
Exceptional service in the national interest

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and
Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S.

Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Advanced Threading Features
in Open MPI

Jan Ciesko

Wednesday, 28th September, 2022

UT, Chattanooga, Tennessee,

SAND2022-13279CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Agenda

2

Problem Statement
Solutions Today
User-level Threading Support in Open MPI
Other Techniques
Summary and Outlook

User-level Threading in Open MPI

3

Cooperative multithreading requires MPI to be cooperative
• Example:

https://github.com/sandialabs/MPI-Partix

Deadlock depends on
task ordering and on the
number of … ?Rank 0 Rank 1

Ready-task Queue Ready-task Queue

https://github.com/sandialabs/MPI-Partix

Solutions today

4

User-level Threading Support in MPI (>=4.x)
User-level Threading Support Through MPI Continuations (events)
API Overloads for Proprietary Event Handling

Solutions today

5

User-level Threading Support in MPI (>=4.x)
User-level Threading Support Through MPI Continuations (events)
API Overloads for Proprietary Event Handling

User-level Threading in Open MPI

6

Open MPI 4.x and MPICH 3.4.x have ULT* support
Easy to use with configure options
The use of ULTs can be beneficial for performance
Hybrid applications require ULT support in the MPI
implementation for correctness (progress guarantees)

*Note: User-level Threading (ULT) refers to
any threading implementation where the
operating system is not aware of such
threads. Such threads or “tasks” are light-
weight but require cooperative behavior for
progress guarantees (cooperative
multithreading)

Configure options:

Note: Use ompi_info --
config to see your MPI
configuration

Open MPI MPICH

User-level Threading in Open MPI

7

Two new important changes
• Internal synchronization primitive

are now cooperative
• Implements common interface and

two back-ends (Qthreads and
Argobots).

Note: Easily extensible

OMPI_SRC/opal/mca/threads/base/mutex.c

Declarations:

User-level Threading in Open MPI

8

Two new important changes
• Internal synchronization primitive

are now cooperative
• Implements common interface and

two back-ends (Qthreads and
Argobots).

Note: Easily extensible

OMPI_SRC/opal/mca/threads/base/mutex.c

Definitions (Qthreads, Argobots, Pthread)

User-level Threading in Open MPI

9

Two new important changes
• Internal synchronization primitive

are now cooperative
• Implements common interface and

two back-ends (Qthreads and
Argobots).

• The progress engine support the
query of task schedulers in
progress loop

OMPI_SRC/opal/runtime/opal_progress.c

Note: works with supported ULTs only

Progress loop

User-level Threading in Open MPI

10

Experiment with “MPI Partix”
• Application test suite for user-level threading and

partitioned communication.

• Contains API examples, benchmarks and correctness
tests

• Works with different threading backends

https://github.com/sandialabs/MPI-
PartixEx

am
pl

e
co

de
:

https://github.com/sandialabs/MPI-Partix
https://github.com/sandialabs/MPI-Partix

User-level Threading in Open MPI

11

Deadlocks with MPI Partix
• Example:

https://github.com/sandialabs/MPI-Partix

Supported for Argobots and Qthreads.
OpenMP tasking requires MPI Continuations here.

https://github.com/sandialabs/MPI-Partix

User-level Threading in Open MPI

12

User-level threading (ULT) + Partitioned Communication (Basic)
• MPI Partix: “Bench1”, 16KB-2GB buffer size, 1:1 partitions to task mapping

https://github.com/sandialabs/MPI-Partix

Blake, x86, UCX, OMPI 5.0.X, Pthreads, 1
-128 partitions, 1:1 P2T

Blake, x86, UCX, OMPI 5.0.X, Qthreads,
1-256 partitions, 1:1 P2T

Blake, x86, UCX, OMPI 5.0.X, OMP
Task, 1-256 partitions, 1:1 P2T

More benchmarks included. Feel free to experiment and report back!

https://github.com/sandialabs/MPI-Partix

Solutions today

13

User-level Threading Support in MPI (>=4.x)
User-level Threading Support Through MPI Continuations (events)
API Overloads for Proprietary Event Handling

ULT Support through MPI Continuations

14

MPI Continuations is an MPI
API proposal
• See Joseph Schuchart’s spec draft

[1]

• Allows association of completion
of operation requests with
callbacks (continuations)

• Upon completion of registered
operation request(s), the
continuation invoked

• Operation requests and callbacks
are associated using the
continuation request type

• int MPI_Continue_init(MPI_Info info, MPI_Request
*cont_req);

• int MPI_Continue(MPI_Request *op_request,
MPI_Continue_cb_function cb,
void *cb_data, MPI_Status *status, MPI_Request
cont_request)

• int MPI_Continueall(int count, MPI_Request
array_of_op_requests[],
MPI_Continue_cb_function cb, void *cb_data,
MPI_Status array_of_statuses[], MPI_Request
cont_request)

ULT Support through MPI Continuations

15

Example (similar like we had before):

MPI C’ requires to make tasks non-
blocking and register a callback that
associated the event completion with a
scheduling decision!

&

&

ULT Support through MPI Continuations

16

Example with MPI Continuations + OpenMP tasks
• [NEW] OpenMP detach

marks an external
completion event.

• [NEW] Omp_fulfill_event
associates MPI events with
OpenMP external event
(runtime_associate(…)).

Solutions today

17

User-level Threading Support in MPI (>=4.x)
User-level Threading Support Through MPI Continuations (events)
API Overloads for Proprietary Event Handling

Task-away MPI (BSC)

18

Adds the MPI_TASK_MULTIPLE execution mode

Summary and Outlook

19

Solutions exist for progress guarantees
• Blocking calls require polling (OMPI and MPICH ULT Support) or TAMPI
• Non-blocking can rely on callbacks (and splitting up tasks into posting and using, making it

cooperative)

MPI Partix will branch off into MPI Threadx to benchmark hybrid applications
• OSU benchmark ports to OpenMP tasking and ULT libs, heat diffusion, ECP Proxies

Differences between techniques need to be quantified
• Latency exposure due to schedulers and scheduling queues

Refs:
[1] MPI Continuations: https://github.com/mpiwg-hybrid/hybrid-issues/files/7377623/mpi40-report-
continuations.pdf

[2] MPI C’ ref implementation:

[3] TAMPI: https://github.com/bsc-pm/tampi

https://github.com/mpiwg-hybrid/hybrid-issues/files/7377623/mpi40-report-continuations.pdf
https://github.com/mpiwg-hybrid/hybrid-issues/files/7377623/mpi40-report-continuations.pdf
https://github.com/bsc-pm/tampi

