Thislpaperldescribeslobiectiveftechnicallresultslandlanalysis JAnyi sub|ect|v viewsfo m SAND2022-13103C
helpaperfdojnotinecessarilyjrepresentfthejviewsofftheju.S | rt, oEnero he Unlted States Government.

Data Transfers and Host/Device () e
Communication using OneAPI for FPGA

A Presentation for the Intel eXtreme Performance Users Group

Phillip Lane, Christopher Siefert, Stephen Olivier, Clayton Hughes, Gwendolyn Voskuilen,
Kevin Pedretti, and James Elliott

IXPUG 2022, Programming Track, 11:30 AM CST

Argonne National Laboratory

Sandia National La Si9a d'by rslof Sandia, LG, Glwholiv-owned©!lY

owned subsidiary of H(sub5|d|ary \oftHoneyweII Internat|onaIan Jfor thexU. S tDepartmentrof’Energy saNatlonaI\NucIearSecurltytAdmlnlstratlon under(contract.DE-| NA0003525AOOO3525.

Outline

* Why FPGA?

* OneAPl and Data-Parallel C++

» Unified Shared Memory Performance
« Kernel Launch Latencies

* Denial-of-Service Vulnerability

» (Case Studies

(@ |

About FPGASs

« (CPUs and GPUs: stored-program computer
« Program stored in memory; instructions executed by dedicated
fetch/decode/execute hardware
« FPGAs: reconfigurable hardware, spatial computing

* At compile time, code is translated into a physical hardware layout
* FPGA reconfigures itself at runtime

« Program translated to arithmetic look-up tables (ALUTs) and block RAM
(BRAMS)

* The FPGA die is connected to more traditional RAM components
« Usually, DDR or HBM

September 27, 2022

QRE

Benefits? Drawbacks?

» No overhead from fetch/decode
* Able to sustain much higher FLOPs per clock cycle than CPUs or GPUs

Farly adopter of newer memory technologies
* High-bandwidth memory (HBM)

* Low power usage
« Cost: much lower clock speed, maxing out at ~400 MHz

(Good branching support
« Unlike GPUs (or CPUs if the branch pattern can't be predicted)

Painfully long synthesis times
« (Can take 2-6 hours in our experience

September 27, 2022

M | -

Outline

« Why FPGA?

« OneAPI and Data-Parallel C++

» Unified Shared Memory Performance
» Kernel Launch Latencies

* Denial-of-Service Vulnerability

« (ase Studies

(@ |

OneAPI

» Intel OneAPI is a suite of tools for
heterogeneous programming

e Such tools include the Intel Fortran, C, and C++
compilers, the Data-Parallel C++ compiler, VTune,
the Math Kernel Library (OneMKL), among others

» Data-Parallel C++is an implementation of SYCL
for heterogeneous, single-source programming oo

- Write once, run anywhere (in theory)
» DPC++ is capable of targeting manycore CPUSs, o n eA PI
GPUs, and FPGAS

85888,

@ s

Data-Parallel C++ for FPGA

» Data-Parallel C++ (DPC++) is commendable for making high-level
synthesis (HLS) for FPGA more accessible than ever

» Built off OpenCL, abstracts away many of the more difficult or
tedious requirements present in OpenCL development

* However, high-performance software needs evaluation
Software needs to be robust, performant, and accessible

« We analyze many of the phenomena related to data transfer using
DPC++ on a Bittware Stratix 10 MX FPGA

September 27, 2022 @ | 7

Outline

Why FPGA?

OneAPl and Data-Parallel C++

Unified Shared Memory Performance
Kernel Launch Latencies

Denial-of-Service Vulnerability
Case Studies

(@ |

Phenomenon 1 - USM Performance

« QOur FPGA supports Explicit Unified Shared oo
Memory (Explicit USM) SRR e

but = sycl::malloc_device<T>(size, *workq);

~Vector_usm() {

» Explicit USM allows developers to manually
allocate and move memory between the
device and host
Similar to the CUDA programming model 1 o T s e
* |n contrast to the buffer/accessor model e

. We've noticed that the use of explicit USM can il
slow performance by up to 4x on our FPGA

September 27, 2022 @ | o

Underlying Cause

« USMisn't inherently bad
« When written properly, it is faster than buffer/accessor

USM chokes on frequent, small transfers
« Buffer/accessor does, too, but to a less severe degree

Transfer 80 kB of data 100,000 times... averages 30 seconds, up to 2
minutes

 Buffer/accessor averages 18 seconds, up to 30 seconds

» Transfer 8 MB of data 1,000 times... consistently takes 4.1 seconds
using USM

 Buffer/accessor consistently takes 4.3 seconds!

September 27, 2022 @ | 10

Takeaway

Prefer larger, fewer transfers over smaller, frequent transfers
* Problem is not limited to just USM, happens to buffer/accessor too

f small, frequent transfers are necessary, prefer buffer/accessor
« Peak performance of both paradigms are roughly equal!

« Would really like this performance limitation patched

September 27, 2022

@'11

Outline

« Why FPGA?

* OneAPl and Data-Parallel C++

» Unified Shared Memory Performance
« Kernel Launch Latencies

* Denial-of-Service Vulnerability

« (ase Studies

(@ |

Motivation

« Many of our apps at Sandia are based on spawning a high number of

lightweight device kernels
« Kokkos is built with this design principle in mind

» Launch latencies play a critical role in the execution time of these
types of applications

 The lower, the better!

September 27, 2022

@|13

Test Methodology

* Synthesize two empty kernels

« FPGA kernel with nothing to do (zero code, zero data transfers)
* Onein DPC++, one in OpenCL

Call FPGA kernel, then immediately synchronize
 Timing starts before kernel launch and ends after synchronization

* Repeat 100,000 times

« Numactl used in some tests
 Linux tool to bind a process to physical thread/core

September 27, 2022 @ | 14

Systems Tested

Lux08

« Node in Lux cluster supporting 2x Intel Xeon Platinum 8352Y CPUs
- Dynamic frequency scaling enabled, performance governor

Lux10

« Node in Lux cluster supporting 2x Intel Xeon Platinum 8352Y CPUs
« Dynamic frequency scaling disabled

RISCV-SON

« Node supporting 1x Intel Xeon Silver 4216 CPUs
« Dynamic frequency scaling enabled, powersave governor

All systems use the same Bittware Stratix 10 MX FPGA with Bittware driver

September 27, 2022 @ | 15

Using numactl to Bind to CPUs

September 27, 2022

DPC++ Launch Latencies with numactl (Lux08)
160

140

,, =l e
120
100
80

60
40 — —

20
0

Launch Latency (microseconds)

31 31,95 30,94* None
PhysCpuBind

*all other cores were tested, results approximately the same

@lw

DPC++ vs. OpenCL on Different Systems

\
!

Launch Latency (microseconds

Lux08

DPC++

Lux10

System

1
!

U
o
c gec
5 65
[
)
[=a'
o 6!
mmlem W]
'S gg
= -
o
c 50
@
e
[4n]
— 45 onlem
=
)
—
5 40
o I,
RISCV-SON —l Lux(08

OpenCL

Lux10 RISCV-SON
System

September 27, 2022

Lux08 - Performance governor
Lux10 - Disabled governor
RISCV-SON - Powersave governor

@'17

Takeaways

 For the Bittware Stratix 10 MX, binding to the highest physical
core on socket O was crucial for performance
* Lowest variance and average launch latency

« System configuration can play a significant part in launch latency
« The performance frequency governor seems to help

« DPC++ usually faster than OpenCL by 2-9%

September 27, 2022

@'18

An Aside

 We noticed that if the DPC++ kernel had an accessor, there was a 20
microsecond overhead, even if no data is being transferred

* Suppose data is already on device and is in sync with host
« 20 us overhead to every kernel launch to do this "check"

* Does this scale based on number of accessors? Does USM carry the
same penalty?

* Likely: yes and no respectively... left for future testing

September 27, 2022

@'19

Outline

« Why FPGA?

* OneAPl and Data-Parallel C++

» Unified Shared Memory Performance
« Kernel Launch Latencies
 Denial-of-Service Vulnerability

» (Case Studies

(@ |

Direct Memory Access

» Direct memory access (DMA) allows much faster transfers of data
petween the host and device

« Requires arrays to be aligned to a 64-byte boundary

» Basic routine for DMA transfer
« OS will pin relevant pages on CPU side
« DMA transaction will occur without risk of pages migrating around RAM
« Once transaction is over, OS should un-pin pages

September 27, 2022

@lm

Denial of Service

» |f DMA is used for a device-to-host transfer, there is the possibility of
a kernel panic
« OS unable to pin the page(s) in memory
« OS alerts FPGA driver, driver doesn't catch error, so... kernel panic
« Has brought down several of our nodes

» Fixing not as easy as rebooting node
« By default, FPGA boots into unusable state
« Reboot process on next slide

September 27, 2022 @ | 22

Reboot Process

September 27, 2022

setpci -s 4b:0.0 ECAP_AER+0x08.L=0xFFFFFFFF
setpci -s 40b:0.0 ECAP_AER+0x14.L=0xFFFFFFFF
setpci -s b1:0.0 ECAP_AER+0x08.L=0xFFFFFFFF
setpci -s b1:0.0 ECAP_AER+0x14.L=0xFFFFFFFF

setpci -s 4a:02.0 ECAP_AER+0x08.L=0xFFFFFFFF
setpci -s 4a:02.0 ECAP_AER+0x14.L=0xFFFFFFFF
setpci -s 00:02.0 ECAP_AER+0x08.L=0xFFFFFFFF
setpci -s 00:02.0 ECAP_AER+0x14.L=0xFFFFFFFF

echo 1 > /sys/bus/pci/devices/0000:40:00.0/remove
echo 1 > /sys/bus/pci/devices/0000:b1:00.0/remove

quartus_pgm -c 1 -m jtag -o "p;blinky.sof"

quartus_pgm -c 1 -m jtag -0 "p;base.sof"

@lzs

Suspect Cause

« DPC++ is not good with requesting DMA-ready memory

* Only one engineer on our team has caused this kernel panic
* Used posix_memalign for aligned memory
 All other engineers used sycl: :malloc

* Suspect posix_memalign is not working nicely with DMA
« Unconfirmed hypothesis... left for further testing

» Despite unconfirmed hypothesis, recommend sycl::malloc

September 27, 2022 @ | 24

Outline

« Why FPGA?

* OneAPl and Data-Parallel C++

» Unified Shared Memory Performance
« Kernel Launch Latencies

* Denial-of-Service Vulnerability

» (Case Studies
« STREAM
« Sparse Matrix-Vector Multiplication

(@ |

STREAM

« STREAM is a collection of four memory-intensive benchmarks

« We implement CO
« COPY-a[i]=b
 aand b are bot
* Transfer 96 MB

September 27, 2022

PY to test raw throughput of the HBM channels

(1]

N kept within the same memory channel
of memory per channel and time kernel execution

@lzs

Our FPGA's Memory Hierarchy

» Qur Stratix 10 MX has 32 discrete HBM memory ports

 Data is not interleaved across ports per Bittware's design decisions

« Supposedly data interleaving would make clock speed too slow, so they
disable it outright

 Sustained total bandwidth through all ports theoretically 410 GB/s

* Since no data interleaving, template metaprogramming used to
generate 32 kernels
« We test each HBM port individually, then total combined throughput

September 27, 2022 @ | 27

Test Results

September 27, 2022

h.parallel for<>(range<.>(size / ()), [=]1(id<1i> 1)
[[intel: :num_simd work_items(NUM SIMD WORK_ITEMS),
sycl::reqd_work group size(!, ,REQD WORK_GROUP_SIZE)]]{

to[i] = from[i];

});

« Per-channel throughput: ~10 GB/s
« Combined throughput: ~316 GB/s

« Roughly 31.6x speedup
« Perfect is 32x
« Very good speedup

* Only 77% of theoretical throughput

@lzs

Lessons Learned

Fach memory load is 256-bit

« Unused data is discarded... not cached, unless explicitly requested

* Sequential memory access with 64-bit stride = 4x more memory transfers
than necessary

Solution: vectorization

Manual loop unrolling works!

#pragma ivdep works!

SYCL SIMD attributes work!

Simple for loop does not work—very slow!

September 27, 2022 @ | 29

Outline

« Why FPGA?

* OneAPl and Data-Parallel C++

» Unified Shared Memory Performance
« Kernel Launch Latencies

* Denial-of-Service Vulnerability

« (Case Studies
* STREAM
 Sparse Matrix-Vector Multiplication

(@ |

Sparse Matrix-Vector Multiplication

* Sparse matrix-vector multiplication (SpMV) is a common operation in
many iterative solvers

» (Conjugate Gradient (CG) and generalized minimal residual method
(GMRES)

« Useful for solving partial differential equations (PDES)

» Difficult kernel to optimize due to irregular memory access

* GPU can help speed up SpMV due to significantly higher memory
bandwidth

* On both CPU and GPU, majority of time is spent awaiting memory
loads

« 3 memory loads and 1 store must occur per multiply-add (FMA) operation

September 27, 2022 @ | 31

Using SpMV to Analyze DPC++ Programming Practices

« We implement a simple SpMV and tinker with hardware duplication

» Hardware duplication can increase performance by increasing data
parallelism in your design

* Tryincreasing load-store units (LSUs) for more bandwidth
- Try duplicating the actual kernel for more compute power

September 27, 2022 @ | 32

1 Kernel, Growing HBM Ports

* |n this test, we increase the number
of HBM ports available to the kernel

» Because we can't interleave data,
arrays are "assigned" to HBM ports
Do this intelligently to balance load
as much as possible

» Using 4 HBM ports we achieve a3
maximum speedup of 2.24x

September 27, 2022

1 Kernel, Growing HBM Ports

@|33

Growing Kernels, 1 HBM Port Per Kernel

* In this test, we physically duplicate
the entire execution kernel using

template metaprogramming

« We give each kernel its own HBM

port

« Making all kernels use the same
HBM port was tested—memory
bound, so there was no speedup

« Using 8 kernel duplicates, we

achieve a maximum speedup of

4. 7X

September 27, 2022

Growing Kernels, T HBM Port Per Kernel

@|34

Lessons Learned

» Kernel duplication should be used where possible to increase data
parallelization in your kernels
« We encountered area limits with 8 kernels

» Use as much memory bandwidth as possible
« Combining 8 kernels + 4 HBM ports per kernel, achieved speedup of 7.5x
« Roughly 4x faster than a single Skylake core running SpMV

» Not confident that we've extracted maximum performance at kernel

level
- We are disappointed that we couldn't outperform a whole Skylake CPU

September 27, 2022 @ | 35

Conclusion

« Lots of useful information learned through trial and error
« Would like better documentation of these "best practices"

« DPC++ compiler not where we want it to be
« Automatically detect SIMD potential in loops
« Better ways to incorporate hardware duplication
* Better optimization?

- However, we have not had to use Verilog at all... kudos to Intel
* Huge thanks to Gwen's LDRD team, which has allowed this research

September 27, 2022 @ | 36

Questions?

Thank you!

