward and adjoint states!
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Error Estimates for Surrogates

Such error estimates are higher-order and can be used to:
@ Define an improved surrogate model [Butler, Dawson, W. 2013]
@ Drive adaptivity in the surrogate model [Jakeman, W. 2015]
@ Decompose errors into various contributions [Bryant, Prudhomme, W. 2015]
@ Derive better MCMC sampling strategies [Butler, Dawson, W. 2015]
(]

Estimate errors in probabilities of rare events [Butler, W. 2018]

But what is the drawback?
Requires a surrogate of the forward and adjoint states! J

o Not a significant issue for GPCE, pseudo-spectral projection, sparse grids, etc.
@ Challenging for NN models ...
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Compression /Recovery of States

We seek to build a compressed representation of the states and a map from
parameters to the latent space.

Set up and train: % oy, e ///O

@ Autoencoders for compression
into the latent space

o Feedforward NN for the
parameter-to-latent mapping LowerDimensionai

Representation

Y/ Latent Space % O
Repeat for adjoint states o %

Input Hidden Hidden Hidden Output

FOr a new parameter )\ € /\, we layer L, layer L layer Ly Iayer L, layer L

Input Features
S9INJea PajoNIIsUcosy

o Evaluate the
parameter-to-latent maps -

@ Pass latent representations e
through decoders

o Compute approximate Qol

o Compute error estimate
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Validation of Forward Autoencoder

Autoencoder architecture: 2601 — 128 — 16 — 128 — 256 — 2601 with RelLU

activations in hidden layers and tanh output activation.
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Figure: The true states (top row), the recovered states (middle row) and the error

(bottom row) for validation states.
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Validation of Adjoint Autoencoder

Autoencoder architecture: 2601 — 128 — 16 — 128 — 256 — 2601 with RelLU
activations in hidden layers and tanh output activation.
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Figure: The true states (top row), the recovered states (middle row) and the error
(bottom row) for validation states.
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Validation of Forward Parameter-to-latent Map/Decoder

Parameter-to-latent architecture: 2 — 32 — 32 — 16 with RelLU activations in

hidden layers and tanh output activation.
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Figure: The true states (top row), the recovered states (middle row) and the error
(bottom row) for validation states.
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joint Parameter-to-latent Map/Decoder

Parameter-to-latent architecture: 2 — 32 — 32 — 16 with RelLU activations in

hidden layers and tanh output activation.
02 0.2
0.1
0.0 0.0

0.2 g
0.1 .
- 0.0 .
r0.2 8 0.2

0.2
0.1 - 0.1
- 0.0 . 0.0 0.0
r 0.005 0.005 0.005
- 0.000 - 0.000

—0.00
Figure: The true states (top row), the recovered states (middle row) and the error
(bottom row) for validation states.
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Estimating the Error in the Surrogate

True Error
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Figure: The true error (left) and the estimated error (right).
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Estimating the Error in the Surrogate

True Error Estimated Error
0.005 0.005
1.0 1.0 N o
0.004 0.004
0.8 0.003 0.8 0.003
0.002 0.002
06 0.001 06 0.001
0.000 0.000
0.4 0 0.4
—0.001 —0.001
0.2 —-0.002 0.2 —0.002
-0.003 —0.003
0.0 b 2 4 0.0 : . p
T ™ —0.004 T T T T T —0.004
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Figure: The true error (left) and the estimated error (right).
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Error Estimates for Data-consistent Solutions

Suppose we are given
@ A surrogate model, Qs(\) = Q()).
init

o A set of samples (not training data), {)\,-};Vzl, generated from 7", where we
want to evaluate Qs()).

@ An estimate of the error g; = Q(\;) — Qs(\i)
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Error Estimates for Data-consistent Solutions

Suppose we are given
@ A surrogate model, Qs(\) = Q()).

o A set of samples (not training data), {)\,-};V:l, generated from 7', where we
want to evaluate Qs()).

@ An estimate of the error g; = Q(\;) — Qs(\i)
Then, we can defined the improved surrogate approximation:

Qs+ (Aj) = Qs(\i) + e,
and the improved data-consistent solution:

%( Qs+ (M)

7T/L{p’5+()\i) = A (s (N), s (X)) = T2 (Qs1 (M)
D S+AI
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Error Estimates for Data-consistent Solutions

The improved ratio, rs();), can be used to estimate the error in the updated
density in the total variation metric:

) = ()] i

T (A) — pr’s()\)) dup =~ //\

N
1
~ DI = 1)
i=1

We can also it to evaluate the reliability in the updated density on a point-wise
basis.
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Estimating the Error in the Surrogate

True Error in Updated Density
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Figure: The true error (left) and the estimated error (right).
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Estimating the Error in the Surrogate

True Error in Updated Density Estimated Error in Updated Density

Figure: The true error (left) and the estimated error (right).

True Ly Error | 0.29135
Estimated L; Error | 0.30101
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Can We Assess OOD Errors?
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Can We Assess OOD Errors?

True Error
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Can We Assess OOD Errors?

True Error Estimated Error
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Can We Assess OOD Errors?

True Error Estimated Error
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Can We Assess OOD Errors?

True Error Estimated Error
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Conclusions and Future Work

o Errors and uncertainties can significantly affect the solution to inverse
problems.

o Affects the accept/reject of samples
o Affects subsequent predictions
o If an adjoint model is available, then the affect of surrogate errors on
updated density can be estimated by using dual-weighted residuals.
@ Requires forward and adjoint state approximations.
o We used standard autoencoders with parameter-to-latent NN surrogates.
o Better compression methods may be required for transient and multiple Qol.
@ Future work to limit dependence on dual-weighted residual for each
evaluation.
o Previous papers limited these evaluations by projecting error onto higher-order
surrogate.
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Thanks! Questions?
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