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Objective
In this work, we propose a data-driven battery modeling
framework to construct linear surrogate model of high-fidelity

battery models based on Koopman operator and neural network
learning using time-series data. _
Motivation

Model reduction is commonly used to simplify battery models to

facilitate mathematical analysis. A surrogate model by our

proposed method has computational advantages compared to
existing reduced-order models:

* The constructed model is linear in high-dimensional function
space, hence it preserves global accuracy while simplifying
the original model.

= |t utilizes time-series data to construct a model which does not
require domair:}gpecific knowledge and,is applicable to any

types of high-fidelfy el erator

. iven a dynamical system x = f(x), the Koopman operator associated

to f 1s a linear operator defined in infinite-dimensional function space:

K o g(x) = g(¢a (X)) (1)

where g € L, 1s a bounded function, also known as an observable, and
$ae(x) 1s a tlow map of (1) at time ¢ starting from the point x.

= Koopman operator is a linear operator which equivalently describes
the original (nonlinear) dynamical system (1) through functions along the
trajectory of the states.
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Fig. 1. Koopman operator framework (adopted from [1, Figure

Data-driven Kodpman Estimation

= We use layered autoencoder [2,3] network to learn finite Koopman

b

operator with additional forcing terms representing input current.
" [oss function to minimize:
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(2)-(3): autoencoder losses, (4): linearity loss, (5): prediction loss.
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Fig. 2. Layered autoencoder structure to learn Koopman
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Battery Data Collection
= We use PyBaMM, an open-source battery model simulation
software, to collect time-series data of high-fidelity lithium-ion
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Simulation Results

= Surrogate battery model was constructed by the proposed
method using time-series data collected from PyBaMM
simulations for DFN model with different C rates (1C,2C,3C,4C).
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Fig. 3. Prediction vs. exact model for 4C and 1C.
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Fig. 4. Predicted voltage profiles for a single discharging cycle.
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