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. Program Overview

* Increasing demand for sensing resources in various warfighting domains and ISR

missions
* Allocation of sensor tasks may be impossible for human operator to deconflict and

prioritize in timely manner
* This work extends Sandia’s legacy autonomous sensor scheduling algorithm [1][2]

formulated with mixed-integer linear programming (MILP) [3][4] by:
* Leveraging realistic simulation data
* Incorporating operational constraints (i.e. sensor availability, access, and

confidence)
* Implementing a waypoint generation algorithm to discretize large search areas of

interest
* This work results from an ongoing collaboration between Sandia National Labs and

the Naval Postgraduate School
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. Sensor Scheduling Hierarchy

* Mission commanders (of differing ranks) send task requests to overseers
* QOverseers are responsible for their group of sensing agents
* Overseers balances the load of incoming requests via an optimization problem

Mission Mission
Commander 1 Commander 2

Overseer 1

Agent 1.1 ( Agent 1.2 , ® 0 @& ( sgentil )

Sensor Group 1
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. Methodology

Input Generation
* Mission commanders are responsible for providing task re
* Overseers have knowledge of their respective sensor grou

Input 1: Task/Tip requests
Look at this search area in the
coming time window (Tips,
Locations, Collection Values)

Mixed-Integer Linear

I Program
Input 2: States of available sensors g

List of available sensors including
sensor type, average availability,
range of sight, footprint size, and

position *All inputs are used to devise sensor-
waypoint utility values. Each utility
value is associated with a specific
sensor looking at an individual point.
*Optimization is performed to maximize
overall utility
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This schedule includes sensor
ID, sensor footprint location,
range bin classification, and
specific times of execution in
the coming time window



s Mission Commander Input

* Tips: Requested activity/entity to be scanned

* Locations: Search areas (polygons) where the desired tips are predicted to be found

* Collections: Potential sensing combinations to achieve a mission commander’s
desired tip (desired information outcome)

Tip ID CollectionID @ Sensor Type Number of Collection
Timesteps Value

1 1 Electro-Optical 0 0.21
SAR 1

2 Electro-Optical 1 0.14
SAR 0

3 Electro-Optical 1 0.31
SAR 1

2 4 Electro-Optical 0 0.29
SAR 1

5 Electro-Optical 1 0.20
SAR 0

6 Electro-Optical 1 0.44
SAR 1
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Polygon Waypoint Generation

* Number of waypoints per search area (polygon) depends on polygon size
* Waypoint layout determined by pre-defined sensor footprint sizes

Tip Location Waypoints

33.7 1

336 1

33.5 1

lat (deq)

33.4 -

33.3 1

33.2 1

-117.8% -117.7 -117& -1175% -1174 -117.3 -117.2
lon {deg)

Break down larger search areas
into task-able waypoints
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. Access, Feasibility, and Utility Computation

* Feasibility:
* Definition: it is feasible for sensor i to scan for waypoint w in polygon p in the next
time horizon
* Feasible if waypoint w is currently within sensor i’s maximum range
- f=-1or1
* Access:
* Confidence,, = confidence of tip in polygon p
* Access;” = (f;{x Confidencey)
 Utility:
* Definition: the quantified benefit of a specific sensor scanning a specific waypoint
[1][2]
. u%}wln = utility of sensor i viewing waypoint w exactly n times for Commander ¢

e ul, = Access) xlogyo (n+ 1)

iiwn
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. Constraint Summary

* All tasks must be scheduled within the scheduling/time window

* Asingle sensor can only perform one task at a given timestep [5]

* Sensors can only be scheduled for a specific timestep if they are available

* Only 1 collection ID per tip can be scheduled within a time window

* Ensure that the number of sensor type looks correspond to the selected collection ID
option

* Ensure the collections map to the waypoints in the corresponding polygons

* An optional rule: ensure at least one request per mission commander is executed in each
schedule
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. Objective Function

* Variables:

u%}w}n = utility of sensor i viewing waypoint w exactly n times for Commander (

(p,{"w,n = binary variable that expresses sensor i views waypoint w exactly n times for
Commander ¢

r; = rank of Commander {

Bi{wn = binary variable that expresses sensor / executes waypoint w exactly n times for
collection ID ¢

v, = collection value associated with collection ID ¢

* Maximize overall utility through maximizing objective function, J :

)N ICHIES 3)3)3) Yo

=1 w=0 n=0 I[=1 =1 w=0 n=0 c=1
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» MILP Optimization Setup

* MILP model implemented in Python using Pyomo [6]
* Optimization modeling package
* Allows encoding of variables, constraints, and objectives
* Interfaces directly to various optimization solvers
* Open-source CBC [7] and licensed Gurobi [8] provide numerical optimization of MILP
models

UNCLASSIFIED



+  Small-Scale Example Results

Number of Mission Commanders 1
Number of Tips 10
Number of Polygons 2
Number of Collection Options 82
Number of Waypoints 16
Number of Sensors 2
Number of Timesteps 20
Task Schedule Task Schedule Waypoint # Note: Time gaps in
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- Small-Scale Example: Polygon Coverage

Tip Location Coverage

3.7
Tip Location Waypoints T —
37
33.6
EEN
= 335 E’ 33.5
g =}
£ B4 B 334
333
333
33.2 A1
—lll?.E» —lll?-? —lll?.E —lll?-E —lll?.d —lll?._'-l —lll?.}!
lon (deg) 33.2 1

I I I I I I I
-1178 -1177 -117&6 -1175 -1174 -1173 -117.2
lon (deg)

Opacity of footprints determined by
number of looks to a given waypoint
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Sensor &

Larger-Scale Example Results

Number of Collection Options

Task schedule

Number of Mission

Commanders
Number of Tips

Number of Polygons
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Computation Time Comparison

* Small-Scale: Gurobi solves faster than open-source CBC
Larger-Scale: Exceeds bounds of CBC solver, solved in minutes with Gurobi

Build Time (s)
Solve Time (s)

Total Time (s)

Small-Scale
CBC Gurobi
4.65 4.51
16.32 5.93
20.97 10.44
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CBC
N/A

N/A

N/A

Larger-Scale
Gurobi
105.49

169.53

275.02



= Conclusion and Future Work

. Formulation provides flexibility to update computations of utility, access, feasibility, and
objectives as this work evolves
. Algorithm is scalable to handle varying model sizes and scenario complexities
. Ongoing development:
. Incorporation of sensor dynamics to account for real-time sensor locations
throughout the time window for access and feasibility constraints
. Overlapping area requests and the completion of simultaneous collections thereby
allowing more waypoints to be scanned in a schedule window
. Non-myopic time planning to account for time windows in the future
. Extend the deployment of this algorithm to real-world environments
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