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• Increasing demand for sensing resources in various warfighting domains and ISR 
missions

• Allocation of sensor tasks may be impossible for human operator to deconflict and 
prioritize in timely manner

• This work extends Sandia’s legacy autonomous sensor scheduling algorithm [1][2] 
formulated with mixed-integer linear programming (MILP) [3][4] by:
• Leveraging realistic simulation data
• Incorporating operational constraints (i.e. sensor availability, access, and 

confidence)
• Implementing a waypoint generation algorithm to discretize large search areas of 

interest
• This work results from an ongoing collaboration between Sandia National Labs and 

the Naval Postgraduate School

Program Overview
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Sensor Scheduling Hierarchy 3

• Mission commanders (of differing ranks) send task requests to overseers
• Overseers are responsible for their group of sensing agents
• Overseers balances the load of incoming requests via an optimization problem  

UNCLASSIFIED



Methodology4

Mixed-Integer Linear 
Program

Input 1: Task/Tip requests  
Look at this search area in the 
coming time window (Tips, 
Locations, Collection Values)

Input 2: States of available sensors
List of available sensors including 
sensor type, average availability, 
range of sight, footprint size, and 
position

Output: Sensor Employment 
Plan / Actual Tasks to Execute
This schedule includes sensor 
ID, sensor footprint location, 
range bin classification, and 
specific times of execution in 
the coming time window

•All inputs are used to devise sensor-
waypoint utility values. Each utility 
value is associated with a specific 
sensor looking at an individual point.

•Optimization is performed to maximize 
overall utility
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Input Generation
• Mission commanders are responsible for providing task requests
• Overseers have knowledge of their respective sensor groups



Mission Commander Input5
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• Tips: Requested activity/entity to be scanned
• Locations: Search areas (polygons) where the desired tips are predicted to be found
• Collections: Potential sensing combinations to achieve a mission commander’s 

desired tip (desired information outcome)

Tip ID Collection ID Sensor Type Number of 
Timesteps

Collection 
Value

1 1 Electro-Optical 0 0.21
SAR 1

2 Electro-Optical 1 0.14
SAR 0

3 Electro-Optical 1 0.31
SAR 1

2 4 Electro-Optical 0 0.29
SAR 1

5 Electro-Optical 1 0.20
SAR 0

6 Electro-Optical 1 0.44
SAR 1



Polygon Waypoint Generation
• Number of waypoints per search area (polygon) depends on polygon size
• Waypoint layout determined by pre-defined sensor footprint sizes
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Break down larger search areas 
into task-able waypoints
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Access, Feasibility, and Utility Computation7
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Constraint Summary
• All tasks must be scheduled within the scheduling/time window
• A single sensor can only perform one task at a given timestep [5]
• Sensors can only be scheduled for a specific timestep if they are available
• Only 1 collection ID per tip can be scheduled within a time window
• Ensure that the number of sensor type looks correspond to the selected collection ID 

option
• Ensure the collections map to the waypoints in the corresponding polygons
• An optional rule: ensure at least one request per mission commander is executed in each 

schedule
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Objective Function9
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MILP Optimization Setup10
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• MILP model implemented in Python using Pyomo [6]
• Optimization modeling package 
• Allows encoding of variables, constraints, and objectives 
• Interfaces directly to various optimization solvers

• Open-source CBC [7] and licensed Gurobi [8] provide numerical optimization of MILP 
models 



Small-Scale Example Results11

Number of Mission Commanders 1
Number of Tips 10

Number of Polygons 2
Number of Collection Options 82

Number of Waypoints 16
Number of Sensors 2

Number of Timesteps 20

Note: Time gaps in 
schedule are due 
to unavailable 
sensors
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Small-Scale Example: Polygon Coverage12

Opacity of footprints determined by 
number of looks to a given waypoint
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Larger-Scale Example Results13

Number of Mission 
Commanders

2

Number of Tips 60
Number of Polygons 5

Number of Collection Options 346
Number of Waypoints 69
Number of Sensors 7

Number of Timesteps 20

Note: Time gaps in 
schedule are due 
to unavailable 
sensors
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Computation Time Comparison14
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  Small-Scale Larger-Scale
CBC Gurobi CBC Gurobi

Build Time (s) 4.65 4.51 N/A 105.49

Solve Time (s) 16.32 5.93 N/A 169.53

Total Time (s) 20.97 10.44 N/A 275.02

• Small-Scale: Gurobi solves faster than open-source CBC
• Larger-Scale: Exceeds bounds of CBC solver, solved in minutes with Gurobi



Conclusion and Future Work
• Formulation provides flexibility to update computations of utility, access, feasibility, and 

objectives as this work evolves
• Algorithm is scalable to handle varying model sizes and scenario complexities
• Ongoing development:

• Incorporation of sensor dynamics to account for real-time sensor locations 
throughout the time window for access and feasibility constraints

• Overlapping area requests and the completion of simultaneous collections thereby 
allowing more waypoints to be scanned in a schedule window

• Non-myopic time planning to account for time windows in the future
• Extend the deployment of this algorithm to real-world environments  
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