
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly 
owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Data Transfers and Host/Device 
Communication using OneAPI for FPGA

Phillip Lane, Christopher Siefert, Stephen Olivier, Clayton Hughes, Gwendolyn Voskuilen,
Kevin Pedretti, and James Elliott

A Presentation for the Intel eXtreme Performance Users Group

IXPUG 2022, Programming Track, 11:30 AM CST

Argonne National Laboratory

SAND2022-13103CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.



Outline

• Why FPGA?
• OneAPI and Data-Parallel C++
• Unified Shared Memory Performance
• Kernel Launch Latencies
• Denial-of-Service Vulnerability
• Case Studies



About FPGAs

• CPUs and GPUs: stored-program computer
• Program stored in memory; instructions executed by dedicated 

fetch/decode/execute hardware

• FPGAs: reconfigurable hardware, spatial computing
• At compile time, code is translated into a physical hardware layout
• FPGA reconfigures itself at runtime
• Program translated to arithmetic look-up tables (ALUTs) and block RAM 

(BRAMs)

• The FPGA die is connected to more traditional RAM components
• Usually, DDR or HBM

September 27, 2022 3



Benefits? Drawbacks?

• No overhead from fetch/decode
• Able to sustain much higher FLOPs per clock cycle than CPUs or GPUs

• Early adopter of newer memory technologies
• High-bandwidth memory (HBM)

• Low power usage
• Cost: much lower clock speed, maxing out at ~400 MHz

• Good branching support
• Unlike GPUs (or CPUs if the branch pattern can't be predicted)

• Painfully long synthesis times
• Can take 2-6 hours in our experience

September 27, 2022 4



Outline

• Why FPGA?
• OneAPI and Data-Parallel C++
• Unified Shared Memory Performance
• Kernel Launch Latencies
• Denial-of-Service Vulnerability
• Case Studies



OneAPI

• Intel OneAPI is a suite of tools for 
heterogeneous programming
• Such tools include the Intel Fortran, C, and C++ 

compilers, the Data-Parallel C++ compiler, VTune, 
the Math Kernel Library (OneMKL), among others

• Data-Parallel C++ is an implementation of SYCL 
for heterogeneous, single-source programming
• Write once, run anywhere (in theory)

• DPC++ is capable of targeting manycore CPUs, 
GPUs, and FPGAs

6



Data-Parallel C++ for FPGA

• Data-Parallel C++ (DPC++) is commendable for making high-level 
synthesis (HLS) for FPGA more accessible than ever

• Built off OpenCL, abstracts away many of the more difficult or 
tedious requirements present in OpenCL development

• However, high-performance software needs evaluation
• Software needs to be robust, performant, and accessible

• We analyze many of the phenomena related to data transfer using 
DPC++ on a Bittware Stratix 10 MX FPGA

September 27, 2022 7



Outline

• Why FPGA?
• OneAPI and Data-Parallel C++
• Unified Shared Memory Performance
• Kernel Launch Latencies
• Denial-of-Service Vulnerability
• Case Studies



Phenomenon 1 – USM Performance

• Our FPGA supports Explicit Unified Shared 
Memory (Explicit USM)

• Explicit USM allows developers to manually 
allocate and move memory between the 
device and host
• Similar to the CUDA programming model
• In contrast to the buffer/accessor model

• We’ve noticed that the use of explicit USM can 
slow performance by up to 4x on our FPGA

September 27, 2022 9



Underlying Cause

• USM isn't inherently bad
• When written properly, it is faster than buffer/accessor

• USM chokes on frequent, small transfers
• Buffer/accessor does, too, but to a less severe degree

• Transfer 80 kB of data 100,000 times... averages 30 seconds, up to 2 
minutes
• Buffer/accessor averages 18 seconds, up to 30 seconds

• Transfer 8 MB of data 1,000 times... consistently takes 4.1 seconds 
using USM
• Buffer/accessor consistently takes 4.3 seconds!

September 27, 2022 10



Takeaway

• Prefer larger, fewer transfers over smaller, frequent transfers
• Problem is not limited to just USM, happens to buffer/accessor too

• If small, frequent transfers are necessary, prefer buffer/accessor
• Peak performance of both paradigms are roughly equal!

• Would really like this performance limitation patched

September 27, 2022 11



Outline

• Why FPGA?
• OneAPI and Data-Parallel C++
• Unified Shared Memory Performance
• Kernel Launch Latencies
• Denial-of-Service Vulnerability
• Case Studies



Motivation

• Many of our apps at Sandia are based on spawning a high number of 
lightweight device kernels
• Kokkos is built with this design principle in mind

• Launch latencies play a critical role in the execution time of these 
types of applications

• The lower, the better!

September 27, 2022 13



Test Methodology

• Synthesize two empty kernels
• FPGA kernel with nothing to do (zero code, zero data transfers)
• One in DPC++, one in OpenCL

• Call FPGA kernel, then immediately synchronize
• Timing starts before kernel launch and ends after synchronization

• Repeat 100,000 times
• Numactl used in some tests

• Linux tool to bind a process to physical thread/core

September 27, 2022 14



Systems Tested

• Lux08
• Node in Lux cluster supporting 2x Intel Xeon Platinum 8352Y CPUs
• Dynamic frequency scaling enabled, performance governor

• Lux10
• Node in Lux cluster supporting 2x Intel Xeon Platinum 8352Y CPUs
• Dynamic frequency scaling disabled

• RISCV-SON
• Node supporting 1x Intel Xeon Silver 4216 CPUs
• Dynamic frequency scaling enabled, powersave governor

• All systems use the same Bittware Stratix 10 MX FPGA with Bittware driver

September 27, 2022 15



Using numactl to Bind to CPUs

September 27, 2022 16

*all other cores were tested, results approximately the same



DPC++ vs. OpenCL on Different Systems

September 27, 2022 17

Lux08 – Performance governor
Lux10 – Disabled governor

RISCV-SON – Powersave governor



Takeaways

• For the Bittware Stratix 10 MX, binding to the highest physical 
core on socket 0 was crucial for performance
• Lowest variance and average launch latency

• System configuration can play a significant part in launch latency
• The performance frequency governor seems to help

• DPC++ usually faster than OpenCL by 2-9%

September 27, 2022 18



An Aside

• We noticed that if the DPC++ kernel had an accessor, there was a 20 
microsecond overhead, even if no data is being transferred
• Suppose data is already on device and is in sync with host
• 20 us overhead to every kernel launch to do this "check"

• Does this scale based on number of accessors? Does USM carry the 
same penalty?
• Likely: yes and no respectively... left for future testing

September 27, 2022 19



Outline

• Why FPGA?
• OneAPI and Data-Parallel C++
• Unified Shared Memory Performance
• Kernel Launch Latencies
• Denial-of-Service Vulnerability
• Case Studies



Direct Memory Access

• Direct memory access (DMA) allows much faster transfers of data 
between the host and device

• Requires arrays to be aligned to a 64-byte boundary
• Basic routine for DMA transfer

• OS will pin relevant pages on CPU side
• DMA transaction will occur without risk of pages migrating around RAM
• Once transaction is over, OS should un-pin pages

September 27, 2022 21



Denial of Service

• If DMA is used for a device-to-host transfer, there is the possibility of 
a kernel panic
• OS unable to pin the page(s) in memory
• OS alerts FPGA driver, driver doesn't catch error, so... kernel panic
• Has brought down several of our nodes

• Fixing not as easy as rebooting node
• By default, FPGA boots into unusable state
• Reboot process on next slide

September 27, 2022 22



Reboot Process

        setpci -s 4b:0.0 ECAP_AER+0x08.L=0xFFFFFFFF
        setpci -s 4b:0.0 ECAP_AER+0x14.L=0xFFFFFFFF
        setpci -s b1:0.0 ECAP_AER+0x08.L=0xFFFFFFFF
        setpci -s b1:0.0 ECAP_AER+0x14.L=0xFFFFFFFF

        setpci -s 4a:02.0 ECAP_AER+0x08.L=0xFFFFFFFF
        setpci -s 4a:02.0 ECAP_AER+0x14.L=0xFFFFFFFF
        setpci -s b0:02.0 ECAP_AER+0x08.L=0xFFFFFFFF
        setpci -s b0:02.0 ECAP_AER+0x14.L=0xFFFFFFFF

        echo 1 > /sys/bus/pci/devices/0000:4b:00.0/remove
        echo 1 > /sys/bus/pci/devices/0000:b1:00.0/remove

        quartus_pgm -c 1 -m jtag -o "p;blinky.sof"

        quartus_pgm -c 1 -m jtag -o "p;base.sof"

September 27, 2022 23



Suspect Cause

• DPC++ is not good with requesting DMA-ready memory
• Only one engineer on our team has caused this kernel panic

• Used posix_memalign for aligned memory
• All other engineers used sycl::malloc

• Suspect posix_memalign is not working nicely with DMA
• Unconfirmed hypothesis... left for further testing

• Despite unconfirmed hypothesis, recommend sycl::malloc

September 27, 2022 24



Outline

• Why FPGA?
• OneAPI and Data-Parallel C++
• Unified Shared Memory Performance
• Kernel Launch Latencies
• Denial-of-Service Vulnerability
• Case Studies

• STREAM
• Sparse Matrix-Vector Multiplication



STREAM

• STREAM is a collection of four memory-intensive benchmarks
• We implement COPY to test raw throughput of the HBM channels

• COPY – a[i]=b[i]
• a and b are both kept within the same memory channel
• Transfer 96 MB of memory per channel and time kernel execution

September 27, 2022 26



Our FPGA's Memory Hierarchy

• Our Stratix 10 MX has 32 discrete HBM memory ports
• Data is not interleaved across ports per Bittware's design decisions

• Supposedly data interleaving would make clock speed too slow, so they 
disable it outright

• Sustained total bandwidth through all ports theoretically 410 GB/s
• Since no data interleaving, template metaprogramming used to 

generate 32 kernels
• We test each HBM port individually, then total combined throughput

September 27, 2022 27



Test Results

• Per-channel throughput: ~10 GB/s
• Combined throughput: ~316 GB/s
• Roughly 31.6x speedup

• Perfect is 32x
• Very good speedup

• Only 77% of theoretical throughput

September 27, 2022 28



Lessons Learned

• Each memory load is 256-bit
• Unused data is discarded... not cached, unless explicitly requested
• Sequential memory access with 64-bit stride = 4x more memory transfers 

than necessary

• Solution: vectorization
• Manual loop unrolling works!
• #pragma ivdep works!
• SYCL SIMD attributes work!
• Simple for loop does not work—very slow!

September 27, 2022 29



Outline

• Why FPGA?
• OneAPI and Data-Parallel C++
• Unified Shared Memory Performance
• Kernel Launch Latencies
• Denial-of-Service Vulnerability
• Case Studies

• STREAM
• Sparse Matrix-Vector Multiplication



Sparse Matrix-Vector Multiplication

• Sparse matrix-vector multiplication (SpMV) is a common operation in 
many iterative solvers
• Conjugate Gradient (CG) and generalized minimal residual method 

(GMRES)
• Useful for solving partial differential equations (PDEs)

• Difficult kernel to optimize due to irregular memory access
• GPU can help speed up SpMV due to significantly higher memory 

bandwidth
• On both CPU and GPU, majority of time is spent awaiting memory 

loads
• 3 memory loads and 1 store must occur per multiply-add (FMA) operation

September 27, 2022 31



Using SpMV to Analyze DPC++ Programming Practices

• We implement a simple SpMV and tinker with hardware duplication
• Hardware duplication can increase performance by increasing data 

parallelism in your design
• Try increasing load-store units (LSUs) for more bandwidth
• Try duplicating the actual kernel for more compute power

September 27, 2022 32



1 Kernel, Growing HBM Ports

• In this test, we increase the number 
of HBM ports available to the kernel

• Because we can't interleave data, 
arrays are "assigned" to HBM ports
• Do this intelligently to balance load 

as much as possible

• Using 4 HBM ports we achieve a 
maximum speedup of 2.24x

September 27, 2022 33

HBM Ports

Sp
ee

du
p 

vs
. 1

 H
BM

1 2 3 4
1

1.2

1.4

1.6

1.8

2

2.2

2.4

1 Kernel, Growing HBM Ports



Growing Kernels, 1 HBM Port Per Kernel

• In this test, we physically duplicate 
the entire execution kernel using 
template metaprogramming

• We give each kernel its own HBM 
port
• Making all kernels use the same 

HBM port was tested—memory 
bound, so there was no speedup

• Using 8 kernel duplicates, we 
achieve a maximum speedup of 
4.7x

September 27, 2022 34

Kernels

Sp
ee

du
p 

vs
. 1

 K
er

ne
l

1 2 3 4 5 6 7 8
1

1.5

2

2.5

3

3.5

4

4.5

5

Growing Kernels, 1 HBM Port Per Kernel



Lessons Learned

• Kernel duplication should be used where possible to increase data 
parallelization in your kernels
• We encountered area limits with 8 kernels

• Use as much memory bandwidth as possible
• Combining 8 kernels + 4 HBM ports per kernel, achieved speedup of 7.5x
• Roughly 4x faster than a single Skylake core running SpMV

• Not confident that we've extracted maximum performance at kernel 
level
• We are disappointed that we couldn't outperform a whole Skylake CPU

September 27, 2022 35



Conclusion

• Lots of useful information learned through trial and error
• Would like better documentation of these "best practices"

• DPC++ compiler not where we want it to be
• Automatically detect SIMD potential in loops
• Better ways to incorporate hardware duplication
• Better optimization?

• However, we have not had to use Verilog at all... kudos to Intel
• Huge thanks to Gwen's LDRD team, which has allowed this research

September 27, 2022 36



Questions?
Thank you!


