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About FPGAs

• CPUs and GPUs: stored-program computer
• Program stored in memory; instructions executed by dedicated 

fetch/decode/execute hardware

• FPGAs: reconfigurable hardware, spatial computing
• At compile time, code is translated into a physical hardware layout
• FPGA reconfigures itself at runtime
• Program translated to arithmetic look-up tables (ALUTs) and block RAM 

(BRAMs)

• The FPGA die is connected to more traditional RAM components
• Usually, DDR or HBM
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Benefits? Drawbacks?

• No overhead from fetch/decode
• Able to sustain much higher FLOPs per clock cycle than CPUs or GPUs

• Early adopter of newer memory technologies
• High-bandwidth memory (HBM)

• Low power usage
• Cost: much lower clock speed, maxing out at ~400 MHz

• Good branching support
• Unlike GPUs (or CPUs if the branch pattern can't be predicted)

• Painfully long synthesis times
• Can take 2-6 hours in our experience
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OneAPI

• Intel OneAPI is a suite of tools for 
heterogeneous programming
• Such tools include the Intel Fortran, C, and C++ 

compilers, the Data-Parallel C++ compiler, VTune, 
the Math Kernel Library (OneMKL), among others

• Data-Parallel C++ is an implementation of SYCL 
for heterogeneous, single-source programming
• Write once, run anywhere (in theory)

• DPC++ is capable of targeting manycore CPUs, 
GPUs, and FPGAs
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Data-Parallel C++ for FPGA

• Data-Parallel C++ (DPC++) is commendable for making high-level 
synthesis (HLS) for FPGA more accessible than ever

• Built off OpenCL, abstracts away many of the more difficult or 
tedious requirements present in OpenCL development

• However, high-performance software needs evaluation
• Software needs to be robust, performant, and accessible

• We analyze many of the phenomena related to data transfer using 
DPC++ on a Bittware Stratix 10 MX FPGA
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Phenomenon 1 – USM Performance

• Our FPGA supports Explicit Unified Shared 
Memory (Explicit USM)

• Explicit USM allows developers to manually 
allocate and move memory between the 
device and host
• Similar to the CUDA programming model
• In contrast to the buffer/accessor model

• We’ve noticed that the use of explicit USM can 
slow performance by up to 4x on our FPGA
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Underlying Cause

• USM isn't inherently bad
• When written properly, it is faster than buffer/accessor

• USM chokes on frequent, small transfers
• Buffer/accessor does, too, but to a less severe degree

• Transfer 80 kB of data 100,000 times... averages 30 seconds, up to 2 
minutes
• Buffer/accessor averages 18 seconds, up to 30 seconds

• Transfer 8 MB of data 1,000 times... consistently takes 4.1 seconds 
using USM
• Buffer/accessor consistently takes 4.3 seconds!
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Takeaway

• Prefer larger, fewer transfers over smaller, frequent transfers
• Problem is not limited to just USM, happens to buffer/accessor too

• If small, frequent transfers are necessary, prefer buffer/accessor
• Peak performance of both paradigms are roughly equal!

• Would really like this performance limitation patched
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Motivation

• Many of our apps at Sandia are based on spawning a high number of 
lightweight device kernels
• Kokkos is built with this design principle in mind

• Launch latencies play a critical role in the execution time of these 
types of applications

• The lower, the better!
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Test Methodology

• Synthesize two empty kernels
• FPGA kernel with nothing to do (zero code, zero data transfers)
• One in DPC++, one in OpenCL

• Call FPGA kernel, then immediately synchronize
• Timing starts before kernel launch and ends after synchronization

• Repeat 100,000 times
• Numactl used in some tests

• Linux tool to bind a process to physical thread/core
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Systems Tested

• Lux08
• Node in Lux cluster supporting 2x Intel Xeon Platinum 8352Y CPUs
• Dynamic frequency scaling enabled, performance governor

• Lux10
• Node in Lux cluster supporting 2x Intel Xeon Platinum 8352Y CPUs
• Dynamic frequency scaling disabled

• RISCV-SON
• Node supporting 1x Intel Xeon Silver 4216 CPUs
• Dynamic frequency scaling enabled, powersave governor

• All systems use the same Bittware Stratix 10 MX FPGA with Bittware driver
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Using numactl to Bind to CPUs
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*all other cores were tested, results approximately the same



DPC++ vs. OpenCL on Different Systems
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Lux08 – Performance governor
Lux10 – Disabled governor

RISCV-SON – Powersave governor



Takeaways

• For the Bittware Stratix 10 MX, binding to the highest physical 
core on socket 0 was crucial for performance
• Lowest variance and average launch latency

• System configuration can play a significant part in launch latency
• The performance frequency governor seems to help

• DPC++ usually faster than OpenCL by 2-9%
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An Aside

• We noticed that if the DPC++ kernel had an accessor, there was a 20 
microsecond overhead, even if no data is being transferred
• Suppose data is already on device and is in sync with host
• 20 us overhead to every kernel launch to do this "check"

• Does this scale based on number of accessors? Does USM carry the 
same penalty?
• Likely: yes and no respectively... left for future testing
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Direct Memory Access

• Direct memory access (DMA) allows much faster transfers of data 
between the host and device

• Requires arrays to be aligned to a 64-byte boundary
• Basic routine for DMA transfer

• OS will pin relevant pages on CPU side
• DMA transaction will occur without risk of pages migrating around RAM
• Once transaction is over, OS should un-pin pages
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Denial of Service

• If DMA is used for a device-to-host transfer, there is the possibility of 
a kernel panic
• OS unable to pin the page(s) in memory
• OS alerts FPGA driver, driver doesn't catch error, so... kernel panic
• Has brought down several of our nodes

• Fixing not as easy as rebooting node
• By default, FPGA boots into unusable state
• Reboot process on next slide
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Reboot Process

        setpci -s 4b:0.0 ECAP_AER+0x08.L=0xFFFFFFFF
        setpci -s 4b:0.0 ECAP_AER+0x14.L=0xFFFFFFFF
        setpci -s b1:0.0 ECAP_AER+0x08.L=0xFFFFFFFF
        setpci -s b1:0.0 ECAP_AER+0x14.L=0xFFFFFFFF

        setpci -s 4a:02.0 ECAP_AER+0x08.L=0xFFFFFFFF
        setpci -s 4a:02.0 ECAP_AER+0x14.L=0xFFFFFFFF
        setpci -s b0:02.0 ECAP_AER+0x08.L=0xFFFFFFFF
        setpci -s b0:02.0 ECAP_AER+0x14.L=0xFFFFFFFF

        echo 1 > /sys/bus/pci/devices/0000:4b:00.0/remove
        echo 1 > /sys/bus/pci/devices/0000:b1:00.0/remove

        quartus_pgm -c 1 -m jtag -o "p;blinky.sof"

        quartus_pgm -c 1 -m jtag -o "p;base.sof"
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Suspect Cause

• DPC++ is not good with requesting DMA-ready memory
• Only one engineer on our team has caused this kernel panic

• Used posix_memalign for aligned memory
• All other engineers used sycl::malloc

• Suspect posix_memalign is not working nicely with DMA
• Unconfirmed hypothesis... left for further testing

• Despite unconfirmed hypothesis, recommend sycl::malloc
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STREAM

• STREAM is a collection of four memory-intensive benchmarks
• We implement COPY to test raw throughput of the HBM channels

• COPY – a[i]=b[i]
• a and b are both kept within the same memory channel
• Transfer 96 MB of memory per channel and time kernel execution
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Our FPGA's Memory Hierarchy

• Our Stratix 10 MX has 32 discrete HBM memory ports
• Data is not interleaved across ports per Bittware's design decisions

• Supposedly data interleaving would make clock speed too slow, so they 
disable it outright

• Sustained total bandwidth through all ports theoretically 410 GB/s
• Since no data interleaving, template metaprogramming used to 

generate 32 kernels
• We test each HBM port individually, then total combined throughput
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Test Results

• Per-channel throughput: ~10 GB/s
• Combined throughput: ~316 GB/s
• Roughly 31.6x speedup

• Perfect is 32x
• Very good speedup

• Only 77% of theoretical throughput
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Lessons Learned

• Each memory load is 256-bit
• Unused data is discarded... not cached, unless explicitly requested
• Sequential memory access with 64-bit stride = 4x more memory transfers 

than necessary

• Solution: vectorization
• Manual loop unrolling works!
• #pragma ivdep works!
• SYCL SIMD attributes work!
• Simple for loop does not work—very slow!
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Sparse Matrix-Vector Multiplication

• Sparse matrix-vector multiplication (SpMV) is a common operation in 
many iterative solvers
• Conjugate Gradient (CG) and generalized minimal residual method 

(GMRES)
• Useful for solving partial differential equations (PDEs)

• Difficult kernel to optimize due to irregular memory access
• GPU can help speed up SpMV due to significantly higher memory 

bandwidth
• On both CPU and GPU, majority of time is spent awaiting memory 

loads
• 3 memory loads and 1 store must occur per multiply-add (FMA) operation
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Using SpMV to Analyze DPC++ Programming Practices

• We implement a simple SpMV and tinker with hardware duplication
• Hardware duplication can increase performance by increasing data 

parallelism in your design
• Try increasing load-store units (LSUs) for more bandwidth
• Try duplicating the actual kernel for more compute power
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1 Kernel, Growing HBM Ports

• In this test, we increase the number 
of HBM ports available to the kernel

• Because we can't interleave data, 
arrays are "assigned" to HBM ports
• Do this intelligently to balance load 

as much as possible

• Using 4 HBM ports we achieve a 
maximum speedup of 2.24x
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Growing Kernels, 1 HBM Port Per Kernel

• In this test, we physically duplicate 
the entire execution kernel using 
template metaprogramming

• We give each kernel its own HBM 
port
• Making all kernels use the same 

HBM port was tested—memory 
bound, so there was no speedup

• Using 8 kernel duplicates, we 
achieve a maximum speedup of 
4.7x
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Lessons Learned

• Kernel duplication should be used where possible to increase data 
parallelization in your kernels
• We encountered area limits with 8 kernels

• Use as much memory bandwidth as possible
• Combining 8 kernels + 4 HBM ports per kernel, achieved speedup of 7.5x
• Roughly 4x faster than a single Skylake core running SpMV

• Not confident that we've extracted maximum performance at kernel 
level
• We are disappointed that we couldn't outperform a whole Skylake CPU
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Conclusion

• Lots of useful information learned through trial and error
• Would like better documentation of these "best practices"

• DPC++ compiler not where we want it to be
• Automatically detect SIMD potential in loops
• Better ways to incorporate hardware duplication
• Better optimization?

• However, we have not had to use Verilog at all... kudos to Intel
• Huge thanks to Gwen's LDRD team, which has allowed this research
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Questions?
Thank you!


