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Intervoid necking

Void nucleation ~ Growth Coalescence
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Intervoid necking

99.99% polycrystalline Cu Ta [111] single crystal

Introduction: Different failure mechanisms

Intervoid shearing
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Noell et al., Acta Mater. (2018) & Lim et al., Scripta Mater. (2021)

Ta [110] single crystal ‘



Objective

Goal: Predict failure based on the interaction of loading, microstructural features (e.g., crystal
morphology, orientation), and defects such as pores, inclusions, and microcracks in structural alloys. ‘
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A New Paradigm for Failure Prediction Using 4-D Materials Science and Deep Learning (PI: Kyle Jhnson)
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PURDUE

3D Characterization

Diffraction Contrast Tomography (DCT) High Resolution yCT Digital Volume Correlation (DVC)
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4 | Material characterization: Al6061-T6é

Al6061-T6 (rolled)
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XCT measurements
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4.64 % vol. frac.




5

Number of Voids
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In-situ XCT measurements
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In-situ XCT measurements: Particles
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: - Region Ill contains high
Total Particle Volume (mm?) 0.00218 0.00188 0.00215 particle volume and low
Average Particle Spacing (mm) 0.03536 0.03530 0.03274 particle spacing




CT data to computational microstructure/FE mesh

DCT data FE mesh Initial crystal orientations
(IPF along the TD)

[111]

15,410,688 data points (254X237X2506) * 9,284,343 finite elements * No significant texture
Diameter 565 um, Height 295 um * Hexahedral finite elements

~156 grains, 2.5 um voxel size

Removed all grains < 10 voxels
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Finite element simulations
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9 I Incorporating volumetric defects in FE mesh

Volume fraction ~ 0.01%

Volume fraction ~ 0.1%

Volume fraction ~ 1%

Volume fraction ~ 4%

Single element defects
(2.5 um), randomly
distributed (vol. frac.
0.001 - 4%)

“Defect elements” are
converted to hard
particles, soft particles
and voids.

Hard particles: 100X
yield strength of Al
matrix

Soft particles: 1/100%
yield strength of Al
matrix

Voids: defect elements
removed from the mesh
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CP

Macroscopic stress-strain response
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have negligible effects

Hard particles increase the
strength

CP is more sensitive to
hard particles (see figures
in the next slides) — hard
particles increased stress
fields in neighboring
elements in CP.
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Von Mises stress after 10% deformation
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No defect . 1% voids -

Von Mises
Stress (MPa)

5.000e+02
4.250e+02
3.500e+02
2.750e+02
2.000e+02




Stress triaxiality after 10% deformation
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EQPS after 10% deformation
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EQPS after 10% deformation: Effects of hard particles

No defect (CP) 0.1% hard particles (CP) 1% hard particles (CP) 4% hard particles (CP)

EQPS
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EQPS vs. stress triaxiality: All elements
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* Larger EQPS and stress triaxiality scatters in CP compared to J2 simulation.
* Voids and soft particles have small effects on local strain and stress triaxiality.
* Hard particles significantly increase scatter in stress triaxiality.



16 | Effects of defect sizes/shapes (Volume fraction ~1%)
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Larger particles reduce the strength (shorter mean free path)
Shape had less effect. Long particles along the TD increased the strength.

Long particles normal to the TD decreased the strength.
Limitation: The current CP model does not consider motion and dislocations and their interactions with particles.

500
450
400

W W
(=T |
o o

True stress (MPa)
=]
(4]
o

150

o

(c) Elongéted nérmal fo TD

—m----D" @
_.--p--""8

- - d=2.5pumx2.5um x2.5um

1

1

I

I

1

I

I

)
$ o d=2.5pumx2.5umx5.0pm

o d=2.5umx2.5umx10.0pm| |
A d=2.5pmx2.5pmx20.0pm

004 006 008 01

True strain

0.02



9/22/22

Effects of voids and particles in polycrystalline deformation

Aluminum (88.4%) Voids (0.4%)

496,077 elements
518,937 nodes
43 crystal orientations

[001]
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Local fields at 10%
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20 I Local fields at 10% deformation (void surface)
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21 I Effects of flow stress
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22 | Summary

* Performed 3D in-situ characterization of voids and particles using DCT /XCT.

*,

0

¢ Developed a framework that reproduces 3D computational microstructures from experimental DCT/XCT data

with grain orientations, phases, and defects.

0

** Microstructural features influence both macroscopic behavior and local fields.
* Inclusions of voids and soft particles had small effect in widely used CP and ]2 models.
* Hard particles significantly altered both macroscopic and local responses.
* Inclusions of hard particles increased the strength and reduced strain heterogeneity and localization.

* The shape and size of hard particles had moderate effect on deformation of polycrystalline.

0

% Local crystal orientation near the void significantly influences local stress/strain fields.
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