Sandia
National
Laboratories

Exceptional service in the national interest

Advanced Threading Features
in Open MPI

Jan Ciesko

Wednesday, 28t September, 2022

UT, Chattanooga, Tennessee,

Thislpaperldescribeslobijectiveltechnicallresultsfandlanalysis.JAnylsubjective views or opinions that might be expressed in
helpaperfdojnotlnecessarilyjrepresentfthefvi helU.S . of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and
Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S.

Sandial National islalmultimission laboratory managed and operated by National-Technologyi&-EnaineeringSolutions, of Sandia,, LLC,+a whollyiowne
subsidiaryJoflJHoneywelljinternational,Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

dtion under contract DE-NA0003525.

SAND2022-13279C

ARTHENT OF

NYSE

/4

7 Agenda

Problem Statement

Solutions Today

User-level Threading Support in Open MPI
Other Techniques

Summary and Outlook

P User-level Threading in Open MPI
Deadlock depends on

Cooperative multithreading requires MPI to be cooperative task ordering and on the

- Example: Rank O number of .7 o_ 1

Ready-task Queue Ready-task Queue

void task_send(task_args_t #args) {
int ret;
MPI_Request request;
MPI_Send(&args->some_data, 1, MPI_INT, args->target,

0, comm, &request);

1 void task_recv(task_args_t =#args) {

L MPI_Request request;
MPI_Recv(&targs->some_data, 1, MPI_INT, args->target,

0, comm, &request);

LN s L B =

void task_send(task_args_t =args) {
int ret;
MPI_Request request;
MPI_Send(&targs->some_data, 1, MPI_INT, args->target,

0, comm, &request);

void task_recv(task_args_t #=args) {

MPI_Request request;
MPI_Recv(&targs->some_data, 1, MPI_INT, args->target,

0, comm, &Lrequest);

= I [N S 0)

void task_recv(task_args_t =args) {

MPI_Request request;
MPI_Recv(&targs->some_data, 1, MPI_INT, args->target,

0, comm, &request);

void task_send(task_args_t =#args) {
int ret;
MPI_Request request;
MPI_Send(&args->some_data, 1, MPI_INT, args->target,

0, comm, &request);

= QL g I N T O L]

https://github.com/sandialabs/l\/l‘

https://github.com/sandialabs/MPI-Partix

P Solutions today

User-level Threading Support in MPI (>=4.x)
User-level Threading Support Through MPI Continuations (events)
API Overloads for Proprietary Event Handling

P Solutions today

User-level Threading Support in MPI (>=4.x)
User-level Threading Support Through MPI Continuations (events)
API Overloads for Proprietary Event Handling

P User-level Threading in Open MPI

Open MPI 4.x and MPICH 3.4.x have ULT* support
Easy to use with configure options
The use of ULTs can be beneficial for performance

Hybrid applications require ULT support in the MPI
implementation for correctness (progress guarantees)

Configure options: Open MPI

——with-threads=TYPE Specify thread TYPE to use. default:pthreads. Other
options are gthreads and argobots.
Specify location of argobots installation. Error if
argobots support cannot be found.
——with-argobots-1ibdir=DIR
Search for argobots libraries in DIR
Specify location of qthreads installation. Error if
qthreads support cannot be found.
—with—qthreads—-1ibdir=DIR

Search for gthreads libraries in DIR

——with-argobots=DIR

——with-qthreads=DIR

*Note. User-lfevel Threading (ULT) refers to
any threading implementation where the
operating system s not aware of such
threads. Such threads or “tasks” are light-
weight but require cooperative behavior for

progress guarantees (cooperative
multithreading)
MPICH

—with-thread-package=package
—with-argobots=[PATH]
—with-argobots-include=PATH
——with-argobots-1ib=PATH

Note: Use omp/_info --
configto see your MPI
configuration

P User-level Threading in Open MPI

Two new important changes

 Internal synchronization primitive
are now cooperative

* Implements common interface and
two back-ends (Qthreads and
Argobots).

Note: Easily extensible

Declarations:

ubs WN

oy

~

S WO

=

[y

=

=

U WNPRE

=

gy
© 00~ O

N
[y

N

)

N N NT
U WN

I
(o))

N NN

N

w
S W

Ny
L

OMPI_SRC/opal/mcal/threads/base/mutex.c

static void mca_threads_mutex_constructor(opal_mutex_t *xp_mutex) {
opal_thread_internal_mutex_init(&p_mutex->m_lock, false);
}

static void mca_threads_mutex_destructor(opal_mutex_t *p_mutex) {
opal_thread_internal_mutex_destroy(&p_mutex—>m_lock);
}

static void mca_threads_recursive_mutex_constructor(opal_recursive_mutex_t *p_mutex){
opal_thread_internal_mutex_init(&p_mutex—>m_lock, true);
opal_atomic_lock_init(&p_mutex—>m_lock_atomic, 0);

}

static void mca_threads_recursive_mutex_destructor(opal_recursive_mutex_t *xp_mutex){
opal_thread_internal_mutex_destroy(&p_mutex—>m_1lock);
}

int opal_cond_init(opal_cond_t *cond){
return opal_thread_internal_cond_init(cond);

by

int opal_cond_wait(opal_cond_t *cond, opal_mutex_t *lock){
opal_thread_internal_cond_wait(cond, &lock->m_lock);
return OPAL_SUCCESS;

int opal_cond_broadcast(opal_cond_t *cond){
opal_thread_internal_cond_broadcast(cond);
return OPAL_SUCCESS;

}

int nnal cond <ianall(anal cand t %cond)d{

Two new important changes

y

User-level Threading in Open MPI

Internal synchronization primitive

OMPI_SRC/opal/mcal/threads/base/mutex.c

Definitions (Qthreads, Argobots, Pthread)

opal_thread_internal_mutex_init(opal_thread_internal_mutex_t +p_mutex
recursive)

: {
are now coo pe ratlve opal_threads_ensure_init_gthreads()
: OPAL_ENABLE_DEBUG v opal
¢ lmplements common Interface and ret gthread_spinlock_init(p_mutex, recursive) ~ mca
two back-ends (Qthreads and (QTHREAD_SUCCESS = ret) { v threads
opal_show_help(
Argobots). }
gqthread_spinlock_init(p_mutex, recursive)
» gthreads
OPAL_SUCCESS condition.h
° ° }- - _
Note: Easily extensible
opal_thread_internal_mutex_lock(opal_thread_i Ll
{ Makefile.in
opal_threads_ensure_init_gthreads() mutex.h
UPAL_ENABLE_DEBUQ README.md
ret gqthread_spinlock_lock(p_mutex) thread usage.h
(QTHREAD_SUCCESS ret) { ?L"J‘J
opal_show_help(thread.h
I threads.h
tsd.h
qthread_spinlock_lock(p_mutex) wait_sync.h
} » timer
= Makefile.am
opal_thread_internal_mutex_trylock(opal_thread mea.h
{

opal_threads_ensure_init_gthreads()
ret gthread_spinlock_trylock(p_mutex)
(QTHREAD_OPFAIL

ret) {

P User-level Threading in Open MPI
OMPI_SRC/opal/runtime/opal_progress.c

Two new important changes Progress loop

int opal_progress(void)

 Internal synchronization primitive
are now cooperative

* Implements common interface and for (i = 0; i < callbacks_len; ++i) {
two back-ends (Qthreads and events (callbacks[i]l)();
Argobots). ;
if (opal_progress_yield_when_idle events) {

« The progress engine support the
query of task schedulers in
progress loop

opal_thread_yield();
}

return events;

Note: works with supported ULTs only

P User-level Threading in Open MPI
& sandialabs /| MPI-Partix <2 EditPins + ©Unwatch 2 ~ % Fork 0 ¥7 Star 0 -

Public
i
Expe rl m e nt Wlth M PI Pa rtlx <> Code (*) Issues 11 Pull requests (*) Actions 3 Projects 00 Wiki
* Application test suite for user-level threading and e About @
partltlonEd COmmunlcatlon. Application test suite for user-
. @ janciesko Initial commit ... 4 minutes ago {9 2 level threading (ULT) and
* Contains APl examples, benchmarks and correctness partitioned communication (PC)
tEStS b apps Initial commit 4 minutes ago in MPI.
modules Initial commit 4 minutes ago 0 Readme
® Works Wlth dlfferent th readlng baCkendS [] scripts Initial commit 4 minutes ago r-'lIﬁ View license
| src Initial commit 4 minutes ago T Ostars
1 #include cstdio I threading Initial commit 4 minutes ago © Zwatehing
2 #include <partix.h 9 O forks
3 3 CMakeLists.txt Initial commit 4 minutes ago
/] : 3 - W r . .) .
-: void task(partix_task_args_t #args) { ("Hello World); } () LICENSE Initial commit aminutesago o
b int ma ln(lﬂf argc, char argV[]] { B README.md nitial commit 4 minutes ago Mo releases published
7 pa rtix_con fj_g_t conf; [config.sh Initial commit 4 minutes ago Create a new release
8 partix_init(argc, argv, &conf);
o 9 partix_Llibrary_init();
L |10
O 11 partix_context_t ctx;
O
) 2
v 13 for (int 1 = @; 1 < conf.num_tasks; i) {
o 4 partix_task(&task , NULL, &ctx);
15 }
= by . .
16 partix_taskwait(&ctx); . .
Q 17 partix_library_finalize(); https://&zlthub.Com/SandlalabS/l\/lPI—
i 1g return 0; Partix

https://github.com/sandialabs/MPI-Partix
https://github.com/sandialabs/MPI-Partix

User-level Threading in Open MPI

/4

'

I Deadlocks with MPI Partix

 Example:

1 void task_send(partix_task_args_t #*args) {
1 2 int ret;
2 partix_context_t ctx; 3 MPI_Request request;
3 4 task_args_t =task_args=(task_args_t =*)args-=user_task_args;
4 #if defined(OMP) .
5 #pragma omp parallel num_threads(conf.num_threads) 6 MPI_Isend(&task_args—>some_data, 1, MPI_INT, task_args—>target,
6 #pragma omp single 7 0, comm, &request);
7 #endif g MPI_Wait(&request, MPI_STATUS_IGNORE);
g 10 partix_mutex_enter(&mutex);
10 11 reduction_var += task_args—->some_data;
11 for (int 1 = 0; 1 < conf.num_tasks; 1 += 2) { 1; y partix_mutex_exit(&mutex);
12 if (i<2){
13 partix_task(&task_recv, &task_args, &ctx); : - :
14 partix_task(&task_send, &task_args, &ctx); ; VOEgttizt_ri;;fpartlx_task_args_t rargs) {
15 }H else { ’ ;
. i 3 MPI_Request request;
16 part}x_task{&task_send, Stask_args, &ctx); 4 task_args_t #task_args=(task_args_t =*)args->user_task_args;
17 partix_task(&task_recv, &task_args, &ctx); 5
12 } } 6 MPI_Irecv(&tmp, 1, MPI_INT, task_args—->target, @,
>0 7 comm, &request);
)) 8 MPI_Wait(&request, MPI_STATUS_IGNORE);
21 partix_taskwait(&ctx); 9
22) 10 partix_mutex_enter(&mutex);
23 assert(reduction_var == DEFAULT_VALUE #* conf.num_tasks); 11 reduction_var += tmp;
Supported for Argobots and Qthreads. 2 |, partixmutex exit{Smitex);

OpenMP tasking requires MPI Continuations here. https://github.com/sandialabs/l\/lm

https://github.com/sandialabs/MPI-Partix

P User-level Threading in Open MPI

User-level threading (ULT) + Partitioned Communication (Basic)
« MPI Partix: “Bench1”, 16KB-2GB buffer size, 1:1 partitions to task mapping

10000 - ! 10000 1 10000 !
2 2 2
4 4 4
8000 — 8 8000 8 8000 - 8
2 10 @ 16 7 16
= o004 32 GEJ 6000 - 32 g 6000 - 32
% — 64 :'_g’ —— 64 % — 64
e — 128 3 — 128 E 128
= 4000 2 w0004 256 2 4004 —— 256
M X]
a o
2000 //\ 2000 2000
0 - 0 — 0
I e e e e S P
Buffer size (KB) 1e6 Buffer size (KB) 166 Buffer size (KB) 1e6
Blake, x86, UCX, OMPI 5.0.X, Pthreads, 1 Blake, x86, UCX, OMPI 5.0.X, Qthreads, Blake, x86, UCX, OMPI 5.0.X, OMP
-128 partitions, 1:1 P2T 1-256 partitions, 1:1 P2T Task, 1-256 partitions, 1:1 P2T

More benchmarks included. Feel free to experiment and report back!

https://gzithub.com/sandialabs/l\/lPI—Partixn

https://github.com/sandialabs/MPI-Partix

P Solutions today

User-level Threading Support in MPI (>=4.x)
User-level Threading Support Through MPI Continuations (events)
API Overloads for Proprietary Event Handling

P ULT Support through MPI Continuations

MPI

Continuations is an MPI

API proposal

See Joseph Schuchart's spec draft
[1]

Allows association of completion
of operation requests with
callbacks (continuations)

Upon completion of registered
operation request(s), the
continuation invoked

Operation requests and callbacks
are associated using the
continuation request type

int MPI Continue init (MPI Info info,
*cont req);

MPI Request

int MPI Continue (MPI Request *op request,
MPI Continue cb function cb,

void *cb data, MPI Status *status,
cont request)

MPI Request

int MPI Continueall (int count, MPI Request
array of op requests[],

MPI Continue cb function cb,
MPI Status array of statuses[],
cont request)

void *cb data,
MPI Request

P ULT Support through MPI Continuations

Example (similar like we had before):

1 void task_recv(task_args_t *args) {

3 MPI_Request cont_req;

4 MPIX_Continue_init(&cont_req, MPI_INFO_NULL);

5

6 {

7 MPI_Request req;

8 MPI_Irecv(&avalue, 1, MPI_INT, 1, @, MPI_COMM_WORLD, &req);
9 MPIX_Continue(&req, &release_event, (void =) event,
10 MPI_STATUS_IGNORE, cont_req);

11

12 }

13 }

| void task_recv(task_args_t =args) {
. MPI_Request request;
MPI_Recv(&targs->some_data, 1, MPI_INT, args->target,
0, comm, &Lrequest);
}

15 void task_recv_continuation(task_args_t *args) {
16 1

17 ("Received: %d , value);

18 }

20 Vold release_event(MPl_otatus fstatus, vold +data) 1
21 event_t * event = (event_t+) data;
runtime_associate(event, &task_recv_continuation);

}

void task_send(task_args_t #args) {
int ret;
MPI_Request request;
MPI_Send(&targs->some_data, 1, MPI_INT, args-=>target,
0, comm, &request);

= I [N S 0)

MPI C' requires to make tasks non-
blocking and register a callback that
associated the event completion with a
scheauling decision!

‘4

/

ULT Support through MPI Continuations

/ Example with MPI Continuations + OpenMP tasks

= Wy [= WE I O

oo

L

L

e e e e
[Ty

16
17
18
19
28
21

33
i Jd

24
25
o
L0

37

29

30
31

{

MPI_Request cont_req;
MPIX_Continue_init(&cont_req, MPI_INFO_NULL);

-#pragwa omp task depend(out:value) shared(value, cumm_started_flag}ldetach{event} I

MPI_Request req;

MPI_Irecv(&value, 1, MPI_INT, 1, @, MPI_COMM_WORLD, &req);

MPIX_Continue(&req, &release_event, (void +) event, MPI_STATUS_IGNORE, cont_req);
comm_started_flag = 1;

}
-#pragwa omp task depend(in:value) shared(value, comm_started_flag)

printf("Received: %d\n", value);

[NEW] OpenMP dgetach
marks an external
completion event.

[INEW] Omp_fulfill_event
associates MPI events with
OpenMP external event
(runtime_associate(...)).

)

~ #pragma omp task I void release_event(MPL_S5tatus *status, void *data) 1
e o 2 omp_event_handle_t event = (omp_event_handle_t) (uintptr_t) data;
int flag = 0; 3 omp_fulfill_event(event);
do { CE

if (comm_started_flag) {
MPI_Test(&icont_req, &flag, MPI_STATUS_IGNORE);
}
#pragma omp taskyield
} while(!flag);

}

#pragma omp taskwait

P Solutions today

User-level Threading Support in MPI (>=4.x)
User-level Threading Support Through MPI Continuations (events)
APl Overloads for Proprietary Event Handling

‘4

rd

/

v
2

Adds the MPI_TASK_MULTIPLE execution mode

Task-away MPI (BSC)

1A
) for {int n B;: n = N; n) {
] #pragma omp task depend(in: dataln])
4 {
5 MPI_Request request;
6 MPI_Issend(&dataln], 1, MPI_INT, 1, n, MPI_COMM_WORLD, &request)
7 TAMPI_Iwait(irequest, MPI_STATUS_IGNORE);
10 }
11 #pragma omp taskwait
2 1}
14 {
15 for (int n O n = N: n) {
16 #pragma omp task depend(out: dataln], statuses[n])
17
18 MPI_Request request;
19 MPI_Irecv(fdataln], 1, MPI_INT., @, n, MPI COMM_WORLD, &request);

TAMPI_Iwaitall(l, &request,[istatusesin]);

}
#pragma omp task depend(in: dataln],|statuses[n]]
- {
check_status(&statuses([n]);
28 (stdout, "datal[%d] sd , n, dataln]);
29 }

{:] }
31 #pragma omp taskwait

32}

H bsc-pm [tampi Public ©Watch 6 ~

<> Code (&) Issues I Pullrequests () Actions [Projects () Security

¥ master ~ Go to file

a kevinsala Removing arch define in configure.ac ...

‘= README.md

Task-Aware MPI Library

The Task-Aware MPI or TAMPI library extends the functionality of standard
MPI libraries by providing new mechanisms for improving the interoperability
between parallel task-based programming models, such as OpenMP and
OmpSs-2, and MPI communications. This library allows the safe and efficient
execution of MPI operations from concurrent tasks and guarantees the
transparent management and progress of these communications.

By following the MPI Standard, programmers must pay close attention to
avoid deadlocks that may occur in hybrid applications (e.g., MPI+OpenMP)
where MPI calls take place inside tasks. This is given by the out-of-order
execution of tasks that consequently alter the execution order of the enclosed
MPI calls. The TAMPI library ensures a deadlock-free execution of such hybrid
applications by implementing a cooperation mechanism between the MPI
library and the parallel task-based runtime system.

TAMPI provides two main mechanisms: the blocking mode and the non-
blockina mode. The blockina mode taraets the efficient and safe execution of

[~ 1

onJul13 250

P Summary and Outlook

Solutions exist for progress guarantees
» Blocking calls require polling (OMPI and MPICH ULT Support) or TAMPI

* Non-blocking can rely on callbacks (and splitting up tasks into posting and using, making it
cooperative)

MPI Partix will branch off into MPI Threadx to benchmark hybrid applications
* OSU benchmark ports to OpenMP tasking and ULT libs, heat diffusion, ECP Proxies

Differences between techniques need to be quantified
« Latency exposure due to schedulers and scheduling queues

Refs:

[1] MPI Continuations: https://github.com/mpiwg-hybrid/hybrid-issues/files/7377623/mpi40-report-
continuations.pdf

[2] MPI C' ref implementation:
[3] TAMPI: https://github.com/bsc-pm/tampi

https://github.com/mpiwg-hybrid/hybrid-issues/files/7377623/mpi40-report-continuations.pdf
https://github.com/mpiwg-hybrid/hybrid-issues/files/7377623/mpi40-report-continuations.pdf
https://github.com/bsc-pm/tampi

