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Cooperative multithreading requires MPI to be cooperative
• Example:

https://github.com/sandialabs/MPI-Partix

Deadlock depends on 
task ordering and on the 
number of … ?Rank 0 Rank 1

Ready-task Queue Ready-task Queue

https://github.com/sandialabs/MPI-Partix
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Open MPI 4.x and MPICH 3.4.x have ULT* support
Easy to use with configure options
The use of ULTs can be beneficial for performance 
Hybrid applications require ULT support in the MPI 
implementation for correctness (progress guarantees)

*Note: User-level Threading (ULT) refers to 
any threading implementation where the 
operating system is not aware of such 
threads. Such threads or “tasks” are light-
weight but require cooperative behavior for 
progress guarantees (cooperative 
multithreading)

Configure options: 

Note: Use ompi_info --
config to see your MPI 
configuration

Open MPI MPICH
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Two new important changes
• Internal synchronization primitive 

are now cooperative
• Implements common interface and 

two back-ends (Qthreads and 
Argobots).

Note: Easily extensible

OMPI_SRC/opal/mca/threads/base/mutex.c

Declarations:
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Two new important changes
• Internal synchronization primitive 

are now cooperative
• Implements common interface and 

two back-ends (Qthreads and 
Argobots).

Note: Easily extensible

OMPI_SRC/opal/mca/threads/base/mutex.c

Definitions (Qthreads, Argobots, Pthread)
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Two new important changes
• Internal synchronization primitive 

are now cooperative
• Implements common interface and 

two back-ends (Qthreads and 
Argobots).

• The progress engine  support the 
query of task schedulers in 
progress loop

OMPI_SRC/opal/runtime/opal_progress.c

Note: works with supported ULTs only

Progress loop
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Experiment with “MPI Partix”
• Application test suite for user-level threading and 

partitioned communication. 

• Contains API examples, benchmarks and correctness 
tests

• Works with different threading backends

https://github.com/sandialabs/MPI-
PartixEx
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e 
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:

https://github.com/sandialabs/MPI-Partix
https://github.com/sandialabs/MPI-Partix
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Deadlocks with MPI Partix
• Example:

https://github.com/sandialabs/MPI-Partix

Supported for Argobots and Qthreads.
OpenMP tasking requires MPI Continuations here.

https://github.com/sandialabs/MPI-Partix
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User-level threading (ULT) + Partitioned Communication (Basic)
• MPI Partix: “Bench1”, 16KB-2GB buffer size, 1:1 partitions to task mapping 

https://github.com/sandialabs/MPI-Partix

Blake, x86, UCX, OMPI 5.0.X, Pthreads, 1
-128 partitions, 1:1 P2T

Blake, x86, UCX, OMPI 5.0.X, Qthreads, 
1-256 partitions, 1:1 P2T

Blake, x86, UCX, OMPI 5.0.X, OMP 
Task, 1-256 partitions, 1:1 P2T

More benchmarks included. Feel free to experiment and report back!

https://github.com/sandialabs/MPI-Partix
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MPI Continuations is an MPI 
API proposal
• See Joseph Schuchart’s spec draft 

[1]

• Allows association of completion 
of operation requests with 
callbacks (continuations)

• Upon completion of registered 
operation request(s), the 
continuation invoked

• Operation requests and callbacks 
are associated using the 
continuation request type

• int MPI_Continue_init(MPI_Info info, MPI_Request 
*cont_req);

• int MPI_Continue(MPI_Request *op_request, 
MPI_Continue_cb_function cb,
void *cb_data, MPI_Status *status, MPI_Request 
cont_request)

• int MPI_Continueall(int count, MPI_Request 
array_of_op_requests[],
MPI_Continue_cb_function cb, void *cb_data,
MPI_Status array_of_statuses[], MPI_Request 
cont_request)
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Example (similar like we had before):

MPI C’ requires to make tasks non-
blocking and register a callback that 
associated the event completion with a 
scheduling decision!

&

&
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Example with MPI Continuations + OpenMP tasks
• [NEW] OpenMP detach 

marks an external 
completion event.

• [NEW] Omp_fulfill_event 
associates MPI events with 
OpenMP external event 
(runtime_associate(…)).
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Adds the MPI_TASK_MULTIPLE execution mode



Summary and Outlook

19

Solutions exist for progress guarantees
• Blocking calls require polling (OMPI and MPICH ULT Support) or TAMPI
• Non-blocking can rely on callbacks (and splitting up tasks into posting and using, making it 

cooperative)

MPI Partix will branch off into MPI Threadx to benchmark hybrid applications
• OSU benchmark ports to OpenMP tasking and ULT libs, heat diffusion, ECP Proxies

Differences between techniques need to be quantified
• Latency exposure due to schedulers and scheduling queues

Refs:
[1] MPI Continuations: https://github.com/mpiwg-hybrid/hybrid-issues/files/7377623/mpi40-report-
continuations.pdf

[2] MPI C’ ref implementation: 

[3] TAMPI: https://github.com/bsc-pm/tampi

https://github.com/mpiwg-hybrid/hybrid-issues/files/7377623/mpi40-report-continuations.pdf
https://github.com/mpiwg-hybrid/hybrid-issues/files/7377623/mpi40-report-continuations.pdf
https://github.com/bsc-pm/tampi

