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> |Accelerated and Accurate Results: The need for a coupled FEM-NN Approach

1. FEM iterative nature and need to solve complex /
non-linear equations require significant —_— L \

computational power and time.

specimen

2. System wide and large component simulations
have complex/intricate geometry that is note
easily meshed/discretized (memory constraints)
and requires significant time to obtain a
response.

T

Small-scale voids
due to welding
process

~

« Neural networks are a viable surrogate to approximate T
the forces/deformations that occur at these fine scale i (Lol
features and the rest of the model.

« There is a critical need for a data-driven approach to\
account for fine-scale features without directly
incorporating them in a simulation.

« NN-FEM elements are trained to set of training data
. ol 2 ML element surrogate

and can be used to provide accurate predictions for \ v J I

new/unseen geometries and loadings. I




How can you trust the answer of the model?
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4, |Make a model say “l don’'t know”: Uncertainty Quantification in Deep Learning Models




Make a model say "l don't know”: Example in Coupled FEM-NN Model

Displacements for (X,Y,Z) components of a single noda
VBI NN

Training
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Three element example being deformed axially to a small
amount of plasticity.

Using a traditional Feed-Forward NNs one obtains consistent
(biased) responses but using an ensemble of VBI-NNs we
obtain a distribution of responses.

Goal:

Use the variability in the responses from the ensemble of
VBI-NNs to establish a robust protocol for quantifying the
uncertainty from FEM-NN models.

Feed-Forward NN
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s lIncorporating UQ into FEM-NN Models: General Approach

1. Generate training data from relevant BCs/loads

2. Train multiple neural networks (ensemble)

3. Test relevant BCs/loads in FEM-NN simulations

4, Extract QOls and compute uncertainty metrics

Three Element Model Set-Up
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Grid ~20k validation points in PCA space

Incorporating UO into FEM-NN Models: Generating a diverse dataset.

@ Training grid

[ @ Sampled Data
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The primary space is 3D cartesian space
where we define a 2x2x2 grid (8 load cases).

I
After running the FEM simulations of our |
initial grid we extract the nodal values which
are in a 24D space (8 nodes with 3 DOF
each) which we denote as Secondary Space. '

This is the space we need to adequately
sample (not trivial).

Therefore, we use PCA to sample a set of
training and testing data in a reduced
dimensionality space.

Using the inverse PCA transformation we
transform the sampled points back in
Secondary Space and compute the output
forces.

Grid ~20k training points in PCA space



Incorporating UQ into FEM-NN Models: Training the Ensemble.
Train 20 VBI-NN to the training data, each one with unique Loss evolutlorj Lurves
initialization of weights. ole b PEEE
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o Incorporating UQ into FEM-NN Models: Using the Uncertainty Values.

Primary space (training load cases)
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. Incorporating UQ into FEM-NN NModels: QOl and uncertainty metric.
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Randomly subsample 100 combinations of 20-choose-5
neural networks for each load case. ?Tl |diséribution
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Generate pseudo-tolerance intervals (pTls) based on
distribution of 100 samples.

Calculate the F's at the training grid (all 4 of them) and the
testing grid.



Incorporating UO into FEM-NN Models: Using the calibrated uncertainty.

« Compare the estimated uncertainty (obtained by interpolating the F from the training grid) to
the true uncertainty (obtained with the ensemble and comparing it to the true values).

For interpolation, the upper-bound approximation (951 percentile) of pTls on a 5x5x5 grid will be
conservative for approximately 80% of test load cases with 90% empirical confidence.

interpolation

extrapolation
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Conclusions:

12

/ Circular Laser Weld

Problem
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Established a metric of the uncertainty in the
prediction from the surrogate model and
calibrated that value order to distill actionable
knowledge from it.

As a result, we successfully established a
protocol for quantifying the uncertainty in the
predictions from a FEM-NN model.
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., | Next Steps:

« Develop frame invariant metrics to evaluate as inputs/outputs of NNs.
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* Apply physics-based constraints to the NN-surrogate model to ensure physics grounded responses.

deviog) =0 - %rracc{ o)l

J,(6) = trace(dev(g)) = 0
1
2

1
3

J 4(6) = det(dev(o)) = 2—2711{13}3-%31{'3”2“3}"* I3(0)

J () = sdev(0):dev(0) = 21,(6)° —1,(c)



Questions?




FEM-NN Method

Equilibrium
equation (local
form)

FEM-NN
Approach

QFEM

o),

S

|

Orem

\_

divT =01in Q2

\I
Tn =1 on O}

u = u on 0f,

NQAn N

FEM (global form)

-

Fint] — [cht]‘: 0

[ FEM) :/ (BT dv

int

~

LF

1= Fulu)

K
Qrpm

[F-in-t] - [cht] =0

nel

[F?}r.ﬂ,t] - A/ [BE:]TT dv
e=1 + £2¢

nel
[Fe:r;t] — A/
\ 0 NO,

e=1

~

(NTE dv

/

(" Variational Bayesian Inference )

Distribution for
w N(,UJ, U) each weight

\_

J

Materials Science Research Foundatiori



Schematic of training data generation
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