

SANDIA REPORT
SAND20XX-XXXX
Printed Click to enter a date

Cyber and Physical Security Analysis of
GSI and Noventum Application for IoT
Communications

Jimenez, Yesid
Khalafalla, Aya
Summers, Adam
Onunkwo, Ifeoma
Chavez, Adrian

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico
87185 and Livermore,
California 94550

SAND2022-10384This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do
not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly
owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract
DE-NA0003525.

2

Issued by Sandia National Laboratories, operated for the United States Department of Energy by National Technology & Engineering Solutions of
Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States
Government, nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, make any warranty,
express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by
the United States Government, any agency thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not
necessarily state or reflect those of the United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from
 U.S. Department of Energy
 Office of Scientific and Technical Information
 P.O. Box 62
 Oak Ridge, TN 37831

 Telephone: (865) 576-8401
 Facsimile: (865) 576-5728
 E-Mail: reports@osti.gov
 Online ordering: http://www.osti.gov/scitech

Available to the public from
 U.S. Department of Commerce
 National Technical Information Service
 5301 Shawnee Rd
 Alexandria, VA 22312

 Telephone: (800) 553-6847
 Facsimile: (703) 605-6900
 E-Mail: orders@ntis.gov
 Online order: https://classic.ntis.gov/help/order-methods/

mailto:reports@osti.gov
http://www.osti.gov/scitech
mailto:orders@ntis.gov
https://classic.ntis.gov/help/order-methods/

3

ABSTRACT

We present our findings of the red team exercise conducted on the device and application developed by Guardian
Sensors, Inc. (GSI) and Noventum. The app is used for situational awareness and control of photovoltaics (PV) and
microgrid energy systems. The assessments performed are practical case scenarios that assess the risks and vulnerabilities
posed by the app through targeted activities that could be engaged by an adversary. The assessment team’s results and
recommendations are provided to inform on and mitigate the identified weaknesses to improve secure user
authentication, connections, and communications. The recommendations in this report are not intended to be a security
panacea but will add the desired defense-in-depth layer to securing communication of such interconnected systems.

4

This page left blank

5

CONTENTS

Abstract .. 3
Executive Summary .. 6
Acronyms And Terms .. 8
1. Target Device Overview And Laboratory Environment ... 9
2. Assessments .. 11
2.1. WEB APPLICATIONS ASSESSMENTS.. 11
2.1.1. HIGH SEVERITY FINDINGS .. 11
2.1.2. MEDIUM SEVERITY FINDINGS .. 16
2.1.3. LOW SEVERITY FINDINGS.. 17
2.2. SOFTWARE CHECKS .. 20
2.2.1. FINDINGS AND OBSERVATIONS ... 20
2.3. DEVICE PENETRATION TESTING .. 21
2.3.1. FINDINGS AND OBSERVATIONS ... 22
3. Summary .. 30
Appendix B. Web Application Checks .. 31
Distribution .. 33

LIST OF FIGURES

Figure 1: Device login portal authentication page .. 9
Figure 2: Solar array status shown on the index.php page ... 9
Figure 3: Physical testbed for red teaming ... 10
Figure 4: Device login portal authentication page .. 11
Figure 5: Using curl, an unauthenticated user can view restricted content on index.php 11
Figure 6: Using curl with a POST request parameters allows an unauthenticated user to change

the status of the solar arrays .. 12
Figure 7: Login.php PHP redirect flaw causing authentication bypass ... 12
Figure 8: Unauthorized access to .git directory ... 13
Figure 9: GitTools creates directories for each commit with source code in each directory 14
Figure 10: Internal directory access showing credentials in plaintext .. 15
Figure 11:Browsable web directories and pages .. 16
Figure 12: Cross-site scripting proof of concept ... 17
Figure 13: XSS Attack displays the PHPSession ID ... 17
Figure 14: Unauthenticated users can directly access the PHPINFO page at /info.php 18
Figure 15: Test page located at /guardian.php .. 19
Figure 16: Nmap operating system and services detection .. 22
Figure 17: Transport layer security TLS 1.3 ... 23
Figure 18: Using the openssl s_client command to check for weak ciphers .. 23
Figure 19: Interruptions to the application and device .. 24
Figure 20: ARP poisoning using man-in-the-middle attack ... 24
Figure 21: Driftnet launched but interception was not successful ... 25
Figure 22: FIN scan to check firewall ... 25
Figure 23: Firewall security not detected behind the solarguardian.mgtsciences domain 26
Figure 24: Wireshark capture of duplicated pcap files that was replayed .. 27
Figure 25: Replayed packets disrupting connections to the web application .. 27

6

EXECUTIVE SUMMARY

Our team completed a targeted adversary-based security assessment of the web application and device developed by
Guardian Sensors, Inc. (GSI) and Noventum. The evaluation included a vulnerability assessment to identify flaws and
security weaknesses as well as penetration testing to exploit the vulnerabilities that compromise information and device
security. The assessment activities were performed on an isolated network at the Distributed Energy Technology
Laboratory at Sandia National Laboratories (SNL) in Albuquerque, New Mexico.

The target system is a web application and device that is used for situational awareness and control of energy systems.
To organize our approach and activities, the assessment team combined practices from multiple sources - Sandia’s
Information Design Assurance Red Team (IDART™)1, OWASP Top 102, best cyber security practices, and collective
expertise regarding web applications.

The assessment team conducted security testing on the current version of the software and device from numerous
perspectives including reconnaissance, which identified accessible HTTP and HTTPS ports and service and application
version detection. It was observed that the web application uses PHP running on an Apache HTTPD server to operate a
TLS 1.3 web server with OpenSSL. Our team also identified several accessible directories that revealed the source code
of the application and allowed us to bypass authentication. An in-depth analysis revealed critical issues related to
authentication bypass and the methodology used for authentication. To authenticate users, a simple login mechanism is
provided by the application, with support for only one user. However, to support the goals of confidentiality and
integrity, our team recommends updating the application to support multiple users and using a backend database to
manage passwords. To better assure the quality of the code, software checklists to reduce the risks of deploying insecure
software was used. The applicable checklists were verified, and the results are presented herein.

Each assessment in this report describes the findings and provides recommendations for addressing the identified
vulnerabilities. The following table summarizes our findings ranked by severity. The scoring rubric used to categorize
these vulnerabilities in the results section were taken from MITRE’s Common Vulnerability and Exposure (CVE) and
the NIST’s Common Weakness Enumeration (CWE) rankings. Our team highly recommends addressing the “High”
and “Medium” severity vulnerabilities before deploying the application in a production environment.

Severity Vulnerability Description Recommendation

High Authentication Bypass

Non-authenticated users can view and edit
solar array status using curl. This
vulnerability is present because the
login.php code does not kill the session
after it redirects a user.

To view the status of the solar arrays:
curl -k --include https://<IP>/index.php

To change the status of the solar arrays to
ON:

curl -d "onButton=On" -k --include -X POST
https://<IP>/index.php

In the login.php code, add exit() or
die() to kill the session after a redirect

High Browsable .Git
Directory

The .git directory is accessible to non-
authenticated users and reveals project
source code and credentials.
https://<IP>/.git

Restrict access to .git and/or disable
directory browsing

1 https://idart.sandia.gov
2 https://owasp.org/

7

Severity Vulnerability Description Recommendation

High Credentials stored in
plain-text

Login.php is accessible through the
publicly accessible .git directory. Login.php
uses a basic string comparison to validate
the password which is stored in clear text.

If string comparison must be used,
hash and salt passwords. Using a
database for authentication is
recommended

High Weak Architecture
Design

Based on information from Login.php, the
application only supports one user and one
password. This is a weak design assuming
multiple users will be using the application.

Redesign the web application and use
a backed database to support
multiple users, authentication, and
logging

Medium Browsable Web
Directories and Pages

Several directories are accessible including:
/.git
/info.php
/guardian.php
/panels/

Restrict access to directories to limit
information disclosure

Medium Reflected XSS
Vulnerabilities

The web application is vulnerable to
reflected cross site scripting

Implement HTML encoding and
input validation

Low PHPINFO Page
Accessible

Unauthenticated users can access
/info.php. Attackers can use this page to
scrape information about the application –
in this case, PHP and Apache versions, file
locations, and settings

Restrict access to info.php

Low Test Page Accessible /guardian.php is accessible with no
authentication and seems to be a test page
for the main index.php. Changes in the
index.php page do not reflect back to the
guardian.php page

Remove page or restrict access

8

ACRONYMS AND TERMS

Abbreviation Definition

CVE Common Vulnerability Exposure

CVSS Common Vulnerability Scoring System

DER Distributed Energy Resource

DOS Denial of Service

DDOS Distributed Denial of Service

MITM Man-In-The-Middle

PV Photovoltaic

9

1. TARGET DEVICE OVERVIEW AND LABORATORY ENVIRONMENT

The device provided to our assessment team by GSI and Noventum can be connected to any internal or external network.
Users logging into the device with their credentials are first authenticated to their web page before accessing the web portal
that simulates the startup and shutdown of a “grid”. The user’s login page depicted in Error! Reference source not
found. uses basic authentication. Per our customer (GSI and Noventum), the web page provides read and write
permissions to files that represent physical devices that are meant to be on the back of a solar panel. GSI and Noventum
plan on extending this feature to communicate with real solar panel devices.

Figure 1: Device login portal authentication page

As shown in Error! Reference source not found., the solar array status can be displayed to the user in either a safe or
unsafe status with three off and on buttons respectively. The off button displays the status as safe while the on button
means that the status of the solar array is unsafe.

Figure 2: Solar array status shown on the index.php page

The experiments were conducted on an isolated and controlled network environment. The network was created with the
device, a network hub that connects devices in a network, and a machine installed with Kali Linux. Kali3 is an open-source
Linux operating system based on Debian that is equipped with security and analysis tools for identifying and exploiting
vulnerabilities. Burp Suite Professional 4, an application web security testing software and other open-source tools were

3 https://www.kali.org/
4 https://portswigger.net/burp/pro

10

also installed on the Kali Linux machine. The test network environment as described is shown in Error! Reference source
not found..

Figure 3: Physical testbed for red teaming

11

2. ASSESSMENTS

The following tests were performed to assess the security of the device when exposed to complex environments.

2.1. Web Applications Assessments

2.1.1. High Severity Findings

2.1.1.1. Authentication Bypass

The application allows unauthenticated users to view AND change the settings of the on and off buttons that control
the solar array. By design, the application requires users to authenticate before they can view or edit the status of the
solar arrays as shown in Figure 4. However, using information gathered from reconnaissance, the team was able to
identify a weakness in the PHP logic that allows users using curl to view the contents of index.php before logging in as a
normal or administrative user.

Figure 4: Device login portal authentication page

Figure 5: Using curl, an unauthenticated user can view restricted content on index.php

User can use curl to view the contents of
index.php without logging in

The status of the buttons is shown in the html– in
this case, they are in the OFF position

12

Figure 6: Using curl with a POST request parameters allows an unauthenticated user to change
the status of the solar arrays

The authentication bypass vulnerability results are due to an error in the PHP code for the login.php page. Our team
then took advantage of a browsable .git directory on the web application to view the source code of the application.
Viewing the login.php source code, our team noted a code design vulnerability in the PHP redirect that allowed users to
bypass authentication. The code uses a relocation header and an if condition to redirect a user to the index.php page.
The code sample in Figure 7 has a redirection flaw. While this is effective with browsers, tools that do not automatically
obey a location header (such as curl) will see the remainder of the HTTP response, which in this case includes the
restricted solar panel content.

Figure 7: Login.php PHP redirect flaw causing authentication bypass

Recommendation

An effective way to fix this vulnerability is to add die() or exit() after the Location header for PHP to stop processing the
rest of the page. This will resolve the authentication bypass vulnerability that currently allows any user with access to the
device to arbitrarily view and change the availability of the solar panels.

The status of the buttons is shown in the html – in
this case, they are in the ON position

Attacker can use curl to change the status of the
solar panels without logging in

13

2.1.1.2. Browsable .Git Directory

During the team’s reconnaissance phase, we identified a browsable .git repository using Nmap and GoBuster. This
directory is accessible to any unauthenticated user and reveals the source code, commits, and versions of the web
application. Our team utilized an opensource tool, GitTools, to access information in the .git directory. This access
allowed us to extract sensitive information including plaintext usernames and passwords, application source code, and
developer names.

Figure 8: Unauthorized access to .git directory

14

Figure 9: GitTools creates directories for each commit with source code in each directory

Recommendation

Restrict access to the .git directory.

15

2.1.1.3. Credentials Stored in Plain-Text

Using the information gleaned from the browsable .git directory, our team recovered plaintext usernames and passwords
that were being used for serial authentication to the solar panel portal. These credentials are available to unauthorized
users with access to the device’s network and would give them full control of the application.

Figure 10: Internal directory access showing credentials in plaintext

Recommendation

If string comparison must be used, hash and salt passwords. However, we recommend using a database for
authentication.

16

2.1.1.4. Weak Architecture Design

During an analysis of the application, our team noted that the application only supports a login feature for one user as
shown in Figure 10. This design is inherently insecure and does not support cybersecurity principles including principle
of least privilege, role-based access, role separation to mention a few.

Recommendation

If multiple users are to be using the system, our team recommends redesigning the application to support multiple users,
with role-based access including one administrator and other non-privileged users. Our team also recommends using a
backend database to support user and credential management.

2.1.2. Medium Severity Findings

2.1.2.1. Browsable Web Directories and Pages

Using two open-source tools Dirbuster and Gobuster, our team identified several browsable directories that include
sensitive information about the application as show in Figure 11. These directories are accessible to unauthenticated
users who have access to the device’s network. Notable directories include

• /.git/ - Reveals the entire source code of the application and its prior versions. Usernames, passwords, and
developer names were also identified in this directory.

• /panels/ - Reveals the python-based source code of the application.

• /Guardian.php – Reveals to what seems to be a test page that provides an unauthenticated user information
about the structure of the application. Our team performed tests to confirm if changes in the main /index.php
page reflected in the guardian.php and they did not.

• /info.php – Reveals information about the application’s configuration including software versions. This
information can be used by an attacker to leverage further attacks.

Figure 11:Browsable web directories and pages

17

Recommendation

Restrict unauthorized access to sensitive pages.

2.1.2.2. Reflected Cross-Site Scripting

Our team utilized BurpSuite to scan the application for common web application vulnerabilities. BurpSuite identified a
reflected cross site scripting (XSS) vulnerability in the application as shown in Figures 12 and 13.
Reflected cross-site scripting vulnerabilities arise when data is copied from a request and echoed into the application’s
immediate response in an unsafe way. An attacker can use the vulnerability to construct a request which, if issued by
another application user, will cause JavaScript code supplied by the attacker to execute within the user's browser in the
context of that user's session with the application. The attacker-supplied code can perform a wide variety of actions,
such as stealing the victim's session token or login credentials, performing arbitrary actions on the victim's behalf, and
logging their keystrokes.5

Figure 12: Cross-site scripting proof of concept

Figure 13: XSS Attack displays the PHPSession ID

Recommendation

Enforce input validation and HTML encode user input.

2.1.3. Low Severity Findings

2.1.3.1. PHPINFO Page Accessible

During the reconnaissance phase of the assessment, our team identified a PHPINFO page located at /info.php that is
accessible to unauthenticated users (Figure 14). This page is a default PHP page that provides information about the
device’s unique Apache and PHP configurations including versions, file locations, and IP addresses. While this
vulnerability is not directly exploitable, it provides attackers with valuable information to launch further attacks.

5 https://portswigger.net/kb/issues/00200300_cross-site-scripting-reflected

Attacking Script:
<script>alert(“Hello XXS”)</script)

Attacking Script:
\xxs link\</a\>

https://portswigger.net/kb/issues/00200300_cross-site-scripting-reflected

18

In this case, the /info.php page revealed information about Vulnerable and outdated components as shown by the
currently installed PHP version 7.3.31-1 while the latest is 8.1 and the currently installed Apache version is 2.4.38 while
the latest is 2.4.46.

Figure 14: Unauthenticated users can directly access the PHPINFO page at /info.php

Recommendation

Disable access to the PHPINFO page located at /info.php

2.1.3.2. Test Page Available

During the team’s reconnaissance phase of testing, we identified a page that appears to be identical to the main status
page located at /guardian.php (Figure 15). Our team performed tests to ensure that changes made to the main index.php
page were NOT reflected in the guardian.php. We believe that this is a page that was used for testing. While this is not
directly exploitable, this page is accessible to unauthenticated users and provides attackers an ability to learn more about
the application’s structure.

19

Figure 15: Test page located at /guardian.php

Recommendation

Disable access to guardian.php

20

2.2. Software Checks

To minimize the risk of deploying insecure software, the assessment team went through the following software
checklists. While the applicable findings are outlined below based on the team’s access of the device and application, the
team strongly suggests that the other checklists to improve the deployment of the product should be tested.

Category Checklist Findings

Operating System Is the app using a formally verifiable
operating system?

Apache/2.4.38 (Debian)

Compiler Is the app using a formally verifiable
compiler?

N/A

CPU Is the app using a formally verifiable
CUP core?

N/A

Memory Is the app using a memory safe
language?

N/A

Type-Safe Language Is the app using a type-safe language?

N/A

Formal Language Are the programs written in a formal
or safe language?

Yes (HTML, PHP)

2.2.1. Findings and Observations

The team determined that the Apache HTTP Server in use is version 2.4.38. This server is vulnerable to CVE-2019-
10097(CVSS) which leads to a stack buffer overflow attack. This is a CVE with a high severity score (CVSSv3 7.2). A
version upgrade has been determined to mitigate this vulnerability. The server is also vulnerable to CVE-2019-0215
which also has a high severity score (CVSSv3 7.4). This vulnerability leading to privilege escalation, was discovered in
November 2018 and there is no current known patch. The team determined that the software uses specified formal
programming languages. At the time of testing, it could not be determined if the application uses a type-safe or memory-
safe languages, verifiable complier, or verifiable CPU core.

The Apache HTTP Server Project and Apache Software Foundation announced in June, 20226 that operating an Apache
HTTP Server requires a “version 2.4.43 or newer to operate a TLS 1.3 web server with OpenSSL 1.1.1”.

Recommendations

Software updates are not pushed to Linux systems. Patching the system by the developers and including a reminder for
upgrading to newer versions to fix vulnerabilities enables the correction of critical security weaknesses. The assessment
team recommends upgrading the Apache HTTP server to a more secure version and applying security and hardening
best practices for better performance and security.

Also, the checklists not verifiable by the security team should be verified by the GSI and Noventum team to better
assure the security of the software.

6 https://httpd.apache.org/

21

2.3. Device Penetration Testing

Category Checklist Potential Tools Findings

Reconnaissance Involves both active and
passive information
gathering about the target
system

Nmap, OpenVAS,
Wireshark, Nessus,
Metasploit

HTTP, HTTPS ports
and accessible
directories with source
code were identified

Interruption Involves obstruction to
communication and
rendering the system
unavailable to legitimate
users

Hping, Metasploit Flood attacks to
consume resources on
the devices showed
initial disruption to
communication

Interception Involves altering
communication between
two or more users or
entities

Ettercap, Metasploit,
Burpsuite

Curl commands to
extract the index.php
page and maliciously
control the device was
identified. ARP cache
poisoning for possible
eavesdropping was
shown to be effective on
the network

Packet Replay Involves maliciously
replaying or repeating data
transmissions

Tcpdump, Tcpreplay Tcpdump and Tcpreplay
was used to capture raw
network data, dumped
to a pcap file, and
replayed on the network
causing a denial-of-
service attack

Firewall Involves identifying
vulnerabilities that does
not restrict ingress or
egress traffic

Nmap, Hping, Hping2,
Netcat

It appears there are no
firewall restrictions to
filter network traffic. No
WAF to restrict
incoming or outgoing
traffic was observed to
be implemented

22

2.3.1. Findings and Observations

A.1.1.1 Reconnaissance

Our team’s penetration testing of the device began with Nmap scans on the network. Nmap was used to scan ports,
fingerprint the OS, and enumerate services on endpoints to help the assessment team understand the target attack
surface. Ports 80 (HTTP) and 443 (HTTPS) were identified to be open as shown in Figure 16. HTTP is an insecure
protocol, but the team discovered that the HTTP requests are redirected to the secure version of the protocol which is
HTTPS.

Figure 16: Nmap operating system and services detection

23

Wireshark was used to sniff the network traffic. As shown in Figure 17, it was observed that the device is using the
recommended transport layer version (TLS v1.3) for providing network communication security.

Figure 17: Transport layer security TLS 1.3

An attempt was made to use the weak TLS_PSK_WITH_AES_128_CBC_SHA suite to connect to the device to check
if the device supports vulnerable ciphers such as this. This check shown in Figure 18 below, resulted in an error, which is
an indication that such weak ciphers aren’t supported.

Figure 18: Using the openssl s_client command to check for weak ciphers

24

A.1.1.2 Interruption

A deluge of data transmissions to render the device unusable to legitimate users was orchestrated. Minimal impact to the
application and operations was initially observed as depicted in Figure 19.

Figure 19: Interruptions to the application and device

25

It is termed minimal because there was some latency in loading the page during the attack. However, after a brief delay,
the login.php page was available to the user to login to the application. At the time of testing, the data communication to
the application was not significantly impacted during this specific denial-of-service attack. However, as noted in the
packet replay section, replay of packets caused a significant DoS. Also, for this use case, a dedicated attacker can
orchestrate a distributed denial of service attack using multiple devices that can significantly impact the system’s
operation.

Recommendation

Monitor traffic volumes, generate security alerts, and throttle traffic - using tools like Fail2Ban - when high traffic
volumes are detected.

A.1.1.3 Interception

ARP Spoofing using man-in-the-middle attacks that allows an attacker to intercept communication was observed. Error!
Reference source not found. 20 shows the Kali Linux machine used for the attack was able to trick the Solar device
and the gateway router that it had the correct MAC addresses for both IP addresses so that the device and router
connected to Kali instead of connecting to each other. This means that data packets between the solar device and the
gateway were all routed through Kali.

Figure 20: ARP poisoning using man-in-the-middle attack

26

Recommendation

Use industry best practices for preventing ARP spoofing from attackers who have infiltrated the network. ARP spoof
detection and prevention is built into many commercially available network switches and should be used to prevent such
attacks.

However, for this test case as shown in Figure 21, the team was not successful in using Driftnet to intercept and capture
images during ARP poisoning and MITM attacks. This is because HTTP traffic was not observed due to the port
redirect of the application to the more secure HTTPS protocol.

Figure 21: Driftnet launched but interception was not successful

We also had issues using Ettercap to drop or modify packets. Due to time constraints in resolving the graphical display
issues being experienced at the time of testing this packet modification testing was not effectively pursued. Although
HTTP port 80 was identified as open, the test tool Urlsnarf, was not able to sniff and capture any URL links from
HTTP requests because as noted previously, HTTP port 80 traffic is being redirected to HTTPS port 443.

A.1.1.4 Firewall

Tools like Nmap, Hping, and firewalk to better understand the firewall restrictions on the device was carried out. All the
scans that were initiated by these tools showed only two open ports. Error! Reference source not found. shows the
results of an Nmap firewall bypass technique using a FIN scan command.

Figure 22: FIN scan to check firewall

27

The team used the WAFW00F tool in Kali to determine if the there was a web application firewall (WAF) tool being
used to monitor ingress and egress traffic for blocking of malicious traffic, software, and files that can infect the device.
No WAF was detected as shown in Error! Reference source not found..

Figure 23: Firewall security not detected behind the solarguardian.mgtsciences domain

Recommendation

Given all the above enumerated and noted vulnerabilities discovered during the web application security testing, the
team recommends the use of web application firewalls to prevent the exploitation of the application from common
attacks like cross-site scripting (XSS).

28

A.1.1.5 Packet replay

The team was able to capture live network traffic using Tcpdump. Tcpreplay, was used to modify and replay the
captured network traffic in the environment. Figure 24 shows the duplicated packet captures that was retransmitted to
the device on Wireshark.

Figure 24: Wireshark capture of duplicated pcap files that was replayed

The replayed settings for Tcpreplay were customized to loop through the pcap file 100 times. This caused a denial-of-
service attack on the device. This is shown in Figure 25.

Figure 25: Replayed packets disrupting connections to the web application

Recommendation

To mitigate negative impact on legitimate connections the team recommends using industry best practices to discard
duplicated or invalid packets so that the integrity of Given the vulnerabilities discovered by our attack tools during the
web application security testing that is enumerated in the next section, the team recommends the use of web application
firewalls to prevent the exploitation of the application from common attacks like cross-site scripting (XSS).

29

2.4. Serial Interface Testing

2.4.1. Findings and Observations

B 1.1.1 Reconnaissance

To monitor and analyze the serial port communication, our team physically connected the serial interface to the Kali box
using a removable USB. See Figure 26 below.

Figure 26: Serial port connection

We were able to establish a serial connection using 115200 baud rate connection without authentication to the system
console and administrative interface as a debian user. The device assumed that any attacker who is physically
connected to the serial port the first time has the right to make any configurations. This is shown in Figure 27.

Figure 27: Unauthenticated access to the serial console

30

Recommendation

Access to the serial console is granted to anyone who can establish a serial communication to the device. There are no
polices or controls to limit access either at the admin or user levels. The team strongly recommends that different levels
of access control to the serial console be enabled to manage account access. Inactivity timeouts for the serial console
should be enabled as well as remote event logging for incident response and forensics.

After logging out of the device, information on the console as seen in Figure 29 showed that the device was using a
BeagleBone board. Subsequent connections to the device using the default username and password shown on the screen
below in did not yield a successful connection. However, a brute force password attack can be used by a hacker to crack
the password.

Figure 28: Serial Console login page

Recommendation

Depending on the vendor and version of BeagleBone being run, the team recommends that CVE7 details be explored to
ensure that its vulnerability statistics is low.

7https://cve.report/software/codesys/control_for_beaglebone_sl

31

3. SUMMARY

Our team conducted a cybersecurity evaluation of the application and device with respect to its use for PV systems. We
performed software checks, noted key attack scenarios and top 10 OWASP web application security tests that could be
used for exploitation. The assessment team recommends that the software checklists not verifiable in this report should
be verified by the GSI and Noventum team to better assure the security of the software. In addition to the
recommendations provided in Section 2, applying security, and hardening best practices for better performance and
security of their device configurations and communications. Although not in-scope for the assessment, the team strongly
recommends the use of static analysis tools to search the application’s source or binary code to identify vulnerabilities or
inconsistencies in the code. Finally, the team recommends a biennial security assessment for a snapshot of the security
risk of the application for continuous mitigation

32

APPENDIX B. WEB APPLICATION CHECKS

Category Checklist Potential Tools Findings

Broken Access Control Involves exploiting access not
properly enforced

Metasploit, Burp Suite Directories and .PHP files
discovered using Dirbuster and
Burp Suite

Security Misconfiguration Involves exploiting security
controls that are not securely
implemented

Metasploit, Burp Suite Directories and .PHP files
discovered using Dirbuster and
Burp Suite

Injection Involves sending malicious data
to either disclose or corrupt
data

Burp Suite Cross-site scripting reflected

Cryptographic Failures Involves compromising and
exfiltrating unencrypted
sensitive data

Burp Suite Username and password is not
encoded, clear text submission
of password and username.
Missing encryption.

Insecure Design Involves exploiting design and
architectural flaws

Burp Suite Login credentials sent in plain
text, access was bypassed using
curl commands, .git directory,
XSS vulnerability

Vulnerable and Outdated
Components

Involves exploiting unnecessary
features and components

Burp Suite The latest PHP version is 8.1,
current installed version is
7.3.31-1
The latest Apache version is
2.4.46, current installed version
is 2.4.38

Identification and Authentication
Failures

Involves compromising
credentials for authentication

Burp Suite Username and password are not
encoded, clear text submission
of password and username.

Software and Data Integrity
Failures

Involves verifying the integrity
of software update

OWASP CycloneDX Out of the scope, OWASP
CycloneDX is a lightweight
Software Bill of Materials
(SBOM) standard designed for
use in application security
contexts and supply chain
component analysis.

Security Logging and Monitoring
Failures

Involves verifying that relevant
events are logged and stored
appropriately

Burp Suite No data stored as seen from
direct access with username and
password 16 alpha numeric
characters

Server-Side Request Forgery Involves exploiting user-
supplied URL

Burp Suite N/A

33

This page left blank

34

DISTRIBUTION

Email—Internal

Name Org. Sandia Email Address

Adam Summers 8813 asummer@sandia.gov

Aya Khalafalla 9366 amkhala@sandia.gov

Ifeoma Onunkwo 9366 ionunkw@sandia.gov

Adrian Chavez 5683 adrchav@sandia.gov

Technical Library 1911 sanddocs@sandia.gov

Email—External

Name Company Email Address Company Name

Yesid Jimenez yjime030@fiu.edu N/A

Ken Blemel Ken_Blemel@mgtsciences.com Guardian Sensors, Inc. (GSI)

Brian Stinar Brian@noventum.us Noventum

35

This page left blank

Sandia National Laboratories
is a multimission laboratory
managed and operated by
National Technology &
Engineering Solutions of
Sandia LLC, a wholly owned
subsidiary of Honeywell
International Inc. for the U.S.
Department of Energy’s
National Nuclear Security
Administration under contract
DE-NA0003525.

