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Abstract. Currently accepted turbulence theory assumes that the flow is continuum at all length scales, including the 
smallest length scale of turbulence, known as the Kolmogorov scale. Kolmogorov in his celebrated 1941 theory [A. N. 
Kolmogorov, C. R. Acad. Sci. URSS 30, 301-305 (1941)] asserted that the fine-scale turbulent structures in the energy 
cascade are universal. According to Kolmogorov’s theory, the energy dissipation rate and kinematic viscosity alone 
describe this universal behavior in terms of the Kolmogorov length, time, and velocity scales. However, it has been 
suggested [R. Betchov, J. Fluid Mech. 3, 205-216 (1957); D. Bandak, N. Goldenfeld, A. A. Mailybaev, and G. Eyink, Phys. 
Rev. E 105, 065113 (2022)] that thermal fluctuations, absent from the continuum description of gases, can terminate the 
energy cascade at a length scale larger than mean-free-path considerations alone would suggest. Additionally, for high-
Mach-number turbulent flows, the Kolmogorov length scale can be comparable to the gas-molecule mean free path, which 
could induce noncontinuum molecular-level effects in the turbulent energy cascade. To investigate these two issues, 
compressible Taylor-Green vortex flow is simulated using the direct simulation Monte Carlo (DSMC) method and direct 
numerical simulations (DNS) of the Navier-Stokes equations. It is found that the molecular-gas-dynamics spectra grow 
quadratically with wavenumber in the dissipation range due to thermal fluctuations instead of decreasing exponentially as 
the continuum description predicts. Macroscopically, thermal fluctuations appear to break the flow symmetries and thereby 
produce different but statistically similar routes from the initial non-turbulent flow to the long-time turbulent flow. 

Turbulent flows are composed of eddies with a wide range of sizes. Turbulent kinetic energy cascades down from 
large-scale eddies to smaller-scale eddies until a scale is reached at which viscous dissipation becomes significant [1]. 
Dimensional arguments, which have traditionally been employed to estimate the range of scales, have led to the 
conclusion that the smallest length scales are much larger than the mean free path [2,3]. Therefore, the continuum 
approximation is considered to be valid, so the Navier-Stokes (NS) equations should in principle be capable of 
accurately reproducing all length scales, including the smallest length scales of turbulence. This assertion has been 
supported by the success of the NS equations in reproducing numerous experimental observations although the 
smallest scales of turbulence have never been experimentally observed. However, this assertion may need to be 
reassessed for the smallest flow-field features in the light of some early and recent investigations. 

Betchov in 1957 [4] and Bandak et al. in 2022 [5] suggested that thermal fluctuations, absent from the continuum 
description of gases, can impact the energy cascade at a length scale larger than mean-free-path considerations alone 
would suggest. More specifically, noncontinuum molecular-level effects modify the turbulent energy spectrum near 
the Kolmogorov length scale even though the gas-molecule mean free path is much smaller. Numerical simulations 
have confirmed these findings not only for gases, as in McMullen et al. [6], but also for liquids, as in Bell et al. [7].  

Understanding the behavior of turbulent flow at dissipation-range length scales, including the dominant processes 
of energy transfer in this regime, is not simply an academic problem [8]. In numerical analyses, the smallest length 
scales in such flows constrain the size of the numerical mesh. Similarly, in experimental work, the smallest length and 
velocity scales in such flows constrain the sensing volume of a probe and its required velocity resolution. 

The purpose of this work is to investigate the behavior of the smallest scales of turbulence beyond the point reached 
by any experimental technique to date. To this end, three-dimensional decaying turbulent flows are simulated using 
two completely different techniques: the molecular-level Direct Simulation Monte Carlo (DSMC) method of Bird [9] 
and a continuum-level Direct Numerical Simulation (DNS) solver of the NS equations [10].  

SAND2022-13170CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.



DSMC [9] was developed over 50 years ago by Graeme A. Bird and is now a well-established molecular-level 
technique for modeling low-density gas flows. Recent advances in supercomputing technology (currently at the 
exascale level) have now brought higher-density near-continuum flows within reach [6,11-18]. At these high densities, 
the Reynolds numbers can become large enough for the flows to be in the turbulent regime.  

By way of contrast, DNS assumes that the flows to be simulated are continuum (or perhaps near-continuum with 
slip-jump boundary conditions). Molecular-level phenomena such as thermal fluctuations, which are absent from the 
NS equations, are not usually considered. Thus, DNS attempts to reproduce all length and time scales in the flow.  

Herein, the effects of thermal fluctuations on the turbulent energy cascade are studied. This investigation is carried 
out by performing DSMC molecular-level simulations and DNS continuum simulations of Taylor-Green vortex flow, 
a canonical turbulent flow studied extensively by many investigators, and comparing these results.  

TAYLOR-GREEN VORTEX FLOW WITH ISOTHERMAL INITIAL CONDITIONS 

The turbulent flow examined herein is Taylor-Green (TG) vortex flow [19,20]. TG flow is a canonical turbulent 
flow in which the generation of small-scale eddies and the corresponding cascade of energy from small to large 
wavenumbers can be observed numerically. TG flow is initialized in a triply periodic domain  
using velocity and pressure fields having only a single length scale  and a single velocity scale :  

  (1) 

Here, , , , and  are the velocity, pressure, density, and temperature at position  and 
nondimensional time , where . Thus, all the kinetic energy is initially resident in a single wavenumber. 
The gas has molecular mass , specific heat ratio , and viscosity , which is a function of the temperature . 
The Boltzmann constant is . The gas obeys the ideal gas law  and has sound speed , 
most probable molecular speed , and mean free path . Reference values are denoted by 
the subscript “0”. Together, these quantities yield three nondimensional quantities (only two are independent): 
Mach number , Reynolds number , and Knudsen number .  

The DSMC code SPARTA [11,16] is used to simulate TG flow. SPARTA is an exascale-class open-source code 
capable of running efficiently on massively parallel, heterogeneous-architecture computational platforms. The 
computational domain is the cube defined by , where the domain length scale is . 
The domain is divided into 8 billion cells (20003) with 45 particles/cell on average for a total of 0.36 trillion particles. 
The gas has argon properties: molecular mass  and specific heat ratio , with reference 
values , , and , which yield a sound speed of .  

Four values of the Mach number are simulated: . Since the initial temperature is the same, 
the velocity  is directly proportional to the Mach number. The case with  is nearly incompressible, but, 
as the Mach number is increased, the cases become progressively more compressible. At long times, the temperature 
is increased above the initial value due to thermalizing the initial kinetic energy. This temperature increase is slightly 
over 1% for the  case and about 20% for the  case.  

Molecular collisions are performed using the Variable Soft Sphere (VSS) model [9]. To improve spatial 
discretization, collision partners are selected from within a sphere having a radius that equals the distance traveled by 
the particle during the time step [11]. Multiple collisions between the same two molecules during the same time step 
are not allowed. Based on DSMC simulations of two-dimensional TG flow, this procedure yields a viscosity that is 
only 36% higher than the nominal value for argon even though the cell size is rather large: . However, the 
Reynolds number is based on the simulation viscosity rather than the nominal argon value, which yields the following 
four values of the Reynolds number: . These Reynolds and Mach numbers correspond 
to a single value of the Knudsen number for all four cases: .  
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The Sandia Parallel Aerodynamics and Reentry Code SPARC [10] is also used to simulate TG flow. SPARC uses 
a shock-capturing finite-volume method to achieve stability in the presence of strong shock waves and high accuracy 
in smooth regions of the flow. This is achieved by blending two numerical methods. The first is the modified Steger-
Warming method [21], which offers good numerical stability but generates appreciable numerical dissipation. The 
second is the kinetic-energy-consistent central-difference scheme of Subbareddy and Candler [22], which produces 
high-order spatial accuracy and lower numerical dissipation at the expense of reduced numerical stability. The method 
switches between these two schemes using gradients in the Mach number to detect shocks and apply the stabilizing 
modified Steger-Warming fluxes in those regions. The result is an overall scheme that has good accuracy in smooth 
parts of the flow and is robust to shock waves. Time advancement is accomplished using a third-order explicit Runge-
Kutta method with a Courant-Friedrichs-Lewy number of 0.5 to determine the time step.  

SPARC DNS results on 5123 and 10243 meshes are compared. The corresponding dissipation rates are almost 
indistinguishable for , and only slight differences are observed for . Thus, the SPARC results 
on the 5123 mesh are deemed to be sufficiently converged for the purposes herein. 

 
Figure 1. Vertical velocity component for all four Reynolds numbers.  

Figure 1 presents the vertical velocity component on the bounding planes of the domain from the DSMC and DNS 
simulations at times before and after the times of maximum dissipation, which occurs around  for all four cases. 
To reduce statistical scatter, the DSMC results are averaged over an interval of 10,000 time steps, which corresponds 
to 5% of the Kolmogorov time scale .  
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Before the maximum-dissipation time, except for being slightly noisier, the DSMC results are virtually identical 
to the DNS results for all four cases. Large-scale structures, which are remnants of the initial conditions, are clearly 
discernible, and smaller-scale structures appear and grow. Up to the time of maximum dissipation, the DSMC and 
DNS flow fields both preserve the initial symmetries of both large-scale and small-scale features. After the maximum 
dissipation time, the DSMC and DNS flow fields begin to exhibit differences. More specifically, the DNS flow fields 
continue to preserve the symmetries of the initial conditions, but the DSMC flow fields no longer do so. These 
differences are small for the lowest Mach and Reynolds numbers but become more significant with increasing Mach 
and Reynolds numbers. These differences possibly arise from the small-scale disturbances caused by thermal 
fluctuations, which then gradually propagate up to the large scales, though the precise mechanism by which this 
happens is not currently understood. 

 
Figure 2. DSMC (solid curves) and DNS (dashed curves) kinetic-energy spectra for all four Reynolds numbers.  

Figure 2 presents DSMC and DNS three-dimensional kinetic-energy spectra near the maximum dissipation time. 
The DSMC spectra are computed from instantaneous flow fields (no time averaging is performed). Thermal 
fluctuations and their overlap with the small length scales of turbulence are seen in the DSMC spectra at large 
wavenumbers  (i.e., at small wavelengths). As time progresses, the kinetic energy in the low-wavenumber (large-
wavelength) region of the spectrum is transferred from the initial low wavenumber to the larger wavenumbers (i.e., 
from larger wavelengths to smaller wavelengths). The DSMC and DNS spectra agree very well for wavelengths less 
than roughly the Kolmogorov length scale , where  and  is the mean energy dissipation 
rate. For , the crossover wavenumber, the DNS spectra decay exponentially fast, but the DSMC spectra become 
proportional to . This quadratic dependence is the signature of thermal noise due to molecular fluctuations. In these 
DSMC simulations, the equilibrium portion of the spectrum is overestimated because the simulation ratio is . 
However, the correct equilibrium spectrum can be obtained by extrapolating to a simulation ratio of unity [6]. Doing 
so yields the crossover wavenumber [6]. As Bandak et al. [5] point out, the presence of a new parameter  
invalidates Kolmogorov’s postulate that the only relevant parameters are the kinematic viscosity and mean energy 
dissipation rate [1]. 

We emphasize that it was traditionally believed that thermal fluctuations are important only when the characteristic 
flow length scale (here, ) approaches the order of the mean molecular spacing  [9]. However, Figure 2 
indicates that this assumption is not true when applied to the dissipation range of the energy spectrum. Indeed, at  
this ratio is  for the case with  and  and  for the case with  and 

. Consequently, thermal fluctuations are significant at scales much larger than previously believed. 
In summary, molecular fluctuations dominate the dissipation range and are potentially responsible for differences 

in the realization for the large scales as compared to DNS, which lacks thermal fluctuations. The large-scale 
differences are accentuated as the Mach and Reynolds numbers are increased. The mechanism through which this 
occurs is not currently understood and should be the subject of future work. However, we note that, although the 
domain-scale Knudsen number  is the same for all four cases considered herein, the Knudsen number based 
on the Kolmogorov scale  increases with increasing Reynolds number, implying that noncontinuum 
effects within the dissipation range become more pronounced.  
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TAYLOR-GREEN VORTEX FLOW WITH POLYTROPIC INITIAL CONDITIONS 

To further investigate compressibility effects, DSMC and DNS simulations of compressible Taylor-Green (TG) 
vortex flow are performed using polytropic initial conditions. Polytropic initial conditions allow higher Mach numbers 
(up to  for a specific heat ratio ) than are possible using only a constant-temperature initial condition. 
As above, SPARTA is used to perform the DSMC simulations, and SPARC is used to perform the DNS simulations. 
The velocity fields and kinetic-energy spectra from these simulations at selected times are then compared.  

As in the previous section, TG flow is initialized in a triply periodic domain  using velocity 
and pressure fields having only a single length scale  and a single velocity scale :  

  (2) 

However, in the above, the initial temperature is not constant. Instead, the initial distributions of temperature, density, 
and pressure are related in an adiabatic fashion using the specific heat ratio .  

 
Figure 3. Vertical velocity component for  with polytropic initial conditions.  

Figure 3 presents the vertical velocity component on the bounding planes of the domain from the DSMC and DNS 
simulations at times before and after the time of maximum dissipation, which again occurs near  for this case. 
To reduce statistical scatter, the DSMC results are averaged over 10,000 time steps, which is a small fraction of the 
Kolmogorov time scale. The results are basically similar to the  case presented in the previous section. 
Before the maximum dissipation time, except for being noisier, the DSMC and DNS results are virtually identical. 
After the maximum dissipation time, the DSMC and DNS results exhibit the differences noted in the previous section: 
the DNS results continue to preserve the symmetries of the initial conditions, but the DSMC results do not.  
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Figure 4. DSMC (solid curves) and DNS (dashed curves) kinetic-energy spectra at three different times for 

 with polytropic initial conditions. 

Figure 4 presents DSMC and DNS three-dimensional kinetic-energy spectra (the distribution of kinetic energy as 
a function of wavenumber ) at three times. As in Figure 2, the DSMC spectra shown in Figure 4 are computed from 
instantaneous flow fields (no time averaging is performed). These spectra exhibit the same behavior as the spectra in 
Figure 2. The DSMC and DNS spectra agree very well for large scales, corresponding to wavelengths well greater 
than roughly the Kolmogorov length scale . For small wavelengths ( ), the NS spectrum decays exponentially 
fast, but the DSMC spectrum grows proportional to . Therefore, for the ranges of Reynolds and Mach numbers 
considered herein, no significant departures from local thermodynamic equilibrium are observed.  

MODEL ACCOUNTING FOR THERMAL-FLUCTUATION EFFECTS ON STATISTICS 

The fact that the energy spectrum in DSMC exhibits scaling consistent with equilibrium thermal fluctuations for 
 motivates a superposition model for the small-scale statistics of the velocity field. Essentially, we add a 

thermal-fluctuation velocity component to the Navier-Stokes (NS) velocity field:  

  (3) 

where the thermal-fluctuation component is Maxwellian, i.e., 

  (4) 

and  is an averaging (or coarse-graining) volume centered at the point . Consequently, this model is strictly valid 
only at scales larger than . In the DSMC simulations,  is simply the cell volume. We note that the assumption of 
equilibrium fluctuations is similar to that made in fluctuating hydrodynamics [5,7], in which includes stochastic fluxes 
with Gaussian white noise statistics in the NS equations. The model thus implicitly assumes local thermodynamic 
equilibrium and, therefore, cannot be applied when nonequilibrium effects are significant. However, none of the cases 
considered herein exhibit strong nonequilibrium effects. 

It is further assumed that the thermal-fluctuation and NS components are statistically independent, such that  

  (5) 

for any moment orders . This implies that the energy spectrum may be written as  

  (6) 

This expression is plotted in Figure 5 along with the DSMC spectrum for the  case at  
near the crossover wavenumber , which demonstrates excellent agreement between the two. However, we note that 
the  portion of the DSMC spectrum in Figure 5 sits very slightly (~3%) above the theoretical prediction for the 
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equilibrium spectrum. A small part of this discrepancy can be accounted for by the slight temperature rise by . 
A possible explanation for the remainder of the discrepancy is that using an average of 45 simulators per cell slightly 
under-samples the velocity distribution function, resulting in a small bias. This explanation is supported by the fact 
that simulations of an equilibrium gas with larger numbers of simulators per cell causes this discrepancy to disappear. 
Nonetheless, this can be accounted for through an effective simulation ratio ; we use this value in the 
subsequent comparison of the model with the DSMC simulations. 

 
Figure 5. Energy spectrum in the vicinity of the crossover wavenumber  for the  case from 

Figure 2 at . The gray line represents the theoretical prediction for the equilibrium spectrum. 

Next, we use this model to make predictions about other statistics. In particular, we focus on the longitudinal 
velocity structure functions, which are commonly used to quantify intermittency effects [23,24]. The nth-order 
longitudinal structure function is the nth moment of the longitudinal velocity increment between points  and : 

  (7) 

where  is the separation magnitude. Substituting eqs. (3) and (4) and utilizing eq. (5) yields 

  (8) 

where  denotes rounding toward 0. Since we herein are concerned primarily with small scales, we 
nondimensionalize  using the Kolmogorov velocity , giving 

  (9) 

where we have introduced the dimensionless temperature [5] 

  (10) 

The first term on the right-hand-side of eq. (9) is the NS contribution to and the summation term represents 
the contribution of thermal fluctuations. Note that this term is a weighted sum of lower-order NS structure functions, 
and, therefore, that the thermal-fluctuation contribution is possibly felt even at large r. However, the parameter  is 
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typically quite small ( ) [5-7]. Furthermore, the appearance of the simulation ratio  in eq. (9) means 
that the thermal-fluctuation contribution to the structure functions is overestimated in the DSMC simulations, as 
discussed in McMullen et al. [6].  

In analogy with the crossover wavenumber , we can define a crossover separation  below which thermal 
fluctuations can be expected to dominate. An order-of-magnitude estimate for  may be obtained from eq. (9) as 
follows. First, we utilize an approximation of , which becomes valid as . In this limit, it is assumed that 

 is analytic, such that, to leading order,  

  (11) 

where  [24]. Therefore, in the so-called analytic range,  

  (12) 

Conservatively, the contributions of the thermal-fluctuation term is thus the same order of magnitude as the NS term 
when 

  (13) 

whence 

  (14) 

The dependence of  on the ratio  reflects the intuition that, for fixed , attempting to resolve smaller and 
smaller scales, i.e., decreasing the size of the coarse-graining volume , will result in more pronounced effects of 
thermal fluctuations. We note that a more refined estimate may be possible with further assumptions on the behavior 
of the velocity gradient moments  with both moment order n and Reynolds number Re. However, this is beyond 
the scope of the present paper and will be left for future work. Finally, since the thermal-fluctuation model, 
eqs. (3) and (4), is valid only for , eq. (14) may be inverted to give a necessary condition for thermal fluctuation 
effects to be observable in the structure functions: 

  (15) 

Next, we test the model predictions against structure functions computed directly from the DSMC simulations. 
Here, we focus on the low-order moments . For concreteness, the explicit expressions for these structure 
functions, obtained from eq. (8), are provided here: 

  (16) 
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Figure 6. Comparison of structure functions for  predicted by the fluctuation model, eq. (16) with those 

computed directly from DSMC for . 

The results of the comparison for the  case are shown in Figure 6, which demonstrates that 
the prediction given by the model in eq. (16) is quite good. Also shown are the NS structure functions. For , the NS 
and DSMC structure functions agree very well since, according to eq. (16), thermal fluctuations make no contribution. 
On the other hand, the difference between NS and DSMC is large across the entire domain for  and . For , 
this amounts to only a vertical shift. However, the shape of  is modified in addition to a shift due to the second 
term, which is proportional to . As discussed above, these thermal-fluctuation contributions are magnified due to 
the use of a simulation ratio . Nonetheless, Figures 5 and 6 demonstrate the validity of this fluctuation model.  

Now that the predictions of the model have been validated against DSMC, we set  in eq. (16) in order to 
estimate the separation  below which thermal-fluctuation effects would be observable in a real gas. The results are 
shown in Figure 7, which indicates that thermal-fluctuation corrections to the structure functions become significant 
for , consistent with observations that  [6,7]. The right panel of Figure 7 plots the relative magnitude of 
the thermal-fluctuation and NS contributions, which shows that the thermal fluctuation term is  for , but 
that it grows like  as . 

Several conclusions can be drawn from these results. First, is that the analytic range in which eq. (11) is valid must 
be limited to ; as , the (even-order) structure functions tend to a constant value. Second, the long-
range nature of the thermal-fluctuation terms in eq. (9) means that they could potentially affect the structure functions 
at scales significantly larger than . However, any such modification will likely be quite small owing to the smallness 
of  Nonetheless, this may have implications for intermittency models [23,24].  

Finally, we note that the model presented in this section should be viewed as a statistical model, as opposed to a 
dynamical one (like fluctuating hydrodynamics [5,7]). That is, it cannot be expected to accurately reproduce the 
evolution of a flow with thermal fluctuations. This is apparent if one considers Figures 1 and 3: Adding a thermal-
fluctuation velocity to the DNS fields would result in only small-scale noise and could not account for the large-scale 
fluctuations observed in the DSMC fields.  

 
Figure 7. (Left) Predictions for thermal fluctuation effects on structure functions  and  for  
with ; the solid and dashed lines are eq. (16) and the NS structure functions, respectively. (Right) The relative 

magnitude of the thermal-fluctuation and NS terms in eq. (16). 

2-4n =
Re 500,  Ma 0.3= =

Re 500,  Ma 0.3= =
3S

2S 4S 2S
4S

S
2
NS
1F >

1F =
cr

r h< 3ck h »
~ 5% ~r h

2r- r l®

l r h<< << r l®

h
.hQ

2S 4S Re 500,  Ma 0.3= =
1F =



DISCUSSION AND CONCLUSIONS 

The present work extends the work of McMullen et al. [6] by considering higher Mach and Reynolds numbers and 
polytropic initial conditions. These new results are qualitatively the same: the smallest scales in turbulent flows are 
dominated by thermal fluctuations, in contrast to the exponential decay predicted by the Navier-Stokes equations. 
Even at these higher Mach numbers, the kinetic-energy spectrum in the dissipation range remains proportional to  
suggesting no significant departures from local thermodynamic equilibrium.  

Next, a superposition model was proposed to account for thermal-fluctuation effects on various statistics. The 
model assumes that the velocity field is the sum of the Navier-Stokes velocity and a statistically independent thermal-
fluctuation velocity component having an equilibrium distribution. By comparison with statistics computed from the 
DSMC simulations, the model was shown to accurately account for the thermal-fluctuation modification of the energy 
spectrum and several low-order longitudinal velocity structure functions. An estimate for the separation  below 
which thermal fluctuations can be expected to significantly modify the structure functions was provided, and it was 
shown that, for the flow configurations considered herein, , which is in agreement with the energy spectrum 
crossover length scale [6,7]. 

Despite the fact that thermal fluctuations were not observed herein to have a significant effect on the statistics of 
the large scales, Figures 1 and 3 provide strong evidence that thermal fluctuations influence their particular realization. 
It is thus natural to ask what the implications of unavoidable thermal fluctuations are for the predictability of 
turbulence. Even in the absence of thermal fluctuations, this is a subject of ongoing debate: Chaos theory states that 
two solutions separate exponentially fast [25-28], while other recent work has provided evidence that the separation 
rate is faster-than-exponential [29]. Yet other work argues that turbulent flows exhibit spontaneous stochasticity and 
are, therefore, fundamentally indistinguishable from random processes [30-33].  

Interestingly, it has recently been shown that the small numerical noise introduced by truncation and roundoff 
errors in finite-precision arithmetic can be amplified sufficiently to influence large-scale features in simulations of 
deterministic turbulent flows and can even cause the flow to visit different attractors in state space, thereby altering 
the statistics [34]. It thus seems plausible that thermal fluctuations could result in similar behavior. 

Additionally, the possibility of transition to turbulence due to thermal fluctuations has been investigated in the 
context of boundary-layer receptivity by Fedorov and Tumin [35] and Luchini [36]. They note that this implies an 
upper bound on the transition Reynolds number and conclude that, for hypersonic flight, thermal fluctuations may 
yield disturbances large enough to cause transition to turbulence. Further investigations of the influence of thermal 
fluctuations on hydrodynamic instabilities and transition to turbulence is thus another promising area of future work. 

Ultimately, the fundamental question is whether the hydrodynamic equations can remain valid or whether the 
interaction of thermal fluctuations with the thermodynamic fluctuations can lead to a breakdown in the hydrodynamic 
description. Although a complete breakdown of the continuum description is not observed in the cases examined, the 
evidence herein suggests that the presence of thermal fluctuations can qualitatively change the flow. DSMC can 
complement DNS because phenomena such as thermal relaxation and chemical reactions can be incorporated into 
DSMC at the molecular level in a straightforward manner. As supercomputing technology continues to advance, even 
larger Reynolds numbers will come within reach of DSMC.  
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