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ABSTRACT

Achieving efficient learning for Al systems was identified as a major challenge in the
DOE’s recently released, Al for Science, report. The human brain is capable of efficient and
low-powered learning. It is likely that implementing brain-like principles will lead to more
efficient Al systems. In this LDRD, I aim to contribute to this goal by creating a
foundation for implementing and studying a brain phenomenon termed short term
plasticity (STP) in spiking artificial neural networks within Sandia. First, data collected by
the Allen Institute for Brain Science (AIBS) was analyzed to see if STP could be classified
into types using the data collected. Although the data was inadequate at the time, AIBS
has updated their database and created models that could be utilized in the future. Second,
I began creating a software package to assess the ability of a Boltzmann machine utilizing
STP to sample from national security data.
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ACRONYMS AND DEFINITIONS

Abbreviation

Definition

Short term plasticity: Biological phenomena where the amplitude of the post-

STP synaptic response depends on the spiking history of the pre-synaptic neuron.
Post-synaptic potential: Voltage deflection elicited in a post-synaptic neuron
PSP due to neurotransmitter released from a firing pre-synaptic neuron.
Spike time dependent plasticity: Mechanism associated with learning that is
STDP different from STP.
Biological intelligence: computational abilities that have evolved through
Bl evolution in animals.
Artificial intelligence: Algorithms developed by humans to perform computation.
Al In contrast to biological intelligence (BI).
RBM Restricted Boltzmann machine
ANN Artificial neural network
DNN Deep neural network

Synaptic Facilitation

Amplitude of PSP increase as pre-synaptic neuron fires more

Synaptic Depression

Amplitude of PSP decrease as pre-synaptic neuron fires more

AIBS

Allen Institute for Brain Science

MNIST

Database of handwritten digits

aisynphys

Python package provided by AIBS for accessing their synaptic physiology data.




1. INTRODUCTION

1.1. Funding Background and Intention

This report is a summary of the work conducted for CIS LDRD project Short Term Plasticity
for Artificial Neural Networks. This funding was provided as part of a hiring package to enable me as a
strategic hire to assimilate into Sandia. As such, the subject material of the project was high risk but
provided me valuable training on the internal LDRD process, allowed me to familiarize myself with
the work being performed at Sandia, and enabled me to create a foundation for a body of work that
has not previously been utilized at Sandia. This work will be important for algorithms in artificial
intelligence (AI) and neuromorphic hardware utilizing spiking nodes.

1.2. Purpose and Overview of Work

There are many fundamental phenomena found in the biological brain that are not yet
integrated in modern ANN:s; it is likely that their implementation will yield more capable and low-
powered Al useful for national security applications. In this report, I focus on one brain
phenomenon, short term plasticity (STP), and aim to help create a foundation within Sandia for its
implementation in future ANNs and neuromorphic hardware.

There were two stages in this project, the first was to utilize a recent, large database created
by the Allen Institute for Brain Science (AIBS) to characterize potential STP types to constrain
networks in future research. In the end, the AIBS database did not have enough values to perform a
meaningful analysis. As a result, I moved on to the backup plan: to explore if preliminary work
conducted outside the laboratory could be useful for national security applications. This previous
work illustrated that STP could be used to perform superior probability distribution sampling
enabling Boltzmann Machines (BM) to adjust their weights to both classify and generate images
(Leng et al., 2018). To this point, I have started creating the code to replicate the results of Leng
and colleagues (Leng et al., 2018). 'This project will likely be continued in future ASC work as the
STP phenomenon is a promising algorithm for spiking networks and thus could be useful for
implementation on low-power, neuromorphic hardware

Below, I describe STP, the process for accessing the AIBS synaptic physiology database and
how STP could be used to create better ANNs.



2. BACKGROUND

21. Why Use the Brain for Inspiration?

The concept and creation of artificial neural networks (ANNs) was inspired by the brain.
Now, deep neural networks (DNNs) have enabled non-linear function approximation and are
surpassing human performance on specific tasks such as image processing (Russakovsky et al.,
2015), natural language processing (LeCun, Bengio, & Hinton, 2015), and playing games (Mnih et al.,
2015; Silver et al., 2016). DNNS trained via supervised learning yield representations like those
found in the brain (Mante, Sussillo, Shenoy, & Newsome, 2013; Yamins & DiCarlo, 2016). Modern
deep reinforcement learning algorithms have provided testable predictions leading to insights about
how the brain functions(Dabney et al., 2020; J. X. Wang et al., 2018).

Despite the successes of modern day ANNS, there are severe drawbacks. They are power
hungry, and a great deal of labeled data or simulation time is required for training, making real world
problems computationally expensive or infeasible. Furthermore, DNNs implementing supervised
learning need to be retrained when the statistics of the input change. For a more detailed
description of the deficiencies of modern artificial intelligence (Al), please see the “Achieve efficient
learning for Al systems” section on page 101 of the DOE, Al for Science report.

The human brain provides proof that a network can learn using limited amounts of data,
transfer knowledge between different tasks, and easily adapt to changing environments: all while
consuming extremely low power. Although we do not yet know the secrets of how the brain
achieves it impressive computational feats, especially while consuming so little power, the brain
implements many phenomena that the Al field does not yet widely utilize.

Importantly, the brain uses spiking nodes as opposed to the continuous nodes utilized in
modern ANNSs. It is likely that spiking networks will be both low power and add computational
capabilities due to the ability to perform event-based programing. Algorithms such as STP evolved
from a biological spiking networks and therefore will likely be important algorithms to enable
artificial spiking networks to perform computation.

2.2. The Complexity of the Brain and Allen Institute for Brain Science (AIBS)
Database

Although utilizing biological brain principles in ANNs might seem like a “no-brainer”, in
practice it is quite difficult given the complexity of the brain and how difficult it is to study. In
standard ANNSs there are only several type of node characterized by their activation functions and
the connection weights between the nodes are trained via extensions of the traditional
backpropagation algorithm (Rumelhart, Hinton, & Williams, 19806). In the brain, the diversity of
neurons and connections between them can seem overwhelming. There are many different classes
of neurons, with different transcriptomic profiles, different morphologies, and different firing
behaviors. In addition, different synapses have different dynamic behaviors. Understanding the
components, and connections between them, are fundamental to understanding any network; thus,
the characterization of neurons and synapses has been an active area of research for decades.

To help characterize the complexity of the brain the AIBS created the Cell Types program to
collect transcriptomic, morphological, and electrical data from neurons at a large scale (this effort
has now been taking place for more than 10 years). After AIBS data has been collected and has
passed quality control, it is released to the public via their website (https://portal.brain-map.org).
The hope is that the community will utilize the data and potentially discover insights to how the
brain operates.



https://portal.brain-map.org

In the first stage of my work, I will analyze data in the synaptic physiology database to
characterize STP parameters for future implementation Al

2.3. Short Term Plasticity (STP)

STP describes how communication between neurons evolves based on pre-synaptic activity
over a short time scale (milliseconds to seconds). STP has the capability to enable many
computations including filtering (Figure 1), enhancement of transients, decorrelation, burst
detection, stimuli presentation duration, sound location over different intensity ranges, dynamic
input compression, working memory, and spatiotemporal processing (Abbott & Regehr, 2004,
Buonomano & Maass, 2009; Mongillo, Barak, & Tsodyks, 2008). Note, that STP should not be
confused with spike time dependent plasticity (STDP) also known as Hebbian learning which takes
place on the order of minutes to hours. These are two different synaptic plasticity mechanisms.
Generally, STDP takes place in learning where STP enables the computations mentioned above.
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Figure 1. Example of filtering. Figure taken from Abbott & Regehr, 2004. a) lllustrates the diversity
of STP. Top line is the firing of the presynaptic neuron. CF, PF, and SC show the resulting PSPs
in post-synaptic neurons from different regions of the brain (An explanation of specific regions is
outside the scope of this document). Notice that the amplitude of PSPs change in different ways
for the different neurons. b) lllustrates the corresponding filtering properties. Y-axis represents
the normalized relative height of PSPs given steady input frequencies. Thus CF is a low pass filter
(amplitude gets smaller when there is a high frequency of presynaptic spiking), PF is high pass
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filter (amplitude gets larger when there is a high frequency of presynaptic spiking), and SC acts as
a band pass filter.

2.3.1. Mechanism

When a neuron receives enough positive stimulation from upstream neurons to reach its
voltage threshold, a large and quick voltage fluctuation, referred to as a spike (the change in voltage
during a spike is usually between 100 to 200 mV), is evoked. The spike causes neurotransmitter to
be released from the firing (pre-synaptic) neuron in small packets called vesicles. This
neurotransmitter travels to the post-synaptic neuron and elicits a small (usually between 0 and 5 mV)
voltage fluctuation referred to as a post synaptic potential (PSP). The size and the shape of these
PSPs can change as the result of the firing patterns of the pre-synaptic neurons. For example, if the
pre-synaptic neuron fires several sequential spikes, the amplitude of the PSPs can sequentially
increase (referred to as a facilitating synapse), decrease (referred to as a depressing synapse), or have
some other more complicated behavior (Abbott & Regehr, 2004).

2.3.2.  Difficulties in Characterizing STP

How similar is the STP evoked from different pre-synaptic cell types (or post-synaptic
types)? Are there different behaviors between specific pre and post-synaptic type pairs? What is the
most important characteristic for characterizing STP? Are there parameters or combinations of
parameters that seem to define synaptic types? Addressing these questions is non-trivial due to the
inherent caveats of synaptic physiology data. PSPs can be very small, and hard to discriminate due
to noise in the recording. The typical solution of taking the signal mean to average out the noise can
be misleading because synapses are stochastic. Different synapses have different levels of
stochasticity which is an important characteristic of synapses. For example, say you want to
characterize the amplitude of the PSPs from a particular synapse. When the synapse is activated, it
typically releases one vesicle of neurotransmitter, but it only activated half of the time a spike occurs.
One vesicle elicits a PSP of 1 mV and this signal is difficult to observe in the noise. Naively, the
mean of the signals is taken, and it is concluded that the amplitude of the PSP is 0.5 mV, when in
actuality, the synapse has an amplitude of 1 mV with a release probability of 50 percent. This is just
one of many difficulties in analyzing synaptic physiology data, the full extent of which, is outside the
scope of this document. However, there is one situation which requires mentioning as it directly
affects this analysis. Occasionally, the presynaptic neuron will fail to spike even though current was
injected. In the case where structured data analysis is being utilized (further discussed below), the
entire train of data needs be discarded because the synaptic dynamics are subject to different
patterns of pre-synaptic firing.

In an attempt overcome the challenges associated with synaptic physiology data and address
the aforementioned questions, two different methods (modeling and data analysis) can be employed.
These techniques have different strengths and weaknesses. The model-based approach was currently
being developed at AIBS. My aim was to perform dimensionality reduction and clustering.

In the model-based approach, models will be fit to the data and the resulting parameters can be
characterized. The strength of this approach is that it does not require structured data; an entire
spike train does not need to be discarded if the pre-synaptic neuron fails to spike. Instead, the
relevant variable is the time that has passed since the previous spike; the spike failure can be ignored,
and the progression in time can continue to evolve from the last successful spike. In fact, as long as
the current injection stimulus elicits spikes that cover the dynamic range of the synapses, structured
frequencies are not necessary for this method. The drawback of the model-based approach is that
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current models only utilize the amplitude of the PSP, thus the other measurements that may be
informative for characterization are ignored.

24, Short Term Plasticity in Restricted Boltzmann Machines

Leng et al., 2018 illustrated the potential for STP algorithms to sample from probability
distributions. In their study, they demonstrate that restricted Boltzmann machines (RBMs) with
connections implementing STP could classify images. In addition, they can generate a larger variety
of realistic images than algorithms that implement Gibbs sampling or adaptive simulated tempering
(AST) (Figure 2). Although Boltzmann Machines are not currently a mainstream ANN algorithm
(due to the amount of time they take to train), they have well understood mathematical properties
that make them an ideal to demonstrate the sampling capabilities of STP.

d e f
W3 33335355333
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BRI 3 S 33553533
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Figure 2: Section of Figure 4 from Leng et al., 2018. d) shows input given to trained Boltzmann
Machine. e) and f) show how “spiking” sampling produces both 3’s and 5’s when the input, in d)
could realistically result in either. AST and Gibbs sampling only generates 3's.
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2.4.1. Restricted Boltzmann Machines (RBMs)

RBMs are a version of a Boltzmann Machine (Ackley, Hinton, & Sejnowski, 1985; Hinton, 2007,
2012; Hinton, Sejnowski, & Ackley, 1984) where the nodes are organized within two layers. The
layers are fully connected in between layers but there are no connections within layers (Figure 3).
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Joint probability distribution of v and h:
p% h) = (1/Z) exp{-E(v, h)}

E(v, h) is the energy function
E(v,h) = -bTv - cTh - vIWh
=-Xbyv, —
k

X cjh - ZE-: Wichive
] ]

Z = )3 E exp{-E(v, h)}
intractable
Want to find b, ¢, W

Conditional distributions are easy to compute:
Bayes Law : p(h|v) = p(h,)/p(¥)
...math....

pth|v) = ]n_[ sigmoid(c; + vI'W))

j=1

(v|h) =[] sigmoid(b, + W h)
k=1

Each unit can be 1 or 0

h: hidden layer

W: Unditected connections
between layers with weights

v: visible layer

Gibbs sampling:
Step 1: Sample h® via P(h|v®)

Can simultaneously sample independently from all
elements of h® given v0,
Step 2: Sample v(*!) via P(v | h®)

Can simultaneously sample independently from all
elements of vl given h®.

Figure 3. lllustration of Restricted Boltzmann Machine (RBM)

13




3. PROJECT WORK AND OUTCOME

3.1. Allen Institute Synaptic Physiology Database

To help characterize STP, the Synaptic Physiology team within the Cell Types program at
AIBS has recorded the electrical activity evoked in post-synaptic neurons as a result of the spiking of
pre-synaptic neurons. Synaptic physiology experiments are notoriously difficult and slow; the team
has spent many years recording the activity of thousands of pairs on neurons. The experiments are
performed by inserting separate electrodes into the pre and post-synaptic neurons in a slice of brain
tissue viewed though a microscope. Current is injected via the pre-synaptic electrode in order to
elicit a spike in the pre-synaptic neuron. The PSP in the post-synaptic neuron resulting from the
pre-synaptic spike, is recorded via the post-synaptic electrode. An experimenter does not know
which neurons are connected a priori, so connected neurons must be found via trial and error. To
characterize how the size and shape of the PSPs change based on the specific behavior of the pre-
synaptic spiking, many pulses are injected into the pre-synaptic neuron at different frequencies
(typically between 20 and 100 Hz) to elicit a train of spikes at the corresponding frequencies in the
pre-synaptic neuron. The resulting PSPs in the post-synaptic neuron are recorded for analysis. In
general, the shape of a PSP is an asymmetric bump which can be modeled as a double exponential
(Campagnola et al., 2021; Seeman et al., 2018). From each PSP, four parameters are extracted:
latency from pre-synaptic spike to the PSP initiation, the rise-time from the initiation to peak, the
amplitude, and the time constant of the decay. These measurements are made for PSP elicited at
different holding potentials and in both voltage and current clamp mode.

3.1.1.  Accessing the Database and Analysis

The code I wrote to perform the analysis is in the cmt_analysis folder of the cmt_analysis
branch at https://gitlab.sandia.gov/cmteete/aiephys/-/tree/cmt analysis/cmt analysis. This code
utilizes the AIBS aisynphys package available at https://github.com/AllenInstitute/aisynphys.git. I
used Python 3.8

3.1.1.1. Extracting the Data

The first step in the analysis is to be able to understand and query the available quality
controlled data. This is done in the code at https://gitlab.sandia.gov/cmteete/aiephys/-
blob/cmt analysis/cmt analysis/get data.py using helper modules in lib.py.

3.1.1.2. Analysis

The available parameters have various levels of correlation Figure 4. This plot is made via
https://gitlab.sandia.gov/cmteete/aiephys/-
blob/cmt analysis/cmt analysis/look for correlations.py.

It is possible the parameters could be used to classify different types of STP using either
supervised or unsupervised learning. I started down this path in feature_classification.py and wrote
supervised classification algorithms for the data. However, I discovered that only 75 out of the 2335
synapses were not missing data. Given the correlation plot in Figure 4, I considered attempting to
impute values based on correlations. However, I spoke with the synaptic team at AIBS and they
said they experienced difficulties analyzing the data in this way too, and that it probably was not
worth my time. In addition, they were having success with the modeling-based approach as
discussed in section 2.3.2. Difficulties in Characterizing STP. At this point, I decided if we needed
to constrain model parameters in future networks, we could use the outputs of their models (as
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discussed in the next section, 3.1.2 Notes On Recent AIBS Database Updates). The code of
accessing the database and the preliminary code for testing supervised algorithms is already in place.

At this point I decided it would be a better investment to have me move on to my back-up
plan (as agreed upon in the project proposal, see ) of extending the work of Leng and colleagues
(Leng et al., 2018). This would train me to utilize these principles in ANNs which will be important

in future work (see section 4. Future Work)
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Figure 4: Correlation matrix of data within synaptic physiology database.
each square report Spearman’s correlation coefficient.

3.1.2.  Notes On Recent AIBS Database Updates
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Upon noticing that the parameters sets were not complete enough to perform supervised and
unsupervised clustering techniques that would yield meaningful results. I contacted the AIBS
Synaptic Physiology team who agreed and said they were moving forward using models for possible
classification. Models have sense been released in the database and a description of the

characterization of the parameters can be found at (Campagnola et al., 2021).
on the most recent database can be found at
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In addition a tutorial



https://colab.research.coogle.com/github/Allenlnstitute/CNS 2021/blob/main/1 Svnaptic Physi

ology/SynPhys Tutorialipynb. If we need to constrain our networks we can use the code I have

already written to extract the model parameters.
3.2. Short Term Plasticity in Boltzmann Machines for National Security Data

3.2.1. Limitations of Previous Studies

Although the work of Leng and colleagues (Leng et al., 2018), (described in the Background)
is an intriguing example showing the potential of STP as a sampling algorithm, they used very
limited data, the most complicated being the MNIST database (Figure 5). Thus, it is unclear if this
method will be effective on more sophisticated data sets including the sort of data sets utilized in
national security applications. In addition, the code for the Leng et al, 2018 study is out of date
(written in python 2.7) https://github.com/electronicvisions/spike-based-sampling, and utilizes the
PyNN software package (https://menloservice.sandia.gov/http://neuralensemble.org/PyNN/) to
interface with neuroscience based simulators. Although PyNN is a useful language for those who
need to interface with different neuron simulators to model brain function, there are various issues
with memory consumption. Thus, this code is complicated to use and not suited to more general
machine learning applications. Here, I aim to recreate a codebase that can implement the STP based
sampling method in current software aimed at machine learning as opposed to simulating the brain.

3.2.2. Data

The (Leng et al., 2018) study uses only a limited amount of data such as MNIST
(http://yann.lecun.com/exdb/mnist/). Here aim to explore to explore more sophisticated datasets
such as FashionMNIST and CFAR100. Importantly, I will utilize data sets that may be used in
national security type situations such as data SAR data of geophysical phenomena (C. Wang et al.,
2019; Wang Chen, 2018)

Fashion MNIST

SN AEIE
Labeled SAR imagery dataset of ten geophysical phenomena from Sentinel-1 wave
6/

Figure 5. Example data sets for testing classification and generative capabilities of networks
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https://menloservice.sandia.gov/http://neuralensemble.org/PyNN/

3.2.3. Code and Status

I plan to use Python 3 along with the PyTorch neural network Python package to implement
the Boltzmann machine (and potentially other networks). In order to implement spiking neurons, I
plan to utilize BindsNET (https://github.com/BindsNET/bindsnet) (Hazan et al., 2018), which is a
python spiking neuron package oriented toward machine learning (as opposed to understanding the
brain) with an active user base. The development of this code is not yet complete. The code
repository is located at https://cee-gitlab.sandia.gov/cmteete/stpnetwork and will be made available
as it develops.
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4, FUTURE WORK

Although the code to test STP algorithms is not yet complete, it is likely I will continue this
work as part of the ASC Beyond Moore’s Law project aimed to develop algorithms for
neuromorphic hardware. STP is a fundamental phenomenon within the brain and will likely be an
instrumental algorithm for complex capabilities in spiking neural networks
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APPENDIX A. PROJECT SUMMARIES

AA1. New Proposal
20-1019 Proposal Summary:

Renewal Status: New

Title: Short Term Plasticity for Artificial Neural Networks Investment Area: Computing and
Information Sciences Principal Investigator: TEETER,CORINNE MICHELLE ,01421
Project Manager: WAGNER,JOHN S. ,01421

Derivative Classifier: WAGNER,JOHN S. ,01421

Project Intent: Discover

Team Members: TEETER,CORINNE MICHELLE, 01421

Unclassified Unlimited Release (UUR) Congressional Summary:

Current artificial intelligence (Al) is power hungry and inflexible. Utilizing brain inspired
algorithms will likely enable Al to adapt and run on low-powered systems. This project
focuses on a phenomenon found in the brain termed short-term plasticity which can be
implemented on low-powered neuromorphic platforms. Preliminarily implementation has
demonstrated that this plasticity can enable Al to simultaneously classify difficult data
and adapt to changing environments. This research will characterize short-term
plasticity in order to realize adaptive and low powered Al. It will impact machine learning
and Al capabilities in future Exascale systems and embedded national security systems.

Summary of Research Approach and Project Plan:

Despite the successes of modern day artificial neural networks (ANNSs), there are
severe drawbacks. They are power hungry, and a great deal of labeled data or
simulation time is required for training, making real world problems computationally
expensive or infeasible. Furthermore, deep neural networks (DNNs) implementing
supervised learning need to be retrained when the statistics of the input change. For a
more detailed description of the deficiencies of modern artificial intelligence (Al), please
see the “Achieve efficient learning for Al systems” section on page 101 of the DOE, Al
for Science report. The human brain provides proof that a network can learn using limited
amounts of data, transfer knowledge between different tasks, and easily adapt to
changing environments: all while consuming extremely low power.

There are many principles ubiquitously found across the brain that are not yet
implemented in modern ANNSs; it is likely that their implementation will yield more
capable and low-powered Al useful for national security applications. However, as more
brain-like complexity is introduced, more parameters will be necessary in the
implementation. Finding the right combination of parameters that yield high performance
will be challenging, if not impossible. Here, again we can turn to the brain for guidance.
Characterizing how the brain implements phenomena will help limit the parameter
space.

This project focuses on one brain phenomena, short term plasticity (STP), and aim to
help create a foundation for implementation in ANNs. STP has the capability to enable
many computations (Abbott and Regehr, 2004; Mongillo et al., 2008; Buonomano and
Maass, 2009). Notably, recent work by Leng and colleagues (2018), have shown that
spiking networks with STP can simultaneously perform well at classification and
become good generative models. | aim to characterize STP using a large data set

22



collected by the Allen Institute for Brain Science (AIBS; https://alleninstitute.org /what-
we-do/brain-science/). This characterization of STP will help provide a foundation for
realistic implementations in ANNSs. In addition, it is likely that this characterization will
contribute to a pipeline manuscript currently being assembled at AIBS describing their
methods and findings. In the event STP characterization and/or contribution to the
manuscript is not possible, | will use current knowledge of STP to extend the work of
Leng and colleagues (2018).

Challenge and Innovation:

This work will characterize and/or define types of short-term plasticity (STP) between
different types of neurons. Linear and non-linear data analysis and dimensionality
reduction techniques will be utilized to characterize STP in a new dataset released by
the Allen Institute for Brain Science (https://portal.brain-
map.org/explore/connectivity/synaptic- physiology).

Summary of FY20 Project Plan:
Month 1: Acquire and clean data.

Month 2 and 3: Perform basic PCA and other standard dimensionality techniques.
Access how different standard characteristics are distributed across the space

End of month 3: Determine if interesting results are emerging and if there is a
publication avenue with the Allen Institute for Brain Science or another potential
publication avenue.

If yes: month 3-6: Refine analysis, create figures and write publication along with SAND
report.

In no: month 3-6: Pursue advancing current minimal STP implementation of Leng et al.,
2018 and complete SAND report.

Tie to Mission:

Recent advances in Atrtificial intelligence (Al) have transformed the world and national
security. Current Al has power and training limitations; however, technology is quickly
evolving. Biologically inspired algorithms will likely be the next breakthrough that
enables low-power, next generation scientific HPC platforms for national security
programs. This LDRD will impact DOE, NNSA, DHS, ASC, CSSE, and ATDM programs
by contributing to new capabilities in machine learning and emerging/exascale
computing programs. It will help provide new low-power computing and communication
capabilities for embedded sensors and autonomous machines and help enable a new
generation of ‘smart’ transportation, energy production and grid resiliency.

A.2. Proposal Continuation
21-1058 Proposal Summary

Renewal Status: Continuation

Title: Short Term Plasticity for Artificial Neural Networks Investment Area: Computing and
Information Sciences Principal Investigator: TEETER,CORINNE MICHELLE ,01421 Project
Manager: WAGNER,JOHN S. ,01421

Derivative Classifier: WAGNER,JOHN S. ,01421

Project Intent: Discover
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Team Members: TEETER,CORINNE MICHELLE, 01421
Unclassified Unlimited Release (UUR) Congressional Summary:

Current artificial intelligence (Al) is power hungry and inflexible. Utilizing brain inspired
algorithms will likely enable Al to adapt and run on low-powered systems. This project focuses
on a phenomenon found in the brain termed short-term plasticity which can be implemented
on low-powered neuromorphic

platforms. Preliminarily implementation has demonstrated that this plasticity can enable Al to
simultaneously classify difficult data and adapt to changing environments. This research will
characterize short-term plasticity in order to realize adaptive and low powered Al. It will impact
machine learning and Al capabilities in future Exascale systems and embedded national security
systems.

Project Description:

Despite the successes of modern day artificial neural networks (ANNs), there are severe
drawbacks. They are power hungry, and a great deal of labeled data or simulation time is
required for training, making real world problems computationally expensive or infeasible.
Furthermore, deep neural networks (DNNs) implementing supervised learning need to be
retrained when the statistics of the input change. For a more detailed description of the
deficiencies of modern artificial intelligence (Al), please see the “Achieve efficient learning for
Al systems” section on page 101 of the DOE, Al for Science report. The human brain provides
proof that a network can learn using limited amounts of data, transfer knowledge between
different tasks, and easily adapt to changing environments: all while consuming extremely low
power.

There are many principles ubiquitously found across the brain that are not yet implemented in
modern ANNs; it is likely that their implementation will yield more capable and low-powered Al
useful for national security applications. However, as more brain-like complexity is introduced,
more parameters will be necessary in the implementation. Finding the right combination of
parameters that yield high performance will be challenging, if not impossible. Here, again we
can turn to the brain for guidance. Characterizing how the brain implements phenomena will
help limit the parameter space.

This project focuses on one brain phenomena, short term plasticity (STP), and aim to help
create a foundation for implementation in ANNs. STP has the capability to enable many
computations (Abbott and Regehr, 2004; Mongillo et al., 2008; Buonomano and Maass, 2009).
Notably, recent work by Leng and colleagues (2018), have shown that spiking networks with
STP can simultaneously perform well at classification and become good generative models. |
aim to characterize STP using a large data set collected by the Allen Institute for Brain Science
(AIBS; https://alleninstitute.org/what-we-do/brain-science/). This characterization of STP will
help provide a foundation for realistic implementations in ANNSs. In addition, it is likely that this
characterization will contribute to a pipeline manuscript currently being assembled at AIBS
describing their methods and findings. In the event STP characterization and/or contribution to
the manuscript is not possible, | will use current knowledge of STP to extend the work of Leng
and colleagues (2018).

Previous Accomplishments:

Recent implementations of short term plasticity (STP) mechanisms in artificial neural networks
(ANNSs) are starting to reveal their benefits in engineered systems. Here, | aim to use biological
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data provided by the Allen Institute for Brain Science (AIBS) to explore possible
characterizations of STP so they can be used to guide and constrain STP implementations in
ANNS.

Accomplishments:

Synaptic physiology database and software package to access data have been acquired from
the Allen Institute for Brain Science (AIBS).

Tools and data are up and running on local computer.

At the end of this fiscal year | will have demonstrated:

If there is low dimensional embedding provided by methods such as principle component
analysis (PCA), autoencoders, t-distributed stochastic embedding (t-SNE), etc., that adequately
represents the high dimensional data.

How well supervised learning methods such as random forests, support vector machines can
differentiate preconceived biological characterizations.

If unsupervised learning methods such as k-means, gaussian mixtures, affinity propagation, and
hierarchical clustering will reveal preconceived biological characterizations or expose new
classification paradigms.

It is possible that the space of features is continuous which is also important knowledge for
constraining network parameters.

Unfortunately, | believe that parameters for an STP model fit to raw data will be most useful for
classification and ANN implementations. Someone at the AIBS is actively working on this, but
they have not yet achieved this feat. If it is achieved, the code above will be ready to run on
resulting parameters.

Summary of FY21 Project Plan: FY21 Project Plan:

Discuss output of analysis with the Allen Institute for Brain Science and determine if it will go
into their pipeline publication.

If it looks promising, refine analysis and figures.
If no, start on ANN network implementation below. SAND report
In the event plus-up money becomes available:

In order to utilize STP in ANNSs for national security applications, it would be ideal to have an in-
house implementation. | plan to extend the work of Leng Et Al, 2018 by implementing
biologically constrained STP.

Implementation and benchmarking of above ANN on new Loihi neuromorphic chip.

Tie to Mission:

Recent advances in Artificial intelligence (Al) have transformed the world and national security.
Current Al has power and training limitations; however, technology is quickly evolving.
Biologically inspired algorithms will likely be the next breakthrough that enables low-power,
next generation scientific HPC platforms for national security programs. This LDRD will impact
DOE, NNSA, DHS, ASC, CSSE, and ATDM programs by contributing to new capabilities in
machine learning and emerging/exascale computing programs. It will help provide new low-
power computing and communication capabilities for embedded sensors and autonomous
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machines and help enable a new generation of ‘smart’ transportation, energy production and
grid resiliency.
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