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Accelerated and Accurate Results: The need for a coupled FEM-NN Approach2
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• There is a critical need for a data-driven approach to 
account for fine-scale features without directly 
incorporating them in a simulation. 

1. FEM iterative nature and need to solve complex 
non-linear equations require significant 
computational power and time.

2. System wide and large component simulations 
have complex/intricate geometry that is note 
easily meshed/discretized (memory constraints) 
and requires significant time to obtain a 
response.

• Neural networks are a viable surrogate to approximate 
the forces/deformations that occur at these fine scale 
features and the rest of the model. 

• NN-FEM elements are trained to set of training data 
and can be used to provide accurate predictions for 
new/unseen geometries and loadings. 
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How can you trust the answer of the model?3

?
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4 Make a model say “I don’t know”: Uncertainty Quantification in Deep Learning Models 

…
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5 Make a model say “I don’t know”: Example in Coupled FEM-NN Model

Goal:
Use the variability in the responses from the ensemble of 
VBI-NNs to establish a robust protocol for quantifying the 
uncertainty from FEM-NN models.

• Three element example being deformed axially to a small 
amount of plasticity.

• Using a traditional Feed-Forward NNs one obtains consistent 
(biased) responses but using an ensemble of VBI-NNs we 
obtain a distribution of responses.   
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6 Incorporating UQ into FEM-NN Models: General Approach

Three Element Model Set-Up
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7

• The primary space is 3D cartesian space 
where we define  a 2x2x2 grid (8 load cases).

Incorporating UQ into FEM-NN Models: Generating a diverse dataset.

• After running the FEM simulations of our 
initial grid we extract the nodal values which 
are in a 24D space (8 nodes with 3 DOF 
each) which we denote as Secondary Space. 

• This is the space we need to adequately 
sample (not trivial). 

• Therefore, we use PCA to sample a set of 
training and testing data in a reduced 
dimensionality space.   

Grid ~20k training points in PCA space

• Using the inverse PCA transformation we 
transform the sampled points back in 
Secondary Space and compute the output 
forces.

Grid ~20k validation points in PCA space
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Incorporating UQ into FEM-NN Models: Training the Ensemble.

…

…

• Train 20 VBI-NN to the training data, each one with unique 
initialization of weights. 

• Architecture uses 1 hidden layer with 100 nodes to predict the 
output. 

• Network was trained with an initial learning rate of .1 and the ADAM 
optimizer.

• Monte Carlo sampling of 10 samples was used to sample the 
distribution of the weights and thus the distribution of outputs. 

• Architecture was trained for 500 epochs.

Loss evolution Curves
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Primary space (training load cases)

Training grid

Testing grid (8x8x8)

Training grid

• For each one of the training 
cases you have distribution of 
predicted values, a true value 
to compare and an 
uncertainty metric.

• Calibrate the uncertainty 
using the training points to 
obtain an empirical value of 
the uncertainty at 
new/unseen loads. 

• In order to calibrate our 
uncertainty we systematically 
increase the discretization of 
the training gird.

• Then we evaluate the 
uncertainty in a new testing 
grid in primary space.

Incorporating UQ into FEM-NN Models:  Using the Uncertainty Values.
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Incorporating UQ into FEM-NN Models: QOI and uncertainty metric.

Etc.…

pTI distribution 
for loads 
associated with 
blue points shown 
on the right

• QOI is element-averaged von Mises stress of top element.

• Randomly subsample 100 combinations of 20-choose-5 
neural networks for each load case.

• Generate pseudo-tolerance intervals (pTIs) based on 
distribution of 100 samples.

• Calculate the F’s at the training grid (all 4 of them) and the 
testing grid.
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interpolation extrapolation

For interpolation, the upper-bound approximation (95th percentile) of pTIs on a 5x5x5 grid will be 
conservative for approximately 80% of test load cases with 90% empirical confidence.

11
Incorporating UQ into FEM-NN Models: Using the calibrated uncertainty. 

• Compare the estimated uncertainty (obtained by interpolating the F from the training grid) to 
the true uncertainty (obtained with the ensemble and comparing it to the true values).
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Conclusions:
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• Established a metric of the uncertainty in the 
prediction from the surrogate model and 
calibrated that value order to distill actionable 
knowledge from it.  

• As a result, we successfully established a 
protocol for quantifying the uncertainty in the 
predictions from a FEM-NN model. 
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Next Steps:

• Develop frame invariant metrics to evaluate as inputs/outputs of NNs.

• Apply physics-based constraints to the NN-surrogate model to ensure physics grounded responses. 



Questions?
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Variational Bayesian Inference

FEM-NN Method
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Schematic of training data generation
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