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Abstract 

A novel monitor is introduced to detect correlations in a Kalman filter’s pre-fit measurement innovations. The two primary 
innovation monitors used today – innovations Snapshot and Sequence monitors – are excellent tools for detecting system faults 
and biases. These monitors, however, are insensitive to correlations between a Kalman filter’s innovations – a key metric in 
evaluating and validating system assumptions and performance. A new monitor is proposed which is specifically sensitive to 
these correlations. The monitor evaluates the sample covariance matrix of a Kalman filter’s innovations over a finite horizon 
and employs a hypothesis test to determine if a modeling fault has occurred. The monitor is theoretically developed and then 
validated with two simulations. In the first simulation, correlated random samples are drawn from a multivariate Gaussian 
distribution, and it is demonstrated that the proposed monitor raises a true-positive flag significantly more often than standard 
Snapshot and Sequence monitors while maintaining the same false-positive ratio. In the second simulation, a Monte Carlo 
evaluation of a simple, two-dimensional, GNSS-like example is presented wherein the presented monitor effectively detects 
correlation modeling errors while a Sequence monitor does not. The proposed correlation monitor has potential applications in 
atmospheric monitoring, navigation receiver clock monitoring, and GNSS anti-spoofing among others – essentially any 
application in which correlated faults can occur.

1. INTRODUCTION
The importance of accurate, trusted, and reliable navigation estimates cannot be overstated, especially for safety-of-life 

applications such as civilian airliner navigation, guidance, and control. For estimates to be trusted and reliable, navigation 
systems must confidently navigate even in the presence of potentially faulty sensor measurements and models. Navigation 
systems must automatically identify system failures and mitigate them before they can impact the navigation solution. The two 
most common techniques employed for automated fault detection are Kalman filter innovations Snapshot and Sequence 
monitors (Groves, 2013). These monitors are effective at detecting egregious sensor faults and biases, respectively, but are both 
ineffective at detecting correlated sensor errors. Less well-known and rarely employed are monitors that specifically tuned to 
detect correlations in a Kalman filter’s innovations. Ultimately, to guarantee an accurate, trusted, and reliable navigation 
solution, all models, assumptions, and measurements should be scrutinized by a battery of monitors, constantly monitoring for 
any systematic changes to means, variances, or covariances. Here, a new correlations monitor is proposed to add to such a 
battery.

The concept of innovations monitoring dates to near the inception of Kalman filtering (Mehra & Peschon, 1971). These early 
publications established the primary methods by which the underlying model assumptions of a Kalman filter are tested. The 
two most popular methods – innovations Snapshot and Sequence monitors – effectively monitor the scalar variance and mean, 
respectively, of a filter’s innovations for any suspicious deviations. These two methods have been employed across a variety 
of fields, subjects, and applications including GNSS measurement monitoring (Quartararo & Langel, 2021; Tanil et al., 2018) 
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and anti-spoofing (Liu et al., 2019; Tanil et al., 2016), among countless others. Less well-known are innovation monitors which 
scrutinize the vector  covariance of a Kalman filter’s innovations. These monitors accumulate the sample covariance matrix of 
subsequent innovations before reducing it to a scalar value needed to make a fault determination. Previous efforts have used 
the matric trace (Mehra & Peschon, 1971), the sum of the matrix elements (Hajiyev, 2008), and the maximum eigenvalue 
(Hajiyev & Caliskan, 1998) as the matrix-to-scalar reduction. Here, a different matrix-to-scalar reduction is introduced which 
is based on the difference between the matrix trace and its log-determinant. While this scalar reduction is not new to the 
multivariate statistics community (Anderson, 1958; Giri, 1977; Muirhead, 2009), it has not yet been applied to Kalman filtering 
innovations monitoring. Hajiyev (2008) referenced other matrix-to-scalar reduction techniques such as the one proposed here, 
but immediately discounted them due to asymptotic requirements. It is demonstrated, however, that these asymptotic 
requirements may be satisfied within a relatively short measurement horizon, enabling this new monitor to be used with mild 
measurement horizon requirements.

This publication makes the following three contributions. First, the ineffectiveness of Snapshot and Sequence monitors at 
detecting correlations in innovations is plainly demonstrated, motivating the need for correlation monitors. Second, a novel 
innovations monitor – the Sphericity monitor – is introduced which specifically watches for correlations in a Kalman filter’s 
measurement innovations. Finally, the effectiveness of this monitor is demonstrated with a simple GNSS-like simulation, 
evidencing the capabilities of the Sphericity monitor towards detecting correlated errors in range-based measurements.

2. INNOVATION MONITORS
Let 𝒙∗

𝑘 ∈ ℝ𝑁, 𝒙𝒌 ∈ ℝ𝑁, and 𝑷𝒌 ∈ ℝ𝑁×𝑁 be respectively the true state, estimated state, associated estimated error covariance 
of a Kalman filter at time 𝑡𝑘. The estimated state is modeled as a random multivariate Gaussian vector centered on the true 
state with covariance 𝑷𝒌:

𝒙𝒌 ∼ 𝓝 𝒙∗
𝒌, 𝑷𝒌  ( 1 )

Suppose the state were observed by a measurement 𝒛𝒌 ∈ ℝ𝑀 modeled with the following linear (or sufficiently linearized) 
relationship:

𝒛𝒌 = 𝑯𝒌𝒙∗
𝒌 + 𝒗𝒌 ( 2 )

where 𝒗𝒌 ∈ ℝ𝑀 is random measurement noise drawn from a zero-mean multivariate Gaussian distribution with covariance 𝑹𝒌
∈ ℝ𝑀×𝑀, and 𝑯𝒌 ∈ ℝ𝑀×𝑁 is the linear observation map. 

It is further assumed that the measurement noise and state estimation error are independent:

𝑬 𝒙∗
𝒌 ― 𝒙𝒌 𝒗𝑻

𝒋 =  𝟎 ∀ 𝑗,𝑘 ( 3 )

The measurement innovation 𝒚𝒌 ∈ ℝ𝑀 is defined: 

𝒚𝒌 = 𝒛𝒌 ― 𝑯𝒌𝒙𝒌 ( 4 )

where 𝒛𝒌 ∈ ℝ𝑀 is the realized measurement at 𝑡𝑘. 

The measurement covariance 𝑺𝒌 ∈ ℝ𝑀×𝑀 follows from the definition of the measurement innovation: 

𝑺𝒌 = 𝑯𝒌𝑷𝒌𝑯𝑻
𝒌 + 𝑹𝒌 ( 5 )

The normalized measurement innovation 𝒚𝒌 ∈ ℝ𝑀 is defined: 

𝒚𝒌 = 𝑺―𝟏
𝒌 𝒚𝒌 ( 6 )

where 𝑺𝒌 ∈ ℝ𝑀×𝑀 is the square root of 𝑺𝒌 such that:

𝑺𝒌 = 𝑺𝒌𝑺𝑻
𝒌 ( 7 )

It is well-known that, under the model assumptions in Equations ( 1 ) - ( 3 ), the normalized measurement innovations 𝒚𝒌 ∈ ℝ𝑀 
are distributed like a unit, independent, uncorrelated multivariate Gaussian (see Appendix A for a proof):



𝒚𝒌 ∼ 𝓝(𝟎, 𝑰) ( 8 )

This Gaussian distribution forms the basis of nearly all innovations monitors. From this distribution, several important 
properties are identified: (1) scalar innovation components should have unit variance; (2) scalar innovation components should 
be zero mean; and (3) all innovations should be independent, both within and between measurement epochs (see Appendix A 
for a proof). 

The innovations Snapshot monitor is effective at testing the first property. For every scalar innovation, the Snapshot monitor 
forms the following test statistic Λ∗ ∈ ℝ: 

Λ∗ = 𝑦(𝑖)
𝑘  ( 9 )

where 𝑦(𝑖)
𝑘 ∈ ℝ is the 𝑖th scalar component of 𝒚𝒌. Under the null hypothesis (𝐻0) that the innovations are zero-mean, unit 

multivariate Gaussians, this test statistic should itself be distributed as a scalar zero-mean, unit Gaussian. This test statistic and 
associated distribution are sufficient to create a hypothesis test to determine the likelihood of the innovation under 𝐻0 with a 
prescribed false-positive ratio 𝛼 ∈ ℝ. Effectively, the Snapshot monitor evaluates the standard score of the innovation and 
raises a flag if it exceeds a threshold. While effective at detecting if the variance of an innovation is non-unit, this monitor is 
ineffective at detecting innovations with near-unit variance and a small bias – that is 𝑦(𝑖)

𝑘 ∼ 𝒩(𝜖, 1) where 𝜖 is a non-zero 
constant.

To detect such an error (and indeed test the second innovations property), an innovations Sequence monitor is employed. A 
Sequence monitor accumulates scalar innovations over a finite horizon 𝐿 ∈ ℤ and forms the following test statistic Λ∗ ∈ ℝ: 

Λ∗ = ∑𝐿
𝑘=1 ∑𝑖=𝑀

𝑖=1 𝑦(𝑖)
𝑘

2
 ( 10 )

Under the null hypothesis (𝐻0) that the innovations are zero-mean, unit multivariate Gaussians, this test statistic should be 
distributed as a chi-squared distribution with 𝐿𝑀 degrees of freedom. This test statistic and associated distribution are sufficient 
to create a hypothesis test to determine the likelihood of the innovation under 𝐻0 with a prescribed false-positive ratio 𝛼 ∈ ℝ. 
Effectively, the Sequence monitor evaluates the sum-square of the innovations and raises a flag if it exceeds a threshold. If the 
innovations are slightly biased, then the bias is square-summed until it exceeds the threshold bounds. This monitor effectively 
increases the observability of any biases by accumulating them out of the noise floor.

Neither of these monitors, however, is effective at testing the third innovation property – that the innovations should be 
independent. To address this, the innovations Sphericity monitor is introduced and subsequently evidenced. The Sphericity 
monitor first calculates the scaled sample covariance 𝑩 ∈ ℝ𝑀×𝑀 of innovations over a finite horizon 𝐿 ∈ ℤ:

𝑩 = ∑𝐿
𝑘=1(𝒚𝒌 ― 𝒚)(𝒚𝒌 ― 𝒚)𝑇  ( 11 )

where 𝒚 ∈ ℝ𝑀 is the sample mean of the innovations over the horizon. Then, the Sphericity monitor reduces the matrix 𝑩 to 
the following scalar test statistic Λ∗ ∈ ℝ:

Λ∗ = ―𝐿𝑀 1 ― ln(𝐿)  ― 𝐿 ln det(𝑩) + tr(𝑩)  ( 12 )

Under the null hypothesis (𝐻0) that the innovations are zero-mean, unit multivariate Gaussians, this test statistic should be 
distributed as a chi-squared distribution with 𝑀(𝑀 + 1)/2  degrees of freedom (Anderson, 1958). A proof of this distribution 
is given in Appendix B. Two brief notes are stated regarding the Sphericity monitor. 

First, the name ‘Sphericity’ is given to the monitor to reflect the innovations property that it tests. If the innovations are indeed 
independent, then the contours of equal probability density represented by sample covariance matrix should be hyperspherical 
in shape. If the innovations were instead correlated, then these contours would be hyperellipsoidal in shape. Hence, the 
Sphericity monitor effectively evaluates whether the sample covariance ellipsoid is sufficiently spherical in shape. 

Second, the Sphericity monitor requires that the accumulation horizon is large (𝐿 ≫ 1) before the resulting distribution 
converges to a chi-squared distribution (see the derivation in Appendix B). Furthermore, this ensures that any detected 
correlations are not due to spurious correlations in random noise and are in fact due to modeling errors. Initial simulations 



indicate that 𝐿 need only be several multiples greater than the number of measurement channels – that is, 𝐿 ≥ 𝑛𝑀 where 𝑛 is 
on the order of 5 or more. 

The effectiveness of this monitor at detecting correlated innovations is illustrated in the following two sections.

3. GAUSSIAN SAMPLING SIMULATION
The effectiveness of the Sphericity monitor and comparative ineffectiveness of the Snapshot and Sequence monitors at 

detecting correlated innovations is illustrated in the following simple Gaussian sampling simulation.

Random samples were drawn from a zero-mean, 2D multivariate Gaussian distribution with covariance 

Σ = 1 𝜌
𝜌 1 ( 13 )

where 𝜌 ∈ [0, 1] is a currently unspecified correlation parameter. When 𝜌 = 0, this distribution mirrors that of a normalized 
measurement innovation distribution under the model assumptions enumerated in Equations ( 1 ) - ( 3 ).

Innovation Snapshot, Sequence, and Sphericity monitors were evaluated on samples drawn from the distribution. The Sequence 
and Sphericity monitors each accumulated 100 samples before engaging their respective hypothesis tests while the Snapshot 
monitor engaged its hypothesis test after only a single sample. Each test was run 100,000 times in a Monte Carlo fashion for 
two scenarios: 𝜌 ∈ {0.0, 0.5}. The first scenario establishes a true-negative baseline – no sample correlations exist and none 
should be detected. The second scenario establishes a true-positive baseline – significant sample correlations exist and should 
be detected.

Figure 1 tabulates the results of the two Monte Carlo 
simulations with several unraveled-and-stacked 
confusion matrices. A perfect monitor is listed to 
establish the desired baseline confusion matrix 
result. A perfect monitor would detect true positives 
and negatives 100 percent of the time (a ratio of 1.0) 
and never any false positives or negatives. Both the 
Snapshot and Sequence monitors were ineffective at 
detecting sample correlations – they both had a true-
positive ratio of less than 2 percent. In contrast, the 
Sphericity monitor was highly effective at detecting 
sample correlations – a true-positive ratio of 99 
percent! 

It is not surprising that the Snapshot monitor is 
ineffective at detecting sampling correlations: the 
component variance of each of the scalar samples is 
unity and thus adheres to the null hypothesis of the 
Snapshot monitor. Another perspective – a test that 
evaluates the scalar components of a sample 
irrespective of any other components is of course 
insensitive to inter-sample correlations. 

Perhaps more interesting, the Sequence monitor is 
rather ineffective at detecting sample correlations. 
One potential reason for this lies in the fact that the sample mean is still zero – no mean value is square-summed above the 
threshold bounds as in a sample bias case. Another perspective – under a zero-mean assumption, the Sequence monitor 
effectively sums the variances of the scalar samples and evaluates how different it is from a unit variance sum. Given that the 
component variances are unit themselves, its unsurprising that the hypothesis test is ineffective at correctly rejecting the null 
hypothesis.

Figure 1: Unraveled confusion matrix for the Gaussian sampling Monte 
Carlo. The Snapshot and Sequence monitors are ineffective at detecting 
sample correlations (true positives). The Sphericity monitor is highly 
effective at detecting sample correlations while maintaining a low false-
positive ratio.



In contrast, the Sphericity monitor is specifically sensitive to measurement correlations as a result of the sample covariance 
calculation. Unlike the Snapshot and Sequence monitors which scrutinize the samples as scalars, the Sphericity monitor 
maintains the vector relationships between the samples while accumulating the sample covariance. Only after the finite horizon 
accumulation does the Sphericity monitor then reduce the samples to a scalar test statistic. In this manner, the Sphericity monitor 
is effective at detecting sample correlations while the other monitors are not.

4. SIMPLE 2D SIMULATION
A simple two-dimensional (2D) simulation was created to 

demonstrate how the sphericity monitor might be employed in a 
GNSS receiver and to further evidence its capabilities. A pair of 
Monte Carlo simulations was run: one with measurement error 
correlations properly modeled and one with the measurement errors 
incorrectly assumed to be independent. Sequence and Sphericity 
innovations monitors were initialized for each of these Monte Carlo 
simulations and accumulated the innovations over an ever-increasing 
horizon. It is demonstrated that the Sphericity monitor is effective at 
detecting the modeling error while the Sequence monitor is not.

Consider a simple 2D example wherein a receiver estimates its 
position from a pair of range measurements to two overhead 
stationary satellite vehicles (SV) (see Figure 2). In this example, 
clock biases are ignored to make the problem observable. A 
navigation engineer models the range measurements at time 𝑡𝑘 ∈ ℝ 
as the sum of the geometric range and additive, independent, 
uncorrelated Gaussian noise:

𝑧(𝑖)
𝑘 =  ‖𝒓(𝒊)

𝒌 ‖ + 𝜖(𝑖)
𝑘 ( 14 )

𝑹 = 𝑬 𝝐𝒌𝝐𝑻
𝒌 = 𝜎2 0

0 𝜎2 ( 15 )

where 𝑧(𝑖)
𝑘 ∈ ℝ is the range measurement to the 𝑖th SV, 𝒓(𝑖)

𝒌  is the range vector to the 𝑖th SV, 𝜖(𝑖) ∈ ℝ is the 𝑖th component of 
the Gaussian noise vector 𝝐𝒌 ∈ ℝ2, 𝜎2 ∈ ℝ is the noise variance, and 𝑹 ∈ ℝ2×2 is the modeled error covariance.

Unknown to the navigation engineer, localized atmospheric effects induce correlations in the measurement errors. The true 
covariance of the range measurements is:

𝑹∗ = 𝑬 𝝐𝒌𝝐𝑻
𝒌 = 𝜎2 𝜌∗𝜎2

𝜌∗𝜎2 𝜎2  ( 16 )

where 𝜌∗ ∈ [0, 1] is the measurement correlation coefficient and 𝑹∗ ∈ ℝ2×2 is the true noise covariance. Here successive 
measurement errors are still assumed to be independent – that is, while atmospheric effects introduce similar errors between 
two range measurements at a given time 𝑡𝑘, these errors imply no information about measurement errors at some other time 𝑡𝑙. 

An extended Kalman filter (EKF) is employed to estimate the position of the receiver. The position of the receiver, 𝒙(𝑡) ∈ ℝ2, 
is modeled as a random walk:

𝑑
𝑑𝑡

𝒙(𝒕) =  𝒘(𝒕) ( 17 )

where 𝒘(𝑡) ∈ ℝ2 is random, independent white noise with a two-sided power spectral density 𝑸 ∈ ℝ2×2. 

Figure 2: A 2D receiver measures the range to two 
satellite vehicles. The range measurements are 
corrupted by localized atmospheric effects which 
induce correlated errors in the measurement pairs.



The dynamics are linear and straightforward to discretize over a period Δ𝑡 ∈ ℝ. Let 𝒙𝒌―𝟏 ∈ ℝ2  and 𝑷𝒌―𝟏 ∈ ℝ2×2 be 
respectively the posterior state estimate and associated error covariance matrix of a Kalman filter at time 𝑡𝑘―1 ∈ ℝ. 
Furthermore, let 𝒙𝒌 ∈ ℝ2 and 𝑷𝒌 ∈ ℝ2×2 be respectively the propagated prior state estimate and associated error covariance of 
a Kalman filter at time 𝑡𝑘 ∈ ℝ. These estimates are related by the following linear model:

𝒙𝒌 = 𝑭𝒅𝒙𝒌―𝟏 ( 18 )

𝑷𝒌 = 𝑭𝒅𝑷𝒌―𝟏𝑭𝑻
𝒅 + 𝑸𝒅 ( 19 )

where 𝑭𝒅 ∈ ℝ2×2 and 𝑸𝒅 ∈ ℝ2×2 are the respective discretized state transition and propagation error covariance matrices:

𝑭𝒅 = 𝑰𝟐×𝟐 ( 20 )

𝑸𝒅 = 𝑸Δ𝑡 ( 21 )

The measurement model from Equation ( 14 ) is linearized to integrate the range measurements into the EKF:

𝑯𝒌 =
𝒓(𝟏)

𝒌

‖𝒓(𝟏)
𝒌 ‖

𝒓(𝟐)
𝒌

‖𝒓(𝟐)
𝒌 ‖

𝑇

 ( 22 )

All the required equations have been developed to simulate the EKF. The standard Kalman filter equations with the addition 
of the normalized measurement innovation calculation are listed for convenience:

Predict Update

𝒙𝒌 = 𝑭𝒅𝒙𝒌―𝟏

𝑷𝒌 = 𝑭𝒅𝑷𝒌―𝟏𝑭𝑻
𝒅 + 𝑸𝒅

𝒚𝒌 = 𝒛𝒌 ― 𝑯𝒌𝒙𝒌 

𝑺𝒌 = 𝑯𝒌𝑷𝒌𝑯𝑻
𝒌 + 𝑹𝒌

𝐒𝐤 = chol(𝑺𝒌,′lower′)

𝐲𝐤 = 𝐒―𝟏
𝐤 𝐲𝒌

𝑲𝒌 = 𝑷𝒌𝑯𝑻
𝒌𝑺―𝟏

𝒌

𝒙𝒌 = 𝒙𝒌 + 𝑲𝒌𝒚𝒌

𝑷𝒌 = (𝑰 ― 𝑲𝒌𝑯𝒌)𝑷𝒌

Figure 3: The standard Kalman filter equations with the addition of the normalized innovation, 𝑦𝑘.



Two Monte Carlo simulations were run, varying the value of the modeled measurement error correlation parameter, 𝜌 ∈
{0.9, 0.0}. The simulation parameters are tabulated in Table 1. In each simulation, Sequence and Sphericity monitors are 
initialized at the beginning of the simulation and permitted to accumulate innovations over the entire simulation horizon, 
engaging a hypothesis test after every measurement.

Figure 4 depicts the evaluated innovation test statistics for the two Monte Carlo scenarios over the simulation duration. The 
plot on the left depicts the Sequence and Sphericity test statistics and associated expected bounds under 𝐻0 for a true-negative 
scenario; the plot on the right depicts the Sequence and Sphericity test statistics and associated bounds under 𝐻0 for a true-
positive scenario. The test statistic bounds are evaluated as bounds such that the respective cumulative chi-squared probability 
distributions evaluated at the bounds contain 1 ― Prescribed False Postive Ratio of the probability.

The first simulation establishes a baseline: the navigation 
engineer correctly models the measurements as correlated 
(𝜌 = 0.9) when the measurement errors are in fact truly 
correlated (𝜌∗ = 0.9). This scenario establishes that both 
monitors operate within their prescribed false-positive 
ratio limits and establishes their true-negative asymptotic 
behaviors. Excepting an approximation-driven error in 
the Sphericity test statistics at the beginning of the 
simulation, nearly all the Monte Carlo test statistics (red) 
are contained within the expected test statistic bounds 
(black) – that is the monitors do not raise many false-
positive flags. The brief foray of the Sphericity monitor 
test statistics at the beginning of the simulation is due to 
the requirement that the number of accumulated 
innovations, 𝐿, must be large to satisfy the chi-squared 
distribution approximation. By 10 seconds into the 

Simulation Parameter Value
# Monte Carlo 100

Simulation Duration 60 s
Initial Receiver Position [0, 0]𝑇 m

SV Positions [ ―30, 30]𝑇, [30, 30]𝑇 m
𝒙𝟎 [0, 0]𝑇 m
𝑷𝟎 diag([10, 10]) m2

Δ𝑡 0.1 s
𝑸 diag([0.1, 0.1]) (m/s)2/Hz

Measurement Frequency 1 Hz
𝜎 3 m
𝜌∗ 0.9
𝜌 0.9 0.0

False-Positive Ratio 0.01

Table 1: 2D Monte Carlo simulation parameters.

True Negative Scenario (Baseline) True Positive Scenario

Figure 4: Innovation test statistics for the two Monte Carlo scenarios. (Left) The test statistics and associated bounds 
under 𝐻0 for the baseline scenario (𝜌∗ = 0.9, 𝜌 = 0.9). (Right) The test statistics and associated bounds under 𝐻0 for 
the true-positive scenario (𝜌∗ = 0.9, 𝜌 = 0.0).

Recall 𝐿 ≫ 1



simulation (10 innovation samples), the chi-squared approximation becomes valid, and the test statistics become well-bounded 
by the expected bounds. 

The second simulation mirrors that of the described scenario: the navigation engineer incorrectly models the measurements as 
uncorrelated (𝜌 = 0) when the measurement errors are in fact truly correlated (𝜌∗ = 0.9). This scenario establishes the behavior 
of the monitors under a true-positive scenario and evidences how the Sphericity monitor is effective at detecting correlation 
modeling errors while the Sequence monitor is not. Only a minor fraction – ~ 6% at any given time – of the test statistics for 
the Sequence monitor exceed the expected bounds under 𝐻0 (a true positive), indicating that it is ineffective at detecting 
correlation modeling errors. In comparison, by 26 seconds into the simulation, all the Sphericity monitor test statistics had 
exceeded the expected bounds under 𝐻0 and had raised a flag – it is extremely effective at detecting correlation modeling 
errors. 

5. CONCLUSIONS & FUTURE WORK
Innovations Snapshot and Sequence monitors are demonstrated to be ineffective at detecting intra-epoch measurement 

correlation modeling errors. A new monitor, the innovations Sphericity monitor, is introduced which is specifically sensitive 
to such modeling errors. The effectiveness of this monitor is evidenced with a simple Gaussian sampling simulation and with 
a simple GNSS-like 2D Monte Carlo simulation. Future work may focus on (1) the sensitivity of the Sphericity monitor to 
other confounding modeling errors and non-linearities; (2) the Sphericity monitor’s effectiveness when the dimension of the 
measurement is large (𝑀 ≫ 1); (3) a comparison of the Sphericity monitor against other covariance-scrutinizing monitors; and 
(4) the application of the Sphericity monitor to specific navigation and GNSS problems. 
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APPENDIX A: INDEPENDENCE OF KALMAN FILTER INNOVATIONS
Let 𝒙∗

𝑘 ∈ ℝ𝑁, 𝒙𝒌 ∈ ℝ𝑁, and 𝑷𝒌 ∈ ℝ𝑁×𝑁 be respectively the true state, estimated state, and associated estimated error 
covariance of a Kalman filter at time 𝑡𝑘. The estimated state is modeled as a random multivariate Gaussian vector centered on 
the true state with covariance 𝑷𝒌:

𝒙𝒌 ∼ 𝓝 𝒙∗
𝒌, 𝑷𝒌  ( 23 )

Suppose the state dynamics were modeled with the following linear (or sufficiently linearized) stochastic system:

𝒙∗
𝒌 = 𝑭𝒌―𝟏𝒙∗

𝒌―𝟏 + 𝒘𝒌―𝟏 ( 24 )

where 𝒘𝒌―𝟏 ∈ ℝ𝑁 is random propagation noise drawn from a zero-mean multivariate Gaussian distribution with covariance 
𝑸𝒌―𝟏 ∈ ℝ𝑁×𝑁, and 𝑭𝒌―𝟏 ∈ ℝ𝑁×𝑁 is the discrete-time state transition matrix. 

Suppose the state were observed by a measurement 𝒛𝒌 ∈ ℝ𝑀 modeled with the following linear (or sufficiently linearized) 
relationship:

𝒛𝒌 = 𝑯𝒌𝒙∗
𝒌 + 𝒗𝒌 ( 25 )

where 𝒗𝒌 ∈ ℝ𝑀 is random measurement noise drawn from a zero-mean multivariate Gaussian distribution with covariance 𝑹𝒌
∈ ℝ𝑀×𝑀, and 𝑯𝒌 ∈ ℝ𝑀×𝑁 is the linear observation map. 

It is further assumed that the propagation and measurement noise samples are independent:

𝑬 𝒘𝒋𝒗𝑻
𝒌 =  𝟎 ∀ 𝑗,𝑘 ( 26 )

The measurement innovation 𝒚𝒌 ∈ ℝ𝑀 is defined: 

𝒚𝒌 = 𝒛𝒌 ― 𝑯𝒌𝒙𝒌 ( 27 )

where 𝒛𝒌 ∈ ℝ𝑀 is the realized measurement at 𝑡𝑘. 

Under the model assumptions in Equations ( 23 ) - ( 26 ), the measurement innovation should be zero mean:

𝑬[𝒚𝒌] = E[𝒛𝒌 ― 𝑯𝒌𝒙𝒌]

=  E 𝑯𝒌𝒙∗
𝒌 + 𝒗𝒌 ―  𝑯𝒌𝒙𝒌

=  E 𝑯𝒌 𝒙∗
𝒌 ― 𝒙𝒌 + 𝒗𝒌

= 𝑯𝒌 E 𝒙∗
𝒌 ― 𝒙𝒌 + E[𝒗𝒌]

= 𝟎

( 28 )

Under the same assumptions, the variance of a measurement innovation should also be:

Var[𝒚𝒌] = Var[𝒛𝒌 ― 𝑯𝒌𝒙𝒌]

=  Var 𝑯𝒌𝒙∗
𝒌 + 𝒗𝒌 ―  𝑯𝒌𝒙𝒌

=  Var 𝑯𝒌 𝒙∗
𝒌 ― 𝒙𝒌 + 𝒗𝒌

=  Var 𝑯𝒌 𝒙∗
𝒌 ― 𝒙𝒌 + Var[𝒗𝒌]

=  𝑯𝒌Var 𝒙∗
𝒌 ― 𝒙𝒌 𝑯T

𝒌 + Var[𝒗𝒌]
= 𝑯𝒌𝑷𝒌𝑯𝑻

𝒌 + 𝑹𝒌
𝑺𝒌

( 29 )

where 𝑺𝒌 ∈ ℝ𝑀×𝑀 is the innovation covariance. The variance operator is distributed under the assumption that the measurement 
noise 𝒗𝒌 and the state estimate error 𝒙∗

𝒌 ― 𝒙𝒌 are independent.



To conclude, under the model assumptions in Equations ( 23 ) - ( 26 ), the innovations vector for a single measurement epoch 
𝒚𝒌 should be distributed as: 

𝒚𝒌 ∼ 𝓝(𝟎, 𝑺𝒌) ( 30 )

If 𝑺𝒌 is decomposed such that 𝑺𝒌 = 𝑺𝒌𝑺𝑻
𝒌 (such as with a Cholesky decomposition), then it follows that the normalized 

innovation 𝒚𝒌 ≜ 𝑺―𝟏
𝒌 𝒚𝒌 is distributed as a unit multivariate Gaussian distribution:

𝒚𝒌 ∼ 𝓝(𝟎, 𝑰) ( 31 )

This is sufficient to prove that the subvectors of a normalized innovation are independent across a single measurement epoch 
but does not prove independence across several measurement epochs – this will be proven next. 

Let 𝒛𝑘+1 ∈ ℝ𝑀 be a second observation produced by the same measurement system at some time in the future, 𝑡𝑘+1. Let 𝒛𝒌+𝟏 
be modeled similarly to 𝒛𝒌:

𝒛𝒌+𝟏 = 𝑯𝒌+𝟏𝒙∗
𝒌+𝟏 + 𝒗𝒌+𝟏 ( 32 )

where 𝒗𝒌+𝟏 ∈ ℝ𝑀 is random measurement noise drawn from a zero-mean multivariate Gaussian distribution with covariance 
𝑹𝒌+𝟏 ∈ ℝ𝑀×𝑀, and 𝑯𝒌+𝟏 ∈ ℝ𝑀×𝑁 is the linear observation map. It is further assumed that this measurement noise is 
independent of any other process or measurement noise.

The future innovation vector 𝒚𝒌+𝟏 ∈ ℝ𝑀 is defined similarly to 𝒚𝒌:

𝒚𝒌+𝟏 = 𝒛𝒌+𝟏 ― 𝑯𝒌+𝟏𝒙𝒌+𝟏 ( 33 )

where 𝒛𝒌+𝟏 ∈ ℝ𝑀 is the realized measurement at 𝑡𝑘+1. 

The future prior state estimate 𝒙𝒌+𝟏 and future prior error covariance estimate 𝑷𝒌+𝟏 ∈ ℝ𝑁×𝑁 are propagated from the current 
posterior state estimate 𝒙𝒌 ∈ ℝ𝑁 and corresponding error covariance 𝑷𝒌 ∈ ℝ𝑁×𝑁:

𝒙𝒌+𝟏 = 𝑭𝒌𝒙𝒌

𝑷𝒌+𝟏 = 𝑭𝒌𝑷𝒌𝑭𝑻
𝒌 + 𝑸𝒌

( 34 )

where 𝒙𝒌 and 𝑷𝒌 have been estimated from 𝒙𝒌, 𝑷𝒌, and 𝒛𝒌 using the Kalman update equations: 

𝒚𝒌 = 𝒛𝒌 ― 𝑯𝒌𝒙𝒌 

𝑺𝒌 = 𝑯𝒌𝑷𝒌𝑯𝑻
𝒌 + 𝑹𝒌

𝑲𝒌 = 𝑷𝒌𝑯𝑻
𝒌𝑺―𝟏

𝒌

𝒙𝒌 = 𝒙𝒌 + 𝑲𝒌𝒚𝒌

𝑷𝒌 = (𝑰 ― 𝑲𝒌𝑯𝒌)𝑷𝒌

( 35 )

Before evaluating the covariance of 𝒚𝒌 and 𝒚𝒌+𝟏, the future measurement innovation 𝒚𝒌+𝟏 is reformulated in terms of 𝒙∗
𝒌, 𝒙𝒌, 

and 𝑷𝒌:

𝒚𝒌+𝟏 = 𝒛𝒌+𝟏 ― 𝑯𝒌+𝟏𝒙𝒌+𝟏

= 𝑯𝒌+𝟏𝒙∗
𝒌+𝟏 + 𝒗𝒌+𝟏 ― 𝑯𝒌+𝟏𝒙𝒌+𝟏

= 𝑯𝒌+𝟏 𝑭𝒌𝒙∗
𝒌 + 𝒘𝒌 + 𝒗𝒌+𝟏 ― 𝑯𝒌+𝟏𝑭𝒌𝒙𝒌

= 𝑯𝒌+𝟏 𝑭𝒌𝒙∗
𝒌 + 𝒘𝒌 + 𝒗𝒌+𝟏 ― 𝑯𝒌+𝟏𝑭𝒌(𝒙𝒌 + 𝑲𝒌𝒚𝒌)

= 𝑯𝒌+𝟏 𝑭𝒌𝒙∗
𝒌 + 𝒘𝒌 + 𝒗𝒌+𝟏 ― 𝑯𝒌+𝟏𝑭𝒌(𝒙𝒌 + 𝑲𝒌(𝒛𝒌 ― 𝑯𝒌𝒙𝒌))

= 𝑯𝒌+𝟏 𝑭𝒌𝒙∗
𝒌 + 𝒘𝒌 + 𝒗𝒌+𝟏 ― 𝑯𝒌+𝟏𝑭𝒌 𝒙𝒌 + 𝑲𝒌 𝑯𝒌𝒙∗

𝒌 + 𝒗𝒌 ― 𝑯𝒌𝒙𝒌

( 36 )

Distributing and collecting like terms yields:



𝒚𝒌+𝟏 = 𝑯𝒌+𝟏𝑭𝒌 𝒙∗
𝒌 ― 𝒙𝒌 ― 𝑯𝒌+𝟏𝑭𝒌𝑲𝒌𝑯𝒌 𝒙∗

𝒌 ― 𝒙𝒌 + 𝑯𝒌+𝟏𝒘𝒌 + 𝒗𝒌+𝟏 ― 𝑯𝒌+𝟏𝑭𝒌𝑲𝒌𝒗𝒌 ( 37 )

 Now, the covariance of 𝒚𝒌 and 𝒚𝒌+𝟏 may be readily evaluated:

𝑪𝒐𝒗[𝒚𝒌, 𝒚𝒌+𝟏] = 𝑬 𝒚𝒌𝒚𝑻
𝒌+𝟏

= 𝑬 𝑯𝒌 𝒙∗
𝒌 ― 𝒙𝒌 + 𝒗𝒌 ⋅ 𝑯𝒌+𝟏𝑭𝒌 𝒙∗

𝒌 ― 𝒙𝒌 ― 𝑯𝒌+𝟏𝑭𝒌𝑲𝒌𝑯𝒌 𝒙∗
𝒌 ― 𝒙𝒌 + 𝑯𝒌+𝟏𝒘𝒌 + 𝒗𝒌+𝟏 ― 𝑯𝒌+𝟏𝑭𝒌𝑲𝒌𝒗𝒌

𝑻

= 𝑬 𝑯𝒌 𝒙∗
𝒌 ― 𝒙𝒌 𝒙∗

𝒌 ― 𝒙𝒌
𝑻

𝑭𝑻
𝒌𝑯𝑻

𝒌+𝟏 ― 𝑯𝒌 𝒙∗
𝒌 ― 𝒙𝒌 𝒙∗

𝒌 ― 𝒙𝒌
𝑻

𝑯𝑻
𝒌𝑲𝑻

𝒌𝑭𝑻
𝒌𝑯𝑻

𝒌+𝟏 + 𝑯𝒌 𝒙∗
𝒌 ― 𝒙𝒌 𝒘𝑻

𝒌𝑯𝑻
𝒌+𝟏 + 𝑯𝒌

𝒙∗
𝒌 ― 𝒙𝒌 𝒗𝑻

𝒌+𝟏 ― 𝑯𝒌 𝒙∗
𝒌 ― 𝒙𝒌 𝒗𝑻

𝒌𝑲𝑻
𝒌𝑭𝑻

𝒌𝑯𝑻
𝒌+𝟏 + 𝒗𝒌 𝒙∗

𝒌 ― 𝒙𝒌
𝑻

𝑭𝑻
𝒌𝑯𝑻

𝒌+𝟏 ― 𝒗𝒌 𝒙∗
𝒌 ― 𝒙𝒌

𝑻
𝑯𝑻

𝒌𝑲𝑻
𝒌𝑭𝑻

𝒌𝑯𝑻
𝒌+𝟏

+ 𝒗𝒌𝒘𝑻
𝒌𝑯𝑻

𝒌+𝟏 + 𝒗𝒌𝒗𝑻
𝒌+𝟏 ― 𝒗𝒌𝒗𝑻

𝒌𝑲𝑻
𝒌𝑭𝑻

𝒌𝑯𝑻
𝒌+𝟏

= 𝑯𝒌𝑷𝒌𝑭𝑻
𝒌𝑯𝑻

𝒌+𝟏 ― 𝑯𝒌𝑷𝒌𝑯𝑻
𝒌𝑲𝑻

𝒌𝑭𝑻
𝒌𝑯𝑻

𝒌+𝟏 ― 𝑹𝒌𝑲𝑻
𝒌𝑭𝑻

𝒌𝑯𝑻
𝒌+𝟏

=  𝑯𝒌𝑷𝒌𝑭𝑻
𝒌𝑯𝑻

𝒌+𝟏 ― 𝑯𝒌𝑷𝒌𝑯𝑻
𝒌 + 𝑹𝒌 𝑲𝑻

𝒌𝑭𝑻
𝒌𝑯𝑻

𝒌+𝟏

=  𝑯𝒌𝑷𝒌𝑭𝑻
𝒌𝑯𝑻

𝒌+𝟏 ― 𝑺𝒌𝑲𝑻
𝒌𝑭𝑻

𝒌𝑯𝑻
𝒌+𝟏

=  𝑯𝒌𝑷𝒌𝑭𝑻
𝒌𝑯𝑻

𝒌+𝟏 ― 𝑯𝒌𝑷𝒌𝑭𝑻
𝒌𝑯𝑻

𝒌+𝟏

= 𝟎

The covariance is zero and implies statistical independence between the innovations. This result shows that under several linear, 
Gaussian, and independence assumptions, normalized measurement innovations should be independent across a single 
measurement epoch and between measurement epochs. 

APPENDIX B: DERIVATION OF SPHERICITY TEST STATISTIC
The following appendix derives the sphericity test statistic. It is based on the proofs established in Anderson (1958), 

Giri (1977), and Muirhead (2009) which are more rigorous, include minor adjustments to account for sample covariance biases, 
and derive the asymptotic approximation error distributions. 

Suppose a Kalman filter produces normalized measurement innovations over 𝑁 measurement epochs. Let 𝒚𝒌 ∈ ℝ𝑝 denote the 
𝑘th measurement innovation. Suppose the normalized innovations were modeled as independently sampled from a multivariate 
Gaussian distribution with mean 𝝁 ∈ ℝ𝑝 and covariance 𝚺 ∈ ℝ𝑝×𝑝. Consider testing the null hypothesis 𝐻0:𝚺 = 𝑰 against the 
alternate hypothesis 𝐻𝐴:𝚺 ≠ 𝑰. Muirhead describes this hypothesis as the ‘hypothesis of sphericity,’ as the contours of equal 
probability density under the null hypothesis form hyperspheres – hence the same ‘sphericity test’.

The likelihood of a single multivariate Gaussian observation 𝒚 ∈ ℝ𝑝 with mean 𝝁 ∈ ℝ𝑝 and covariance 𝚺 ∈ ℝ𝑝×𝑝 is:

𝐿(𝝁,𝚺) = |2𝜋𝚺|―1/2exp ― 1
2

(𝒚 ― 𝝁)𝑇𝚺―1(𝒚 ― 𝝁)  ( 38 )

where | ⋅ | is the matrix determinant.

It follows that the likelihood of 𝑁 independent samples from the same distribution is: 

𝐿(𝝁,𝚺) = |2𝜋𝚺|―𝑁/2∏𝑁
𝑖=1 exp ― 1

2
(𝒚𝑖 ― 𝝁)𝑇𝚺―1(𝒚𝑖 ― 𝝁)  ( 39 )



The product of exponentials is elevated into the exponential as a sum:

𝐿(𝝁,𝚺) = |2𝜋𝚺|―𝑁/2exp ― 1
2

∑𝑁
𝑖=1 (𝒚𝑖 ― 𝝁)𝑇𝚺―1(𝒚𝑖 ― 𝝁)  ( 40 )

Employing a matrix trace trick to isolate the mean and covariance components: 

𝐿(𝝁,𝚺) = |2𝜋𝚺|―𝑁/2 exp ―
1
2

𝑁

𝑖=1
(𝒚𝑖 ― 𝝁)𝑇𝚺―1(𝒚𝑖 ― 𝝁)

= |2𝜋𝚺|―𝑁/2 exp ―
1
2 tr

𝑁

𝑖=1
(𝒚𝑖 ― 𝝁)𝑇𝚺―1(𝒚𝑖 ― 𝝁)

= |2𝜋𝚺|―𝑁/2 exp ―
1
2

𝑁

𝑖=1
tr (𝒚𝑖 ― 𝝁)𝑇𝚺―1(𝒚𝑖 ― 𝝁)

= |2𝜋𝚺|―𝑁/2 exp ―
1
2

𝑁

𝑖=1
tr 𝚺―1(𝒚𝑖 ― 𝝁)(𝒚𝑖 ― 𝝁)𝑇

= |2𝜋𝚺|―𝑁/2 exp ―
1
2 tr

𝑁

𝑖=1
𝚺―1(𝒚𝑖 ― 𝝁)(𝒚𝑖 ― 𝝁)𝑇

= |2𝜋𝚺|―𝑁/2 exp ―
1
2 tr 𝚺―1

𝑁

𝑖=1
(𝒚𝑖 ― 𝝁)(𝒚𝑖 ― 𝝁)𝑇

( 41 )

Next, a likelihood ratio Λ ∈ ℝ is formed: 

Λ =
𝐿𝐻0(𝝁,𝚺 = 𝐈)
𝐿𝐻𝐴(𝝁,𝚺 ≠ 𝐈) =

|2𝜋𝑰|―𝑁/2 exp ― 1
2

tr 𝑰―1 ∑𝑁
𝑖=1(𝒚𝑖 ― 𝝁)(𝒚𝑖 ― 𝝁)𝑇

|2𝜋𝚺|―𝑁/2 exp ― 1
2

tr 𝚺―1 ∑𝑁
𝑖=1(𝒚𝑖 ― 𝝁)(𝒚𝑖 ― 𝝁)𝑇

 ( 42 )

The parameters 𝝁 and 𝚺 are unknown, so a generalized likelihood ratio must be employed. A generalized likelihood ratio 
replaces the unknown parameters with their respective maximum-likelihood estimates under the respective hypotheses. It is 
straightforward to verify that the maximum-likelihood estimates of 𝝁 and 𝚺 are the sample mean and covariance – that is, given 
data with sample mean 𝝁 and covariance 𝚺, the most likely values of the distribution mean and covariance are the sample mean 
and covariance.

Let 𝒚 ∈ ℝ𝑝 be the sample mean and 𝑺 ∈ ℝ𝑝×𝑝 be the sample covariance of 𝒚1..𝑁:

𝒚 = 1
𝑁∑𝑁

𝑖=1 𝒚𝒊 ( 43 )

𝑺 = 1
𝑁∑𝑁

𝑖=1(𝒚𝒊 ― 𝒚)(𝒚𝒊 ― 𝒚)𝑇 ( 44 )

Furthermore, let 𝑩 ∈ ℝ𝑝×𝑝 be the scaled sample covariance: 

𝑩 = 𝑁𝑺 = ∑𝑁
𝑖=1(𝒚𝒊 ― 𝒚)(𝒚𝒊 ― 𝒚)𝑇 ( 45 )

Substituting 𝝁 = 𝒚 and 𝚺 = 𝑺 into the likelihood ratio yields:

Λ =
𝐿𝐻0(𝝁 = 𝒚,𝚺 = 𝐈)
𝐿𝐻𝐴(𝝁 = 𝒚,𝚺 = 𝐒) =

|2𝜋𝑰|―𝑁/2 exp ― 1
2

tr[𝑰―1𝑩]

|2𝜋𝐒|―𝑁/2 exp ― 1
2

tr[𝑺―1𝑩]
 ( 46 )

Simplifying and noting that 𝑺 = 𝑩/𝑁:



Λ = 𝑒
𝑁

𝑁𝑝/2
|𝑩|𝑁/2exp ― 1

2
tr[𝑩]  ( 47 )

Further simplifying:

Λ∗ = ―2 ln(Λ)

= ―𝑁𝑝 1 ― ln(𝑁) ― 𝑁 ln det(𝑩) + tr[𝑩]
( 48 )

Finally, the generalized maximum-likelihood hypothesis test may be stated:

―𝑁𝑝 1 ― ln(𝑁) ― 𝑁 ln det(𝑩) + tr[𝑩]
Λ∗

𝐻𝐴
≷
𝐻0

Λ0 ( 49 )

The hypothesis test will reject Λ∗ whenever it is greater than a constant Λ0 which is chosen such that the test’s false-positive 
ratio is 𝛼 ∈ ℝ. To evaluate Λ0, the distribution of Λ∗ under 𝐻0 must be derived. Here the derivation follows that of Giri (1977).

Under the null hypothesis that 𝒚 ∼ 𝒩(𝒚, 𝑰), the scaled sample covariance matrix 𝑩 = ∑𝑁
𝑖=1(𝒚𝒊 ― 𝒚)(𝒚𝒊 ― 𝒚)𝑇 has a Wishart 

distribution with scale parameter 𝑰 and 𝑁 ― 1 degrees of freedom. Anderson (1958) provides the characteristic function of Λ∗, 
𝜙(Λ∗), as the product:

𝜙(Λ∗) =

𝑝

𝑗=1
𝜙𝑗(𝑡) ( 50 )

where 

𝜙𝑗(𝑡) = (2𝑒/𝑁)―𝑖𝑁𝑡(1 ― 2𝑖𝑡)―(𝑁―1―2𝑖𝑁𝑡)/2
Γ

1
2(𝑁 ― 𝑗) ― 𝑖𝑁𝑡

Γ
1
2(𝑁 ― 𝑗)

( 51 )

Substituting Stirling’s approximation for the Gamma function 

Γ(𝑧) =
2𝜋
𝑧

1
2 𝑧

𝑒

𝑧 ( 52 )

into Equation ( 51 ) approximates the characteristic function as: 

𝜙𝑗(𝑡) ≃ (2𝑒/𝑁)―𝑖𝑁𝑡(1 ― 2𝑖𝑡)―(𝑁―1―2𝑖𝑁𝑡)/2

2𝜋
1
2(𝑁 ― 𝑗) ― 𝑖𝑁𝑡

1
2 1

2(𝑁 ― 𝑗) ― 𝑖𝑁𝑡
𝑒

1
2(𝑁―𝑗)―𝑖𝑁𝑡

2𝜋
1
2(𝑁 ― 𝑗)

1
2 1

2(𝑁 ― 𝑗)
𝑒

1
2(𝑁―𝑗)

 ( 53 )



Simplifying: 

𝜙𝑗(𝑡) ≃ (1 ― 2𝑖𝑡)―1
2(𝑁―1―2𝑖𝑁𝑡) 𝑁 ― 𝑗

𝑁 ― 𝑗 ― 2𝑖𝑁𝑡

1
2

1
2(𝑁 ― 𝑗) ― 𝑖𝑁𝑡

1
2(𝑁 ― 𝑗)

1
2(𝑁―𝑗)

𝑁 ― 𝑗 ― 2𝑖𝑁𝑡
𝑁

―𝑖𝑁𝑡

≃ (1 ― 2𝑖𝑡)―1
2(𝑁―1) ⋅

𝑁 ― 𝑗 ― 2𝑖𝑁𝑡
𝑁 ― 𝑗

1
2(𝑁―𝑗―1) 𝑁 ― 𝑗 ― 2𝑖𝑁𝑡

𝑁(1 ― 2𝑖𝑡)

―𝑖𝑁𝑡

≃
(1 ― 2𝑖𝑡)―𝑗/2

(1 ― 2𝑖𝑡)―𝑗/2 (1 ― 2𝑖𝑡)―1
2(𝑁―1) ⋅

𝑁 ― 𝑗 ― 2𝑖𝑁𝑡
𝑁 ― 𝑗

1
2(𝑁―𝑗―1) 𝑁 ― 𝑗 ― 2𝑖𝑁𝑡

𝑁(1 ― 2𝑖𝑡)

―𝑖𝑁𝑡

≃ (1 ― 2𝑖𝑡)―𝑗/2
𝑁 ― 𝑗 ― 2𝑖𝑁𝑡

(𝑁 ― 𝑗)(1 ― 2𝑖𝑡)

1
2(𝑁―𝑗―1) 𝑁 ― 𝑗 ― 2𝑖𝑁𝑡

𝑁(1 ― 2𝑖𝑡)

―𝑖𝑁𝑡

≃ (1 ― 2𝑖𝑡)―𝑗/2 ⋅
𝑁(1 ― 2𝑖𝑡) ― 𝑗

𝑁(1 ― 2𝑖𝑡) ― 𝑗(1 ― 2𝑖𝑡)

1
2(𝑁―𝑗―1)

⋅ 1 ―
𝑗

𝑁(1 ― 2𝑖𝑡)

―𝑖𝑁𝑡

( 54 )

Then, as 𝑁→∞, the second and third terms reduce to unity and leave:

𝜙𝑗(𝑡) ≃ (1 ― 2𝑖𝑡)―𝑗/2 ( 55 )

Thus, the asymptotic characteristic function for Λ∗ is:

𝜙(Λ∗) =

𝑝

𝑗=1
(1 ― 2𝑖𝑡)―𝑗/2 = (1 ― 2𝑖𝑡)―𝑝(𝑝+1)/2 ( 56 )

which is the characteristic function of a chi-squared distribution with 𝑝(𝑝 + 1)/2 degrees of freedom. 

To summarize, under the null hypothesis, as 𝑁→∞, Λ∗ = ― 𝑁𝑝 1 ― ln(𝑁) ―𝑁ln det(𝑩) + tr[𝑩] should be distributed as 
a chi-squared random variable with 𝑝(𝑝 + 1)/2 degrees of freedom. The characterization of this distribution under 𝐻0 is 
sufficient to determine Λ0 provided an allowable, prescribed false-positive ratio of 𝛼.


