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ABSTRACT
Achieving efficient learning for AI systems was identified as a major challenge in the 
DOE’s recently released, AI for Science, report. The human brain is capable of efficient and 
low-powered learning. It is likely that implementing brain-like principles will lead to more 
efficient AI systems. In this LDRD, I aim to contribute to this goal by creating a 
foundation for implementing and studying a brain phenomenon termed short term 
plasticity (STP) in spiking artificial neural networks within Sandia.  First, data collected by 
the Allen Institute for Brain Science (AIBS) was analyzed to see if STP could be classified 
into types using the data collected.  Although the data was inadequate at the time, AIBS 
has updated their database and created models that could be utilized in the future. Second, 
I began creating a software package to assess the ability of a Boltzmann machine utilizing 
STP to sample from national security data. 
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ACRONYMS AND DEFINITIONS

Abbreviation Definition

STP
Short term plasticity: Biological phenomena where the amplitude of the post-
synaptic response depends on the spiking history of the pre-synaptic neuron. 

PSP
Post-synaptic potential: Voltage deflection elicited in a post-synaptic neuron 
due to neurotransmitter released from a firing pre-synaptic neuron.

STDP
Spike time dependent plasticity: Mechanism associated with learning that is 
different from STP.

BI
Biological intelligence: computational abilities that have evolved through 
evolution in animals.

AI
Artificial intelligence: Algorithms developed by humans to perform computation.  
In contrast to biological intelligence (BI).

RBM Restricted Boltzmann machine

ANN Artificial neural network

DNN Deep neural network

Synaptic Facilitation Amplitude of PSP increase as pre-synaptic neuron fires more

Synaptic Depression Amplitude of PSP decrease as pre-synaptic neuron fires more

AIBS Allen Institute for Brain Science

MNIST Database of handwritten digits

aisynphys Python package provided by AIBS for accessing their synaptic physiology data.
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1. INTRODUCTION

1.1. Funding Background and Intention
This report is a summary of the work conducted for CIS LDRD project Short Term Plasticity 

for Artificial Neural Networks.  This funding was provided as part of a hiring package to enable me as a 
strategic hire to assimilate into Sandia.  As such, the subject material of the project was high risk but 
provided me valuable training on the internal LDRD process, allowed me to familiarize myself with 
the work being performed at Sandia, and enabled me to create a foundation for a body of work that 
has not previously been utilized at Sandia.  This work will be important for algorithms in artificial 
intelligence (AI) and neuromorphic hardware utilizing spiking nodes.

1.2. Purpose and Overview of Work
There are many fundamental phenomena found in the biological brain that are not yet 

integrated in modern ANNs; it is likely that their implementation will yield more capable and low-
powered AI useful for national security applications.  In this report, I focus on one brain 
phenomenon, short term plasticity (STP), and aim to help create a foundation within Sandia for its 
implementation in future ANNs and neuromorphic hardware.  

There were two stages in this project, the first was to utilize a recent, large database created 
by the Allen Institute for Brain Science (AIBS) to characterize potential STP types to constrain 
networks in future research.  In the end, the AIBS database did not have enough values to perform a 
meaningful analysis.  As a result, I moved on to the backup plan: to explore if preliminary work 
conducted outside the laboratory could be useful for national security applications.  This previous 
work illustrated that STP could be used to perform superior probability distribution sampling 
enabling Boltzmann Machines (BM) to adjust their weights to both classify and generate images 
(Leng et al., 2018).  To this point, I have started creating the code to replicate the results of Leng 
and colleagues (Leng et al., 2018).   This project will likely be continued in future ASC work as the 
STP phenomenon is a promising algorithm for spiking networks and thus could be useful for 
implementation on low-power, neuromorphic hardware

Below, I describe STP, the process for accessing the AIBS synaptic physiology database and 
how STP could be used to create better ANNs.    
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2. BACKGROUND

2.1. Why Use the Brain for Inspiration?
The concept and creation of artificial neural networks (ANNs) was inspired by the brain.  

Now, deep neural networks (DNNs) have enabled non-linear function approximation and are 
surpassing human performance on specific tasks such as image processing (Russakovsky et al., 
2015), natural language processing (LeCun, Bengio, & Hinton, 2015), and playing games (Mnih et al., 
2015; Silver et al., 2016).  DNNs trained via supervised learning yield representations like those 
found in the brain (Mante, Sussillo, Shenoy, & Newsome, 2013; Yamins & DiCarlo, 2016). Modern 
deep reinforcement learning algorithms have provided testable predictions leading to insights about 
how the brain functions(Dabney et al., 2020; J. X. Wang et al., 2018).  

Despite the successes of modern day ANNs, there are severe drawbacks. They are power 
hungry, and a great deal of labeled data or simulation time is required for training, making real world 
problems computationally expensive or infeasible. Furthermore, DNNs implementing supervised 
learning need to be retrained when the statistics of the input change.  For a more detailed 
description of the deficiencies of modern artificial intelligence (AI), please see the “Achieve efficient 
learning for AI systems” section on page 101 of the DOE, AI for Science report. 

The human brain provides proof that a network can learn using limited amounts of data, 
transfer knowledge between different tasks, and easily adapt to changing environments: all while 
consuming extremely low power. Although we do not yet know the secrets of how the brain 
achieves it impressive computational feats, especially while consuming so little power, the brain 
implements many phenomena that the AI field does not yet widely utilize.  

Importantly, the brain uses spiking nodes as opposed to the continuous nodes utilized in 
modern ANNs.  It is likely that spiking networks will be both low power and add computational 
capabilities due to the ability to perform event-based programing.  Algorithms such as STP evolved 
from a biological spiking networks and therefore will likely be important algorithms to enable 
artificial spiking networks to perform computation. 

2.2. The Complexity of the Brain and Allen Institute for Brain Science (AIBS) 
Database

Although utilizing biological brain principles in ANNs might seem like a “no-brainer”, in 
practice it is quite difficult given the complexity of the brain and how difficult it is to study. In 
standard ANNs there are only several type of node characterized by their activation functions and 
the connection weights between the nodes are trained via extensions of the traditional 
backpropagation algorithm (Rumelhart, Hinton, & Williams, 1986). In the brain, the diversity of 
neurons and connections between them can seem overwhelming.  There are many different classes 
of neurons, with different transcriptomic profiles, different morphologies, and different firing 
behaviors.  In addition, different synapses have different dynamic behaviors.  Understanding the 
components, and connections between them, are fundamental to understanding any network; thus, 
the characterization of neurons and synapses has been an active area of research for decades.

To help characterize the complexity of the brain the AIBS created the Cell Types program to 
collect transcriptomic, morphological, and electrical data from neurons at a large scale (this effort 
has now been taking place for more than 10 years).  After AIBS data has been collected and has 
passed quality control, it is released to the public via their website (https://portal.brain-map.org).  
The hope is that the community will utilize the data and potentially discover insights to how the 
brain operates.  

https://portal.brain-map.org
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In the first stage of my work, I will analyze data in the synaptic physiology database to 
characterize STP parameters for future implementation AI.

2.3. Short Term Plasticity (STP)
STP describes how communication between neurons evolves based on pre-synaptic activity 

over a short time scale (milliseconds to seconds). STP has the capability to enable many 
computations including filtering (Figure 1), enhancement of transients, decorrelation, burst 
detection, stimuli presentation duration, sound location over different intensity ranges, dynamic 
input compression, working memory, and spatiotemporal processing (Abbott & Regehr, 2004; 
Buonomano & Maass, 2009; Mongillo, Barak, & Tsodyks, 2008). Note, that STP should not be 
confused with spike time dependent plasticity (STDP) also known as Hebbian learning which takes 
place on the order of minutes to hours.  These are two different synaptic plasticity mechanisms.  
Generally, STDP takes place in learning where STP enables the computations mentioned above. 

Figure 1. Example of filtering. Figure taken from Abbott & Regehr, 2004.  a) Illustrates the diversity 
of STP. Top line is the firing of the presynaptic neuron.  CF, PF, and SC show the resulting PSPs 
in post-synaptic neurons from different regions of the brain (An explanation of specific regions is 
outside the scope of this document).  Notice that the amplitude of PSPs change in different ways 
for the different neurons.  b) Illustrates the corresponding filtering properties.  Y-axis represents 
the normalized relative height of PSPs given steady input frequencies. Thus CF is a low pass filter 
(amplitude gets smaller when there is a high frequency of presynaptic spiking), PF is high pass 
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filter (amplitude gets larger when there is a high frequency of presynaptic spiking), and SC acts as 
a band pass filter.

2.3.1. Mechanism
When a neuron receives enough positive stimulation from upstream neurons to reach its 

voltage threshold, a large and quick voltage fluctuation, referred to as a spike (the change in voltage 
during a spike is usually between 100 to 200 mV), is evoked.  The spike causes neurotransmitter to 
be released from the firing (pre-synaptic) neuron in small packets called vesicles.  This 
neurotransmitter travels to the post-synaptic neuron and elicits a small (usually between 0 and 5 mV) 
voltage fluctuation referred to as a post synaptic potential (PSP).  The size and the shape of these 
PSPs can change as the result of the firing patterns of the pre-synaptic neurons.  For example, if the 
pre-synaptic neuron fires several sequential spikes, the amplitude of the PSPs can sequentially 
increase (referred to as a facilitating synapse), decrease (referred to as a depressing synapse), or have 
some other more complicated behavior (Abbott & Regehr, 2004).  

2.3.2. Difficulties in Characterizing STP 
How similar is the STP evoked from different pre-synaptic cell types (or post-synaptic 

types)?  Are there different behaviors between specific pre and post-synaptic type pairs?  What is the 
most important characteristic for characterizing STP? Are there parameters or combinations of 
parameters that seem to define synaptic types?   Addressing these questions is non-trivial due to the 
inherent caveats of synaptic physiology data.  PSPs can be very small, and hard to discriminate due 
to noise in the recording.  The typical solution of taking the signal mean to average out the noise can 
be misleading because synapses are stochastic. Different synapses have different levels of 
stochasticity which is an important characteristic of synapses.  For example, say you want to 
characterize the amplitude of the PSPs from a particular synapse.  When the synapse is activated, it 
typically releases one vesicle of neurotransmitter, but it only activated half of the time a spike occurs.  
One vesicle elicits a PSP of 1 mV and this signal is difficult to observe in the noise.  Naively, the 
mean of the signals is taken, and it is concluded that the amplitude of the PSP is 0.5 mV, when in 
actuality, the synapse has an amplitude of 1 mV with a release probability of 50 percent.  This is just 
one of many difficulties in analyzing synaptic physiology data, the full extent of which, is outside the 
scope of this document. However, there is one situation which requires mentioning as it directly 
affects this analysis.  Occasionally, the presynaptic neuron will fail to spike even though current was 
injected.  In the case where structured data analysis is being utilized (further discussed below), the 
entire train of data needs be discarded because the synaptic dynamics are subject to different 
patterns of pre-synaptic firing.  

In an attempt overcome the challenges associated with synaptic physiology data and address 
the aforementioned questions, two different methods (modeling and data analysis) can be employed.  
These techniques have different strengths and weaknesses. The model-based approach was currently 
being developed at AIBS. My aim was to perform dimensionality reduction and clustering. 
In the model-based approach, models will be fit to the data and the resulting parameters can be 
characterized.  The strength of this approach is that it does not require structured data; an entire 
spike train does not need to be discarded if the pre-synaptic neuron fails to spike.  Instead, the 
relevant variable is the time that has passed since the previous spike; the spike failure can be ignored, 
and the progression in time can continue to evolve from the last successful spike.  In fact, as long as 
the current injection stimulus elicits spikes that cover the dynamic range of the synapses, structured 
frequencies are not necessary for this method. The drawback of the model-based approach is that 
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current models only utilize the amplitude of the PSP, thus the other measurements that may be 
informative for characterization are ignored.  

2.4. Short Term Plasticity in Restricted Boltzmann Machines
Leng et al., 2018 illustrated the potential for STP algorithms to sample from probability 

distributions. In their study, they demonstrate that restricted Boltzmann machines (RBMs) with 
connections implementing STP could classify images.  In addition, they can generate a larger variety 
of realistic images than algorithms that implement Gibbs sampling or adaptive simulated tempering 
(AST) (Figure 2).  Although Boltzmann Machines are not currently a mainstream ANN algorithm 
(due to the amount of time they take to train), they have well understood mathematical properties 
that make them an ideal to demonstrate the sampling capabilities of STP.  

Figure 2: Section of Figure 4 from Leng et al., 2018. d) shows input given to trained Boltzmann 
Machine. e) and f) show how “spiking” sampling produces both 3’s and 5’s when the input, in d) 
could realistically result in either.  AST and Gibbs sampling only generates 3's. 

2.4.1. Restricted Boltzmann Machines (RBMs)
RBMs are a version of a Boltzmann Machine (Ackley, Hinton, & Sejnowski, 1985; Hinton, 2007, 
2012; Hinton, Sejnowski, & Ackley, 1984) where the nodes are organized within two layers.  The 
layers are fully connected in between layers but there are no connections within layers (Figure 3). 
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Figure 3.  Illustration of Restricted Boltzmann Machine (RBM)



14

3. PROJECT WORK AND OUTCOME

3.1. Allen Institute Synaptic Physiology Database
To help characterize STP, the Synaptic Physiology team within the Cell Types program at 

AIBS has recorded the electrical activity evoked in post-synaptic neurons as a result of the spiking of 
pre-synaptic neurons. Synaptic physiology experiments are notoriously difficult and slow; the team 
has spent many years recording the activity of thousands of pairs on neurons.  The experiments are 
performed by inserting separate electrodes into the pre and post-synaptic neurons in a slice of brain 
tissue viewed though a microscope.  Current is injected via the pre-synaptic electrode in order to 
elicit a spike in the pre-synaptic neuron.  The PSP in the post-synaptic neuron resulting from the 
pre-synaptic spike, is recorded via the post-synaptic electrode.  An experimenter does not know 
which neurons are connected a priori, so connected neurons must be found via trial and error.  To 
characterize how the size and shape of the PSPs change based on the specific behavior of the pre-
synaptic spiking, many pulses are injected into the pre-synaptic neuron at different frequencies 
(typically between 20 and 100 Hz) to elicit a train of spikes at the corresponding frequencies in the 
pre-synaptic neuron.  The resulting PSPs in the post-synaptic neuron are recorded for analysis.  In 
general, the shape of a PSP is an asymmetric bump which can be modeled as a double exponential 
(Campagnola et al., 2021; Seeman et al., 2018). From each PSP, four parameters are extracted: 
latency from pre-synaptic spike to the PSP initiation, the rise-time from the initiation to peak, the 
amplitude, and the time constant of the decay. These measurements are made for PSP elicited at 
different holding potentials and in both voltage and current clamp mode.

3.1.1. Accessing the Database and Analysis
 The code I wrote to perform the analysis is in the cmt_analysis folder of the cmt_analysis 
branch at https://gitlab.sandia.gov/cmteete/aiephys/-/tree/cmt_analysis/cmt_analysis.  This code 
utilizes the AIBS aisynphys package available at https://github.com/AllenInstitute/aisynphys.git.  I 
used Python 3.8

3.1.1.1. Extracting the Data
The first step in the analysis is to be able to understand and query the available quality 

controlled data.  This is done in the code at https://gitlab.sandia.gov/cmteete/aiephys/-
/blob/cmt_analysis/cmt_analysis/get_data.py using helper modules in lib.py.  

3.1.1.2. Analysis
The available parameters have various levels of correlation Figure 4.  This plot is made via 

https://gitlab.sandia.gov/cmteete/aiephys/-
/blob/cmt_analysis/cmt_analysis/look_for_correlations.py.

It is possible the parameters could be used to classify different types of STP using either 
supervised or unsupervised learning. I started down this path in feature_classification.py and wrote 
supervised classification algorithms for the data.  However, I discovered that only 75 out of the 2335 
synapses were not missing data.  Given the correlation plot in Figure 4, I considered attempting to 
impute values based on correlations.  However, I spoke with the synaptic team at AIBS and they 
said they experienced difficulties analyzing the data in this way too, and that it probably was not 
worth my time.  In addition, they were having success with the modeling-based approach as 
discussed in section 2.3.2. Difficulties in Characterizing STP.  At this point, I decided if we needed 
to constrain model parameters in future networks, we could use the outputs of their models (as 

https://gitlab.sandia.gov/cmteete/aiephys/-/tree/cmt_analysis/cmt_analysis
https://github.com/AllenInstitute/aisynphys.git
https://gitlab.sandia.gov/cmteete/aiephys/-/blob/cmt_analysis/cmt_analysis/get_data.py
https://gitlab.sandia.gov/cmteete/aiephys/-/blob/cmt_analysis/cmt_analysis/get_data.py
https://gitlab.sandia.gov/cmteete/aiephys/-/blob/cmt_analysis/cmt_analysis/look_for_correlations.py
https://gitlab.sandia.gov/cmteete/aiephys/-/blob/cmt_analysis/cmt_analysis/look_for_correlations.py
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discussed in the next section, 3.1.2 Notes On Recent AIBS Database Updates).  The code of 
accessing the database and the preliminary code for testing supervised algorithms is already in place.

At this point I decided it would be a better investment to have me move on to my back-up 
plan (as agreed upon in the project proposal, see ) of extending the work of Leng and colleagues 
(Leng et al., 2018).  This would train me to utilize these principles in ANNs which will be important 
in future work (see section 4. Future Work)

Figure 4: Correlation matrix of data within synaptic physiology database. Legend and values in 
each square report Spearman’s correlation coefficient.

3.1.2. Notes On Recent AIBS Database Updates
Upon noticing that the parameters sets were not complete enough to perform supervised and 
unsupervised clustering techniques that would yield meaningful results.  I contacted the AIBS 
Synaptic Physiology team who agreed and said they were moving forward using models for possible 
classification. Models have sense been released in the database and a description of the 
characterization of the parameters can be found at (Campagnola et al., 2021). In addition a tutorial 
on the most recent database can be found at 
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https://colab.research.google.com/github/AllenInstitute/CNS_2021/blob/main/1_Synaptic_Physi
ology/SynPhys_Tutorial.ipynb.  If we need to constrain our networks we can use the code I have 
already written to extract the model parameters.

3.2. Short Term Plasticity in Boltzmann Machines for National Security Data

3.2.1. Limitations of Previous Studies 
Although the work of Leng and colleagues (Leng et al., 2018), (described in the Background) 

is an intriguing example showing the potential of STP as a sampling algorithm, they used very 
limited data, the most complicated being the MNIST database (Figure 5).  Thus, it is unclear if this 
method will be effective on more sophisticated data sets including the sort of data sets utilized in 
national security applications.  In addition, the code for the Leng et al, 2018 study is out of date 
(written in python 2.7) https://github.com/electronicvisions/spike-based-sampling, and utilizes the  
PyNN software package (https://menloservice.sandia.gov/http://neuralensemble.org/PyNN/) to 
interface with neuroscience based simulators.  Although PyNN is a useful language for those who 
need to interface with different neuron simulators to model brain function, there are various issues 
with memory consumption. Thus, this code is complicated to use and not suited to more general 
machine learning applications.  Here, I aim to recreate a codebase that can implement the STP based 
sampling method in current software aimed at machine learning as opposed to simulating the brain.

3.2.2. Data
The (Leng et al., 2018) study uses only a limited amount of data such as MNIST 
(http://yann.lecun.com/exdb/mnist/). Here aim to explore to explore more sophisticated datasets 
such as FashionMNIST and CFAR100.  Importantly, I will utilize data sets that may be used in 
national security type situations such as data SAR data of geophysical phenomena (C. Wang et al., 
2019; Wang Chen, 2018)  

Figure 5. Example data sets for testing classification and generative capabilities of networks

https://colab.research.google.com/github/AllenInstitute/CNS_2021/blob/main/1_Synaptic_Physiology/SynPhys_Tutorial.ipynb
https://colab.research.google.com/github/AllenInstitute/CNS_2021/blob/main/1_Synaptic_Physiology/SynPhys_Tutorial.ipynb
https://github.com/electronicvisions/spike-based-sampling
https://menloservice.sandia.gov/http://neuralensemble.org/PyNN/
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3.2.3. Code and Status
I plan to use Python 3 along with the PyTorch neural network Python package to implement 

the Boltzmann machine (and potentially other networks). In order to implement spiking neurons, I 
plan to utilize BindsNET (https://github.com/BindsNET/bindsnet) (Hazan et al., 2018), which is a 
python spiking neuron package oriented toward machine learning (as opposed to understanding the 
brain) with an active user base.  The development of this code is not yet complete. The code 
repository is located at https://cee-gitlab.sandia.gov/cmteete/stpnetwork and will be made available 
as it develops.
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4. FUTURE WORK
Although the code to test STP algorithms is not yet complete, it is likely I will continue this 

work as part of the ASC Beyond Moore’s Law project aimed to develop algorithms for 
neuromorphic hardware.  STP is a fundamental phenomenon within the brain and will likely be an 
instrumental algorithm for complex capabilities in spiking neural networks
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APPENDIX A. PROJECT SUMMARIES

A.1. New Proposal
20-1019 Proposal Summary: 

Renewal Status: New
Title: Short Term Plasticity for Artificial Neural Networks Investment Area: Computing and 
Information Sciences Principal Investigator: TEETER,CORINNE MICHELLE ,01421 
Project Manager: WAGNER,JOHN S. ,01421
Derivative Classifier: WAGNER,JOHN S. ,01421
Project Intent: Discover
Team Members: TEETER,CORINNE MICHELLE, 01421 

Unclassified Unlimited Release (UUR) Congressional Summary: 

Current artificial intelligence (AI) is power hungry and inflexible. Utilizing brain inspired 
algorithms will likely enable AI to adapt and run on low-powered systems. This project 
focuses on a phenomenon found in the brain termed short-term plasticity which can be 
implemented on low-powered neuromorphic platforms. Preliminarily implementation has 
demonstrated that this plasticity can enable AI to simultaneously classify difficult data 
and adapt to changing environments. This research will characterize short-term 
plasticity in order to realize adaptive and low powered AI. It will impact machine learning 
and AI capabilities in future Exascale systems and embedded national security systems. 

Summary of Research Approach and Project Plan: 

Despite the successes of modern day artificial neural networks (ANNs), there are 
severe drawbacks. They are power hungry, and a great deal of labeled data or 
simulation time is required for training, making real world problems computationally 
expensive or infeasible. Furthermore, deep neural networks (DNNs) implementing 
supervised learning need to be retrained when the statistics of the input change. For a 
more detailed description of the deficiencies of modern artificial intelligence (AI), please 
see the “Achieve efficient learning for AI systems” section on page 101 of the DOE, AI 
for Science report. The human brain provides proof that a network can learn using limited 
amounts of data, transfer knowledge between different tasks, and easily adapt to 
changing environments: all while consuming extremely low power. 

There are many principles ubiquitously found across the brain that are not yet 
implemented in modern ANNs; it is likely that their implementation will yield more 
capable and low-powered AI useful for national security applications. However, as more 
brain-like complexity is introduced, more parameters will be necessary in the 
implementation. Finding the right combination of parameters that yield high performance 
will be challenging, if not impossible. Here, again we can turn to the brain for guidance. 
Characterizing how the brain implements phenomena will help limit the parameter 
space. 

This project focuses on one brain phenomena, short term plasticity (STP), and aim to 
help create a foundation for implementation in ANNs. STP has the capability to enable 
many computations (Abbott and Regehr, 2004; Mongillo et al., 2008; Buonomano and 
Maass, 2009). Notably, recent work by Leng and colleagues (2018), have shown that 
spiking networks with STP can simultaneously perform well at classification and 
become good generative models. I aim to characterize STP using a large data set 
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collected by the Allen Institute for Brain Science (AIBS; https://alleninstitute.org /what-
we-do/brain-science/). This characterization of STP will help provide a foundation for 
realistic implementations in ANNs. In addition, it is likely that this characterization will 
contribute to a pipeline manuscript currently being assembled at AIBS describing their 
methods and findings. In the event STP characterization and/or contribution to the 
manuscript is not possible, I will use current knowledge of STP to extend the work of 
Leng and colleagues (2018). 

Challenge and Innovation: 

This work will characterize and/or define types of short-term plasticity (STP) between 
different types of neurons. Linear and non-linear data analysis and dimensionality 
reduction techniques will be utilized to characterize STP in a new dataset released by 
the Allen Institute for Brain Science (https://portal.brain-
map.org/explore/connectivity/synaptic- physiology). 

Summary of FY20 Project Plan: 

Month 1: Acquire and clean data. 

Month 2 and 3: Perform basic PCA and other standard dimensionality techniques. 
Access how different standard characteristics are distributed across the space 

End of month 3: Determine if interesting results are emerging and if there is a 
publication avenue with the Allen Institute for Brain Science or another potential 
publication avenue. 

If yes: month 3-6: Refine analysis, create figures and write publication along with SAND 
report. 

In no: month 3-6: Pursue advancing current minimal STP implementation of Leng et al., 
2018 and complete SAND report. 

Tie to Mission: 

Recent advances in Artificial intelligence (AI) have transformed the world and national 
security. Current AI has power and training limitations; however, technology is quickly 
evolving. Biologically inspired algorithms will likely be the next breakthrough that 
enables low-power, next generation scientific HPC platforms for national security 
programs. This LDRD will impact DOE, NNSA, DHS, ASC, CSSE, and ATDM programs 
by contributing to new capabilities in machine learning and emerging/exascale 
computing programs. It will help provide new low-power computing and communication 
capabilities for embedded sensors and autonomous machines and help enable a new 
generation of ‘smart’ transportation, energy production and grid resiliency. 

A.2. Proposal Continuation
21-1058 Proposal Summary 

Renewal Status: Continuation
Title: Short Term Plasticity for Artificial Neural Networks Investment Area: Computing and 
Information Sciences Principal Investigator: TEETER,CORINNE MICHELLE ,01421 Project 
Manager: WAGNER,JOHN S. ,01421
Derivative Classifier: WAGNER,JOHN S. ,01421
Project Intent: Discover
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Team Members: TEETER,CORINNE MICHELLE, 01421
Unclassified Unlimited Release (UUR) Congressional Summary: 

Current artificial intelligence (AI) is power hungry and inflexible. Utilizing brain inspired 
algorithms will likely enable AI to adapt and run on low-powered systems. This project focuses 
on a phenomenon found in the brain termed short-term plasticity which can be implemented 
on low-powered neuromorphic
platforms. Preliminarily implementation has demonstrated that this plasticity can enable AI to 
simultaneously classify difficult data and adapt to changing environments. This research will 
characterize short-term plasticity in order to realize adaptive and low powered AI. It will impact 
machine learning and AI capabilities in future Exascale systems and embedded national security 
systems. 

Project Description: 

Despite the successes of modern day artificial neural networks (ANNs), there are severe 
drawbacks. They are power hungry, and a great deal of labeled data or simulation time is 
required for training, making real world problems computationally expensive or infeasible. 
Furthermore, deep neural networks (DNNs) implementing supervised learning need to be 
retrained when the statistics of the input change. For a more detailed description of the 
deficiencies of modern artificial intelligence (AI), please see the “Achieve efficient learning for 
AI systems” section on page 101 of the DOE, AI for Science report. The human brain provides 
proof that a network can learn using limited amounts of data, transfer knowledge between 
different tasks, and easily adapt to changing environments: all while consuming extremely low 
power. 

There are many principles ubiquitously found across the brain that are not yet implemented in 
modern ANNs; it is likely that their implementation will yield more capable and low-powered AI 
useful for national security applications. However, as more brain-like complexity is introduced, 
more parameters will be necessary in the implementation. Finding the right combination of 
parameters that yield high performance will be challenging, if not impossible. Here, again we 
can turn to the brain for guidance. Characterizing how the brain implements phenomena will 
help limit the parameter space. 

This project focuses on one brain phenomena, short term plasticity (STP), and aim to help 
create a foundation for implementation in ANNs. STP has the capability to enable many 
computations (Abbott and Regehr, 2004; Mongillo et al., 2008; Buonomano and Maass, 2009). 
Notably, recent work by Leng and colleagues (2018), have shown that spiking networks with 
STP can simultaneously perform well at classification and become good generative models. I 
aim to characterize STP using a large data set collected by the Allen Institute for Brain Science 
(AIBS; https://alleninstitute.org/what-we-do/brain-science/). This characterization of STP will 
help provide a foundation for realistic implementations in ANNs. In addition, it is likely that this 
characterization will contribute to a pipeline manuscript currently being assembled at AIBS 
describing their methods and findings. In the event STP characterization and/or contribution to 
the manuscript is not possible, I will use current knowledge of STP to extend the work of Leng 
and colleagues (2018). 

Previous Accomplishments: 

Recent implementations of short term plasticity (STP) mechanisms in artificial neural networks 
(ANNs) are starting to reveal their benefits in engineered systems. Here, I aim to use biological 
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data provided by the Allen Institute for Brain Science (AIBS) to explore possible 
characterizations of STP so they can be used to guide and constrain STP implementations in 
ANNs. 

Accomplishments: 

Synaptic physiology database and software package to access data have been acquired from 
the Allen Institute for Brain Science (AIBS).
Tools and data are up and running on local computer.
At the end of this fiscal year I will have demonstrated: 

If there is low dimensional embedding provided by methods such as principle component 
analysis (PCA), autoencoders, t-distributed stochastic embedding (t-SNE), etc., that adequately 
represents the high dimensional data.
How well supervised learning methods such as random forests, support vector machines can 
differentiate preconceived biological characterizations.
If unsupervised learning methods such as k-means, gaussian mixtures, affinity propagation, and 
hierarchical clustering will reveal preconceived biological characterizations or expose new 
classification paradigms.
It is possible that the space of features is continuous which is also important knowledge for 
constraining network parameters. 

Unfortunately, I believe that parameters for an STP model fit to raw data will be most useful for 
classification and ANN implementations. Someone at the AIBS is actively working on this, but 
they have not yet achieved this feat. If it is achieved, the code above will be ready to run on 
resulting parameters. 

Summary of FY21 Project Plan: FY21 Project Plan: 

Discuss output of analysis with the Allen Institute for Brain Science and determine if it will go 
into their pipeline publication. 

If it looks promising, refine analysis and figures. 

If no, start on ANN network implementation below. SAND report 

In the event plus-up money becomes available: 

In order to utilize STP in ANNs for national security applications, it would be ideal to have an in- 
house implementation. I plan to extend the work of Leng Et Al, 2018 by implementing 
biologically constrained STP.
Implementation and benchmarking of above ANN on new Loihi neuromorphic chip. 

Tie to Mission: 

Recent advances in Artificial intelligence (AI) have transformed the world and national security. 
Current AI has power and training limitations; however, technology is quickly evolving. 
Biologically inspired algorithms will likely be the next breakthrough that enables low-power, 
next generation scientific HPC platforms for national security programs. This LDRD will impact 
DOE, NNSA, DHS, ASC, CSSE, and ATDM programs by contributing to new capabilities in 
machine learning and emerging/exascale computing programs. It will help provide new low-
power computing and communication capabilities for embedded sensors and autonomous 
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machines and help enable a new generation of ‘smart’ transportation, energy production and 
grid resiliency. 
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