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Abstract

A novel monitor is introduced to detect correlations in a Kalman filter’s pre-fit measurement innovations. The two primary
innovation monitors used today — innovations Snapshot and Sequence monitors — are excellent tools for detecting system faults
and biases. These monitors, however, are insensitive to correlations between a Kalman filter’s innovations — a key metric in
evaluating and validating system assumptions and performance. A new monitor is proposed which is specifically sensitive to
these correlations. The monitor evaluates the sample covariance matrix of a Kalman filter’s innovations over a finite horizon
and employs a hypothesis test to determine if a modeling fault has occurred. The monitor is theoretically developed and then
validated with two simulations. In the first simulation, correlated random samples are drawn from a multivariate Gaussian
distribution, and it is demonstrated that the proposed monitor raises a true-positive flag significantly more often than standard
Snapshot and Sequence monitors while maintaining the same false-positive ratio. In the second simulation, a Monte Carlo
evaluation of a simple, two-dimensional, GNSS-like example is presented wherein the presented monitor effectively detects
correlation modeling errors while a Sequence monitor does not. The proposed correlation monitor has potential applications in
atmospheric monitoring, navigation receiver clock monitoring, and GNSS anti-spoofing among others — essentially any
application in which correlated faults can occur.

1. INTRODUCTION

The importance of accurate, trusted, and reliable navigation estimates cannot be overstated, especially for safety-of-life
applications such as civilian airliner navigation, guidance, and control. For estimates to be trusted and reliable, navigation
systems must confidently navigate even in the presence of potentially faulty sensor measurements and models. Navigation
systems must automatically identify system failures and mitigate them before they can impact the navigation solution. The two
most common techniques employed for automated fault detection are Kalman filter innovations Snapshot and Sequence
monitors (Groves, 2013). These monitors are effective at detecting egregious sensor faults and biases, respectively, but are both
ineffective at detecting correlated sensor errors. Less well-known and rarely employed are monitors that specifically tuned to
detect correlations in a Kalman filter’s innovations. Ultimately, to guarantee an accurate, trusted, and reliable navigation
solution, all models, assumptions, and measurements should be scrutinized by a battery of monitors, constantly monitoring for
any systematic changes to means, variances, or covariances. Here, a new correlations monitor is proposed to add to such a
battery.

The concept of innovations monitoring dates to near the inception of Kalman filtering (Mehra & Peschon, 1971). These early
publications established the primary methods by which the underlying model assumptions of a Kalman filter are tested. The
two most popular methods — innovations Snapshot and Sequence monitors — effectively monitor the scalar variance and mean,
respectively, of a filter’s innovations for any suspicious deviations. These two methods have been employed across a variety
of fields, subjects, and applications including GNSS measurement monitoring (Quartararo & Langel, 2021; Tanil et al., 2018)
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and anti-spoofing (Liu et al., 2019; Tanil et al., 2016), among countless others. Less well-known are innovation monitors which
scrutinize the vector covariance of a Kalman filter’s innovations. These monitors accumulate the sample covariance matrix of
subsequent innovations before reducing it to a scalar value needed to make a fault determination. Previous efforts have used
the matric trace (Mehra & Peschon, 1971), the sum of the matrix elements (Hajiyev, 2008), and the maximum eigenvalue
(Hajiyev & Caliskan, 1998) as the matrix-to-scalar reduction. Here, a different matrix-to-scalar reduction is introduced which
is based on the difference between the matrix trace and its log-determinant. While this scalar reduction is not new to the
multivariate statistics community (Anderson, 1958; Giri, 1977; Muirhead, 2009), it has not yet been applied to Kalman filtering
innovations monitoring. Hajiyev (2008) referenced other matrix-to-scalar reduction techniques such as the one proposed here,
but immediately discounted them due to asymptotic requirements. It is demonstrated, however, that these asymptotic
requirements may be satisfied within a relatively short measurement horizon, enabling this new monitor to be used with mild
measurement horizon requirements.

This publication makes the following three contributions. First, the ineffectiveness of Snapshot and Sequence monitors at
detecting correlations in innovations is plainly demonstrated, motivating the need for correlation monitors. Second, a novel
innovations monitor — the Sphericity monitor — is introduced which specifically watches for correlations in a Kalman filter’s
measurement innovations. Finally, the effectiveness of this monitor is demonstrated with a simple GNSS-like simulation,
evidencing the capabilities of the Sphericity monitor towards detecting correlated errors in range-based measurements.

2. INNOVATION MONITORS

Letx) € RN, %) € RN, and Py € RV*N pe respectively the true state, estimated state, associated estimated error covariance
of a Kalman filter at time ty. The estimated state is modeled as a random multivariate Gaussian vector centered on the true
state with covariance Py:

Zie ~ N (xj, Pic) (1)

Suppose the state were observed by a measurement zy € RY modeled with the following linear (or sufficiently linearized)
relationship:

Zk=Hka+Uk (2)

where Vi € RM is random measurement noise drawn from a zero-mean multivariate Gaussian distribution with covariance Ry
€ RMXM and Hy € RM*V s the linear observation map.

It is further assumed that the measurement noise and state estimation error are independent:
E|(x;, - ®)vT| = 0¥k (3)
The measurement innovation Y € RM is defined:
Yk =Zr — HpXk (4)
where Zj, € RM is the realized measurement at tj.
The measurement covariance Sk € RMXM fo]lows from the definition of the measurement innovation:
Sy =Hp P HL + Ry, (5)
The normalized measurement innovation ¥ € RM is defined:
Vi =Sic "V (6)
where Sg € RMXM ig the square root of Sk such that:
Sk =5iS}, (7)

It is well-known that, under the model assumptions in Equations ( 1) - (3 ), the normalized measurement innovations ¥ € RM
are distributed like a unit, independent, uncorrelated multivariate Gaussian (see Appendix A for a proof):



Y ~N(0,1) (8)

This Gaussian distribution forms the basis of nearly all innovations monitors. From this distribution, several important
properties are identified: (1) scalar innovation components should have unit variance; (2) scalar innovation components should
be zero mean; and (3) all innovations should be independent, both within and between measurement epochs (see Appendix A
for a proof).

The innovations Snapshot monitor is effective at testing the first property. For every scalar innovation, the Snapshot monitor
forms the following test statistic A* € R:

A =3y (9)
where 5/,((1) € R is the ith scalar component of ¥k. Under the null hypothesis (Ho) that the innovations are zero-mean, unit
multivariate Gaussians, this test statistic should itself be distributed as a scalar zero-mean, unit Gaussian. This test statistic and
associated distribution are sufficient to create a hypothesis test to determine the likelihood of the innovation under Ho with a
prescribed false-positive ratio a € R. Effectively, the Snapshot monitor evaluates the standard score of the innovation and
raises a flag if it exceeds a threshold. While effective at detecting if the variance of an innovation is non-unit, this monitor is
ineffective at detecting innovations with near-unit variance and a small bias — that is 5)}({1) ~ N (€, 1) where € is a non-zero
constant.

To detect such an error (and indeed test the second innovations property), an innovations Sequence monitor is employed. A
Sequence monitor accumulates scalar innovations over a finite horizon L € Z and forms the following test statistic A* € R:

« v A (D)2
A" =Ty ZEY 5L (10)

Under the null hypothesis (Hp) that the innovations are zero-mean, unit multivariate Gaussians, this test statistic should be
distributed as a chi-squared distribution with LM degrees of freedom. This test statistic and associated distribution are sufficient
to create a hypothesis test to determine the likelihood of the innovation under Hg with a prescribed false-positive ratio a € R,
Effectively, the Sequence monitor evaluates the sum-square of the innovations and raises a flag if it exceeds a threshold. If the
innovations are slightly biased, then the bias is square-summed until it exceeds the threshold bounds. This monitor effectively
increases the observability of any biases by accumulating them out of the noise floor.

Neither of these monitors, however, is effective at testing the third innovation property — that the innovations should be
independent. To address this, the innovations Sphericity monitor is introduced and subsequently evidenced. The Sphericity

monitor first calculates the scaled sample covariance B € RM*M of innovations over a finite horizon L € Z:

B =Yl 10k=3 k=" (11)
where ¥ € RM is the sample mean of the innovations over the horizon. Then, the Sphericity monitor reduces the matrix B to
the following scalar test statistic A* € R:

A" = —m(1— In(L)) —LIn(det(B)) + tr(B) (12)

Under the null hypothesis (Hp) that the innovations are zero-mean, unit multivariate Gaussians, this test statistic should be
distributed as a chi-squared distribution with M(M + 1)/2 degrees of freedom (Anderson, 1958). A proof of this distribution
is given in Appendix B. Two brief notes are stated regarding the Sphericity monitor.

First, the name ‘Sphericity’ is given to the monitor to reflect the innovations property that it tests. If the innovations are indeed
independent, then the contours of equal probability density represented by sample covariance matrix should be hyperspherical
in shape. If the innovations were instead correlated, then these contours would be hyperellipsoidal in shape. Hence, the
Sphericity monitor effectively evaluates whether the sample covariance ellipsoid is sufficiently spherical in shape.

Second, the Sphericity monitor requires that the accumulation horizon is large (L > 1) before the resulting distribution
converges to a chi-squared distribution (see the derivation in Appendix B). Furthermore, this ensures that any detected
correlations are not due to spurious correlations in random noise and are in fact due to modeling errors. Initial simulations



indicate that L need only be several multiples greater than the number of measurement channels — that is, L = nM where n is
on the order of 5 or more.

The effectiveness of this monitor at detecting correlated innovations is illustrated in the following two sections.

3. GAUSSIAN SAMPLING SIMULATION
The effectiveness of the Sphericity monitor and comparative ineffectiveness of the Snapshot and Sequence monitors at
detecting correlated innovations is illustrated in the following simple Gaussian sampling simulation.

Random samples were drawn from a zero-mean, 2D multivariate Gaussian distribution with covariance

z:[}) p (13)

where p € [0, 1] is a currently unspecified correlation parameter. When p = 0, this distribution mirrors that of a normalized
measurement innovation distribution under the model assumptions enumerated in Equations (1) - ( 3).

Innovation Snapshot, Sequence, and Sphericity monitors were evaluated on samples drawn from the distribution. The Sequence
and Sphericity monitors each accumulated 100 samples before engaging their respective hypothesis tests while the Snapshot
monitor engaged its hypothesis test after only a single sample. Each test was run 100,000 times in a Monte Carlo fashion for
two scenarios: p € {0.0, 0.5}. The first scenario establishes a true-negative baseline — no sample correlations exist and none
should be detected. The second scenario establishes a true-positive baseline — significant sample correlations exist and should

be detected.

True False True False
Negative  Positive Positive  Negative

Figure 1 tabulates the results of the two Monte Carlo
simulations with several unraveled-and-stacked
confusion matrices. A perfect monitor is listed to
establish the desired baseline confusion matrix
result. A perfect monitor would detect true positives

and negatives 100 percent of the time (a ratio of 1.0) Perf'eCt 1.0 0.0 1.0 0.0
and never any false positives or negatives. Both the Monitor

Snapshot and Sequence monitors were ineffective at

detecting sample correlations — they both had a true- Snapshot

positive ratio of less than 2 percent. In contrast, the Monitor 0.99 0.01 0.01 0.99

Sphericity monitor was highly effective at detecting
sample correlations — a true-positive ratio of 99
percent!

Sequence
Monitor

0.99 0.01 0.02 0.98

It is not surprising that the Snapshot monitor is
ineffective at detecting sampling correlations: the Sph eri Clty
component variance of each of the scalar samples is
unity and thus adheres to the null hypothesis of the
Snapshot monitor. Another perspective — a test that
evaluates the scalar components of a sample
irrespective of any other components is of course
insensitive to inter-sample correlations.

Monitor 0.99 0.01 0.99 0.01

Figure 1: Unraveled confusion matrix for the Gaussian sampling Monte
Carlo. The Snapshot and Sequence monitors are ineffective at detecting
sample correlations (true positives). The Sphericity monitor is highly
effective at detecting sample correlations while maintaining a low false-

. . o ositive ratio.
Perhaps more interesting, the Sequence monitor is p

rather ineffective at detecting sample correlations.

One potential reason for this lies in the fact that the sample mean is still zero — no mean value is square-summed above the
threshold bounds as in a sample bias case. Another perspective — under a zero-mean assumption, the Sequence monitor
effectively sums the variances of the scalar samples and evaluates how different it is from a unit variance sum. Given that the
component variances are unit themselves, its unsurprising that the hypothesis test is ineffective at correctly rejecting the null
hypothesis.



In contrast, the Sphericity monitor is specifically sensitive to measurement correlations as a result of the sample covariance
calculation. Unlike the Snapshot and Sequence monitors which scrutinize the samples as scalars, the Sphericity monitor
maintains the vector relationships between the samples while accumulating the sample covariance. Only after the finite horizon
accumulation does the Sphericity monitor then reduce the samples to a scalar test statistic. In this manner, the Sphericity monitor
is effective at detecting sample correlations while the other monitors are not.

4. SIMPLE 2D SIMULATION
A simple two-dimensional (2D) simulation was created to

demonstrate how the sphericity monitor might be employed in a Correlated %

GNSS receiver and to further evidence its capabilities. A pair of Atmospheric Errors
Monte Carlo simulations was run: one with measurement error
correlations properly modeled and one with the measurement errors
incorrectly assumed to be independent. Sequence and Sphericity
innovations monitors were initialized for each of these Monte Carlo
simulations and accumulated the innovations over an ever-increasing
horizon. It is demonstrated that the Sphericity monitor is effective at
detecting the modeling error while the Sequence monitor is not.

Consider a simple 2D example wherein a receiver estimates its
position from a pair of range measurements to two overhead

stationary satellite vehicles (SV) (see Figure 2). In this example, S — W'WW‘VLE@ﬂ
clock biases are ignored to make the problem observable. A
navigation engineer models the range measurements at time t; € R

as the sum of the geometric range and additive, independent,
uncorrelated Gaussian noise:

Figure 2: A 2D receiver measures the range to two
satellite vehicles. The range measurements are
corrupted by localized atmospheric effects which
induce correlated errors in the measurement pairs.

7 =[] + € (14)
R = Elexel] = [002 (Bz] (15)

where Z,(;) € R is the range measurement to the ith SV, r;j is the range vector to the ith SV, € € R is the ith component of

the Gaussian noise vector €y € ]RZ, 02 € R is the noise variance, and R € R2%2 i5 the modeled error covariance.

)

Unknown to the navigation engineer, localized atmospheric effects induce correlations in the measurement errors. The true
covariance of the range measurements is:
o2 p*oz]

R*=E[€k€£]= p*o_z 0_2 (16)

where p* € [0, 1] is the measurement correlation coefficient and R* € R?*2 is the true noise covariance. Here successive
measurement errors are still assumed to be independent — that is, while atmospheric effects introduce similar errors between
two range measurements at a given time t, these errors imply no information about measurement errors at some other time ;.

An extended Kalman filter (EKF) is employed to estimate the position of the receiver. The position of the receiver, X(t) € R2,
is modeled as a random walk:

%x(t) = w(t) (17)

where W(t) € R? is random, independent white noise with a two-sided power spectral density Q € R?*2.



The dynamics are linear and straightforward to discretize over a period At € R. Let Xp_1 € R2 and ﬁk—1 € RZX2 pe
respectively the posterior state estimate and associated error covariance matrix of a Kalman filter at time typ—1 €ER.
Furthermore, let X € R? and Py € R?*? be respectively the propagated prior state estimate and associated error covariance of
a Kalman filter at time tx € R. These estimates are related by the following linear model:

X =FaXk_1 (18)

I_)kdei)k_ng—}'Qd (19)
where Fq € R?%2 and Qg € R?*? are the respective discretized state transition and propagation error covariance matrices:

Fg=1I3x2 (20)

Q4 = QAt (21)

The measurement model from Equation ( 14 ) is linearized to integrate the range measurements into the EKF:

1';(1) TE(Z) ! (22)
Hic= [Ilrﬁ)ll (Erd

All the required equations have been developed to simulate the EKF. The standard Kalman filter equations with the addition
of the normalized measurement innovation calculation are listed for convenience:

Predict Update
Yi=27Zr— HpXy
Sk = Hkl_)kHIT(_' + Ry,

3 . Sk = chol (S, lower")
Xie=FaXp_1 Sy
Pi=FaP,_FL+Q Y=k
k= TdTk-1Td T vd Ky = P, HTS 1
= KOk
Xk =Xk + Kiyi
P, = (I — Ki:Hy)Py,

Figure 3: The standard Kalman filter equations with the addition of the normalized innovation, V.




Two Monte Carlo simulations were run, varying the value of the modeled measurement error correlation parameter, p €
{0.9, 0.0}. The simulation parameters are tabulated in Table 1. In each simulation, Sequence and Sphericity monitors are
initialized at the beginning of the simulation and permitted to accumulate innovations over the entire simulation horizon,

engaging a hypothesis test after every measurement.

Figure 4 depicts the evaluated innovation test statistics for the two Monte Carlo scenarios over the simulation duration. The
plot on the left depicts the Sequence and Sphericity test statistics and associated expected bounds under Hg for a true-negative
scenario; the plot on the right depicts the Sequence and Sphericity test statistics and associated bounds under Hy for a true-
positive scenario. The test statistic bounds are evaluated as bounds such that the respective cumulative chi-squared probability
distributions evaluated at the bounds contain 1 — Prescribed False Postive Ratio of the probability.
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Figure 4. Innovation test statistics for the two Monte Carlo scenarios. (Left) The test statistics and associated bounds
under Hy for the baseline scenario (p* = 0.9, p = 0.9). (Right) The test statistics and associated bounds under Hy for

the true-positive scenario (p* = 0.9, p = 0.0).
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The first simulation establishes a baseline: the navigation

engineer correctly models the measurements as correlated Simulation Duration 60s

(p = 0.9) when the measurement errors are in fact truly Initial Receiver Position [0,0]" m
correlated (p* = 0.9). This scenario establishes that both SV Positions [ —30,30]7,[30,30]" m
monitors operate within their prescribed false-positive = ™

ratio limits and establishes their true-negative asymptotic ’f 0 [0,0]" m
behaviors. Excepting an approximation-driven error in P, diag([10, 10]) m?
the Sphericity test statistics at the beginning of the At 0.1s
simulation, nearly all the Monte Carlo test statistics (red) -

are contained within the expected test statistic bounds Q diag([0.1, 0.1]) (m/s)?/Hz
(black) — that is the monitors do not raise many false- Measurement Frequency 1 Hz

positive flags. The brief foray of the Sphericity monitor o im

test statistics at the beginning of the simulation is due to "

the requirement that the number of accumulated p 0.9
innovations, L, must be large to satisfy the chi-squared p 0.9 0.0

distribution approximation. By 10 seconds into the False-Positive Ratio 0.01




simulation (10 innovation samples), the chi-squared approximation becomes valid, and the test statistics become well-bounded
by the expected bounds.

The second simulation mirrors that of the described scenario: the navigation engineer incorrectly models the measurements as
uncorrelated (p = 0) when the measurement errors are in fact truly correlated (™ = 0.9). This scenario establishes the behavior
of the monitors under a true-positive scenario and evidences how the Sphericity monitor is effective at detecting correlation
modeling errors while the Sequence monitor is not. Only a minor fraction — ~ 6% at any given time — of the test statistics for
the Sequence monitor exceed the expected bounds under Hg (a true positive), indicating that it is ineffective at detecting
correlation modeling errors. In comparison, by 26 seconds into the simulation, all the Sphericity monitor test statistics had
exceeded the expected bounds under Hy and had raised a flag — it is extremely effective at detecting correlation modeling
errors.

5. CONCLUSIONS & FUTURE WORK

Innovations Snapshot and Sequence monitors are demonstrated to be ineffective at detecting intra-epoch measurement
correlation modeling errors. A new monitor, the innovations Sphericity monitor, is introduced which is specifically sensitive
to such modeling errors. The effectiveness of this monitor is evidenced with a simple Gaussian sampling simulation and with
a simple GNSS-like 2D Monte Carlo simulation. Future work may focus on (1) the sensitivity of the Sphericity monitor to
other confounding modeling errors and non-linearities; (2) the Sphericity monitor’s effectiveness when the dimension of the
measurement is large (M > 1); (3) a comparison of the Sphericity monitor against other covariance-scrutinizing monitors; and
(4) the application of the Sphericity monitor to specific navigation and GNSS problems.
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APPENDIX A: INDEPENDENCE OF KALMAN FILTER INNOVATIONS

Let x; € RV, %, € RV, and Py € RV*N be respectively the true state, estimated state, and associated estimated error
covariance of a Kalman filter at time t. The estimated state is modeled as a random multivariate Gaussian vector centered on
the true state with covariance Pg:

X~ N (x;, Py (23)
Suppose the state dynamics were modeled with the following linear (or sufficiently linearized) stochastic system:
X = Fr—1Xp_q + Wi—1 (24)
where wg_1 € R is random propagation noise drawn from a zero-mean multivariate Gaussian distribution with covariance

Qr_1 € RV*N and Fi_1 € RVXN is the discrete-time state transition matrix.

Suppose the state were observed by a measurement Zx € RM modeled with the following linear (or sufficiently linearized)
relationship:

z = Hpxp, + vy (25)

where Vi € RM is random measurement noise drawn from a zero-mean multivariate Gaussian distribution with covariance Ry
€ RMxM ,and Hy € RMXN g the linear observation map.

It is further assumed that the propagation and measurement noise samples are independent:
E[w].v;] =0Vjk (26)
The measurement innovation Y € RM is defined:
Yk =Zx — HiXg (27)
where Zj, € RM is the realized measurement at tj.

Under the model assumptions in Equations ( 23 ) - ( 26 ), the measurement innovation should be zero mean:
E[yi] = E[Zx — HX]
E[Hkx}‘( + v — Hki'k]

= E[Hy (x5, — %) + v (28)
= Hy E[x} — %] + E[v]
=0

Under the same assumptions, the variance of a measurement innovation should also be:
Var[y] = Var[Zy — HyX]
= Var[Hkx;; + v — HkJ_Ck]

= Var[H;(x; — %) + v

_ - (29)
= Var[Hk(xk - xk)] + Var[vy]

= HkVar[x;‘c — J_ck]H£ + Var[vg]

= Hkﬁkﬂl + Ry,
3k

where S € RM*M js the innovation covariance. The variance operator is distributed under the assumption that the measurement

noise Vy and the state estimate error X), — X, are independent.



To conclude, under the model assumptions in Equations ( 23 ) - ( 26 ), the innovations vector for a single measurement epoch
V1 should be distributed as:

Yie~ N (0, S1) (30)

If Sk is decomposed such that Sk = §k§£ (such as with a Cholesky decomposition), then it follows that the normalized
innovation Yy £ S,:ljlk is distributed as a unit multivariate Gaussian distribution:

Y~ N0, 1) (31)
This is sufficient to prove that the subvectors of a normalized innovation are independent across a single measurement epoch
but does not prove independence across several measurement epochs — this will be proven next.
Let Zx+1 € RM be a second observation produced by the same measurement system at some time in the future, tr41. Let Zg41
be modeled similarly to Z:

Zi41 = Hpy1 X1 + Vit (32)
where Vx41 € RM is random measurement noise drawn from a zero-mean multivariate Gaussian distribution with covariance
Ryi1 E RMM and Hyp 1 € RMXN g the linear observation map. It is further assumed that this measurement noise is
independent of any other process or measurement noise.

The future innovation vector ¥g+1 € RM is defined similarly to ¥k:

Yk+1 = Zk+1 — Hr+1Xk+1 (33)
where Zg41 € RM is the realized measurement at tj41.

The future prior state estimate X1 and future prior error covariance estimate I_’k+1 € RVXN gre propagated from the current
posterior state estimate X) € RV and corresponding error covariance P k€ RN,

Xi+1 = Frky

— P— (34)
Pyriy1=FpP Fp +Qp
where Xj and P « have been estimated from Xk, P k, and Zj using the Kalman update equations:
Yk =Zr — HX
Si= Hkl_)kH;(' + Ry,
Ky =P HES; ! (35)

X=X + Ky
P, =(I— KgHi)Py

Befo_re evaluating the covariance of ¥k and ¥k+1, the future measurement innovation ¥x+1 is reformulated in terms of X, Xk,
and Py

Yk+1 = Zg+1 — Hie41Xk+1
=Hy41X)1q + Vier1 — He1 X1
= Hy 1 (Firx, + wi) + w1 — Hip 1 Fri
. _ . (36)
= Hyr1 (Fix, + wi) + w1 — Hip 1 Fr (B + Kii)
= Hyr1(Fixy, + wi) + vier1 — Hi1 Fr (B + Ki(Z — HiXy))
= Hyr1(Fixy, + wi) + vier1 — Hip1 Fi(Zi + K (Hpx, + vy — Hi%y))

Distributing and collecting like terms yields:



Vrer1 = Hyy1F (x5, — %) — Hyy 1 FrKocHy (x5, — Xp) + Hpep Wi + Vi1 — Hi 1 FrK oy (37)

Now, the covariance of ¥k and ¥x+1 may be readily evaluated:

Cov[Fi, Y1) = E[Fich 4]

= E[(Hk(x}i — %) + i) - (Hyey 1 iy — %) — Hyyd FicKocH (x5, —
= E[Hi(x;, — %) (. — 1) FLHT,y — Hy(x;, — %) (xf — %) HLKLFLHT, o + Hy(x, — R )WIHL, o + Hy,
(xf, — R)VE,y — Hiex — ) vEKEFTHT | + vi(x, — %) FIHT, | — vie(x}, — %) HEKTFTHT, |
+ VWL 1 + 0] — 0 LKEFLHE

=H P FTHY , — H P Hi K FTHY | — R KFFEHT |

= Hkka£H£+1 - (HkaH£ + Rk)K£F£H£+1
HyPiFiH} 11 — SkKiFiH}
= HyPyFiHj 1 — HkPiFiH o
=0

The covariance is zero and implies statistical independence between the innovations. This result shows that under several linear,
Gaussian, and independence assumptions, normalized measurement innovations should be independent across a single
measurement epoch and between measurement epochs.

APPENDIX B: DERIVATION OF SPHERICITY TEST STATISTIC

The following appendix derives the sphericity test statistic. It is based on the proofs established in Anderson (1958),
Giri (1977), and Muirhead (2009) which are more rigorous, include minor adjustments to account for sample covariance biases,
and derive the asymptotic approximation error distributions.

Suppose a Kalman filter produces normalized measurement innovations over N measurement epochs. Let ¥ € RP denote the
kth measurement innovation. Suppose the normalized innovations were modeled as independently sampled from a multivariate
Gaussian distribution with mean g € R? and covariance £ € RP*P_ Consider testing the null hypothesis Ho:E = I against the
alternate hypothesis H4:X # I. Muirhead describes this hypothesis as the ‘hypothesis of sphericity,” as the contours of equal
probability density under the null hypothesis form hyperspheres — hence the same ‘sphericity test’.

The likelihood of a single multivariate Gaussian observation ¥ € R? with mean p € RP and covariance £ € RP*? is:

L(us) = 2n2l~exp (- 26 - w2 G - w) (38)

where | - | is the matrix determinant.

It follows that the likelihood of N independent samples from the same distribution is:

L(w®) = |28l M2 exp (- 200 — w721 G — ) (39)



The product of exponentials is elevated into the exponential as a sum:

_ 1 ~ 1A
L(wz) = |20l ~N 2exp (= 12X, 5~ )= G~ w))

Employing a matrix trace trick to isolate the mean and covariance components:

N
1
L(uX) = |2mE|~N/2exp —52 Gi—-w'EGi—-w
i=1
1 N
= |2nZ|N/2exp| —5tr Z Gi—-w'EGi-w
i=1

N
1
= [2nE| M 2exp | —5 ) el G~ wTEGi— )
i=1

[ N
= |2nE|~N/2exp —otr 22_1(5'1' -W@i—-mw"
i=1

N
1
= |2nE|~N/2exp| — EZ o[ 13— w @i — H)T]>
i=1

N
= x| 2exp| —5t(E71 ) Gi— ) G- )T
i=1

Next, a likelihood ratio A € R is formed:

Ly wE=1  2zal ™ 2exp (= 2l EX G- ) 5 — 7))
LigWEED  ani-vr2exp (— L a2, - G- w7])

The parameters # and X are unknown, so a generalized likelihood ratio must be employed. A generalized likelihood ratio
replaces the unknown parameters with their respective maximum-likelihood estimates under the respective hypotheses. It is
straightforward to verify that the maximum-likelihood estimates of ¢ and X are the sample mean and covariance — that is, given
data with sample mean  and covariance X, the most likely values of the distribution mean and covariance are the sample mean

and covariance.

Let ¥ € RP be the sample mean and S € RP*P be the sample covariance of ¥1_y:

_ 1 A
Y =32l i

1 N NN _
S=ZLGi—- @i —-»"
Furthermore, let B € RP*? be the scaled sample covariance:
B=NS=3\,3i—-»F:i—»"
Substituting 4 =y and £ = § into the likelihood ratio yields:

Ly,(u=yX=0  [2rl|~N/? exp(—%tr[l_lB])

A= —vy—5 —
Luy(n=yx=8) |27S|—N/2 exp ( —%tr[S*lB])

Simplifying and noting that S = B/N:

(40)

(41)

(42)

(43)

(44)

(45)

(46)



A= (E)Np/2|B|N/Zexp(—%tr[B]) (47)

N
Further simplifying:
A" =-21n(A)
(48)
=—Np(1 = In(N)) — N In (det(B)) + tr[B]
Finally, the generalized maximum-likelihood hypothesis test may be stated:
Hya
—Np(1 — In(N)) — N In (det(B)) + tr[B] 2 Ao (49)
AT 0

The hypothesis test will reject A* whenever it is greater than a constant Ag which is chosen such that the test’s false-positive
ratio is @ € R. To evaluate Ay, the distribution of A" under Hy must be derived. Here the derivation follows that of Giri (1977).

Under the null hypothesis that ¥ ~ N'(9, I, the scaled sample covariance matrix B = YN | (§; — ¥)(7; — ¥)" has a Wishart

distribution with scale parameter I and N — 1 degrees of freedom. Anderson (1958) provides the characteristic function of A",
¢(A"), as the product:

14
s =] Jo (50)
j=1
where

r(%(zv — j)—iNt)

¢;(t) = (2e/N)~Nt(1 — 2it)~(N-1=2iND)/2 I (51)
rzw-p)
Substituting Stirling’s approximation for the Gamma function
1
2m\2 ;Z\% (52)
r=(3) )
into Equation ( 51 ) approximates the characteristic function as:
% 1 %(N—j)—iNt
21 2(N—j)—iNt
1
. , 5(N —j) —iNt ¢
¢;(t) = (2e/N)=Nt(1 — 2it)~(N-1=2iND)/2 5 (53)
2/1 >(N=)
21 5(N—))




Simplifying:

1 ,
1/1 F(N=)) -
R L
¢-(t)~(1—2it)—%(N—1—2iNt)( N—j )2 (N —j) —iNt <N—]—21Nt>
AR N—j—2iNt 1 _ —
2(N=))
1
. —%(N—l) (N ]—21Nt>2(N —j— 1)<N ]—21Nt>

== N(L—2it)

LA=2O0TP ey (N2 —ZiNt)f(N‘f‘l)(N—j—2iNt)—iNf (54)

_(1—2it)—1'/2( ~2it) N—j N(1 - 2it)

1 . .
_ _j/z( N —j —2iNt )E(N‘f‘l)(N —j— 2iNt)—”Vf
=@ =207 " \ N Ha =z N(1—2it)

1 . .
N(1-—2it)—j )E(N_J_l) (1 j )_th

=(1-2i)7/2- (N(l—Zit)—j(l—Zit) T N1 —2it)

Then, as N—0oo, the second and third terms reduce to unity and leave:
$;(t) = (1 —2it) /2 (55)

Thus, the asymptotic characteristic function for A* is:

P(A) = n (1 =2it) /2 = (1 — 2it) " PP+D/2 (56)
=1
which is the characteristic function of a chi-squared distribution with p(p + 1)/2 degrees of freedom.
To summarize, under the null hypothesis, as N>, A* = — Np(1 — In(N)) —NIn (det(B)) + tr[B] should be distributed as

a chi-squared random variable with p(p + 1)/2 degrees of freedom. The characterization of this distribution under Hy is
sufficient to determine A provided an allowable, prescribed false-positive ratio of a.



