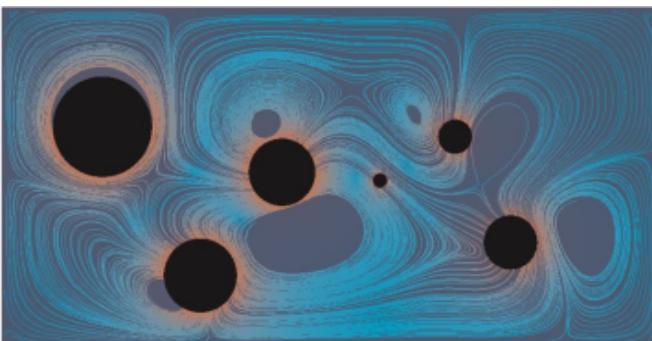
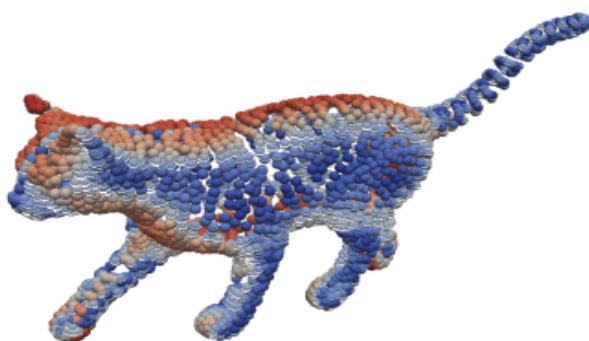
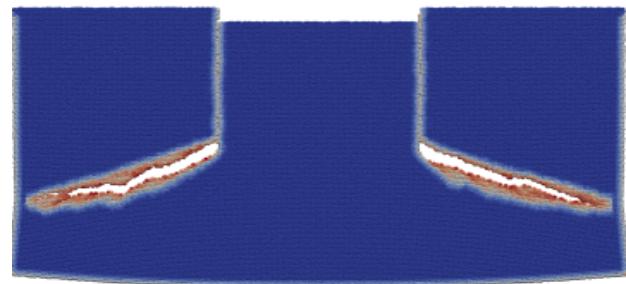


Exceptional service in the national interest



Discovery of Whitney Forms for construction of structure preserving data-driven models

Jonas Actor, Xiaozhe Hu, Andy Huang, **Nat Trask**
Center for Computing Research
Sandia National Laboratories

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Problem: Applying AI/ML data-driven models in high-consequence engineering applications require guarantees to establish notions of trust

(1) How to provide convergence guarantees

Designing architectures + optimizers that provide notion of “grid convergence” critical for verification and validation

(2) How to build surrogates that guarantee stability, physical realizability + generalizability?

Unification of mimetic PDE discretization, algebraic topology and inverse problems

Problem: Applying AI/ML data-driven models in high-consequence engineering applications require guarantees to establish notions of trust

(1) How to provide convergence guarantees

Designing architectures + optimizers that provide notion of “grid convergence” critical for verification and validation

(2) How to build surrogates that guarantee stability, physical realizability + generalizability?

Unification of mimetic PDE discretization, algebraic topology and inverse problems

Problem: Applying AI/ML data-driven models in high-consequence engineering applications require guarantees to establish notions of trust

(1) How to provide convergence guarantees

Designing architectures + optimizers that provide notion of “grid convergence” critical for verification and validation

(2) How to build surrogates that guarantee stability, physical realizability + generalizability?

Unification of mimetic PDE discretization, algebraic topology and inverse problems

SciML as reliable as traditional FEM

Todays talk will focus on structure preservation, but partition-of-unity turns out to address first issue as well

Exceptional service in the national interest

Sandia National Laboratories

Hierarchical partition of unity networks
Fast multilevel training

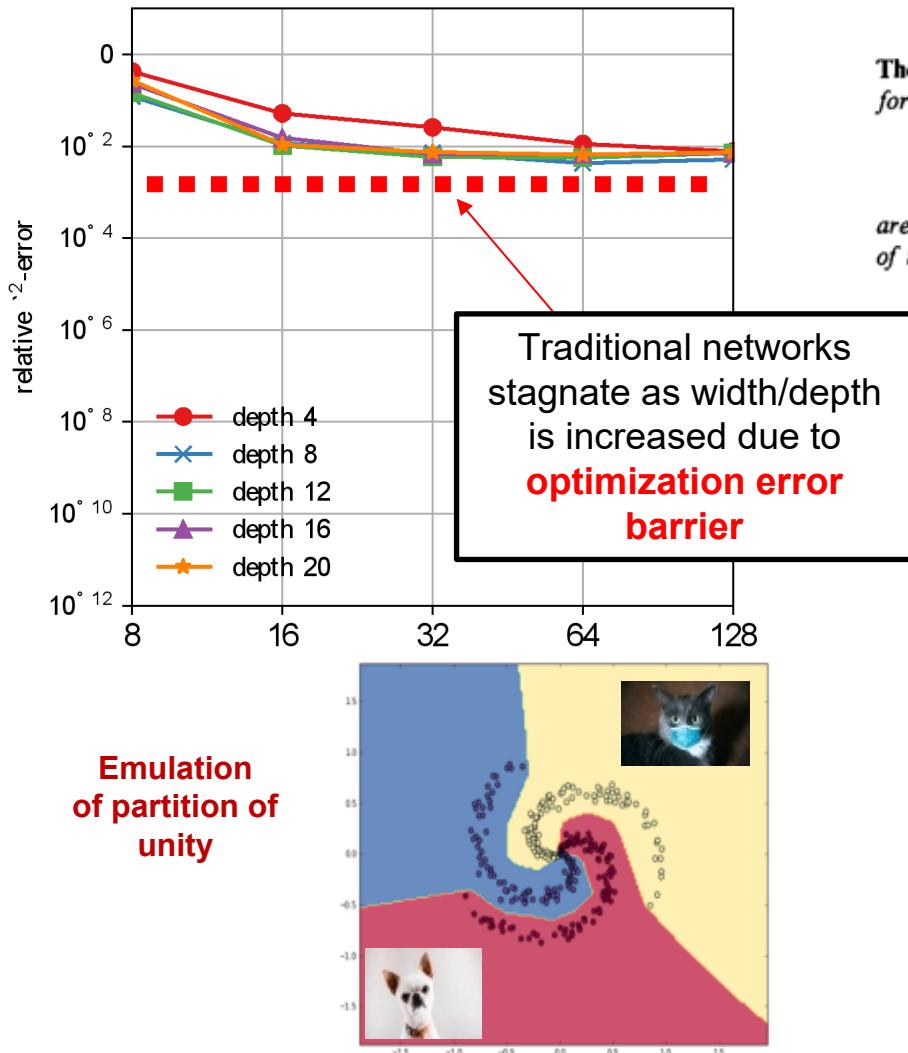
Nat Trask
Center for Computing Research
Sandia National Laboratories

Hierarchical partition of unity networks: fast multilevel training

118 views Aug 31, 2022 Title: Hierarchical partition of unity networks: fast multilevel training

1. Cyr, Eric C., et al. "Robust training and initialization of deep neural networks: An adaptive basis viewpoint." *Mathematical and Scientific Machine Learning*. PMLR, (2020).
2. Patel, Ravi G., et al. "A block coordinate descent optimizer for classification problems exploiting convexity." *arXiv preprint arXiv:2006.10123* (2020). AAAI-MLPS
3. Lee, Kookjin, et al. "Partition of unity networks: deep hp-approximation." *arXiv preprint arXiv:2101.11256* (2021) AAAI-MLPS
4. Trask, N., Gulian, M. "Probabilistic partition of unity networks: clustering based deep approximation."
5. **Trask, Henriksen, Martinez, Cyr "Hierarchical partition of unity networks: fast multilevel training."** Accepted to MSML2022, preprint on Researchgate
6. Armstrong, E., Hansen, M.A., Knaus, R.C., Trask, N.A., Hewson, J.C. and Sutherland, J.C., 2022. Accurate Compression of Tabulated Chemistry Models with Partition of Unity Networks. *Combustion Science and Technology*, pp.1-18.

How do DNNs work? The problem with universal approximation



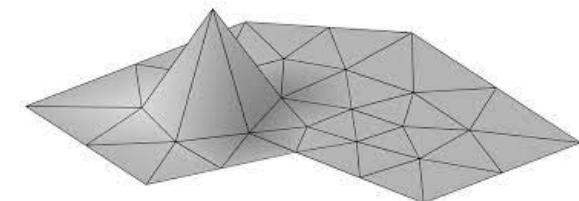
Theorem 2. Let σ be any continuous sigmoidal function. Then finite sums of the form

$$G(x) = \sum_{j=1}^N \alpha_j \sigma(y_j^T x + \theta_j)$$

are dense in $C(I_n)$. In other words, given any $f \in C(I_n)$ and $\varepsilon > 0$, there is a sum, $G(x)$, of the above form, for which

$$|G(x) - f(x)| < \varepsilon \quad \text{for all } x \in I_n.$$

Recent work (Opschoor 2020) establishes more constructive interpretation



Partition of unity

Definition: *Partition of unity (POU)*

A collection of functions $\{\phi_i\}_{i=1,\dots,N}$ satisfying

- $\phi_i > 0$
- $\sum_i \phi_i = 1$

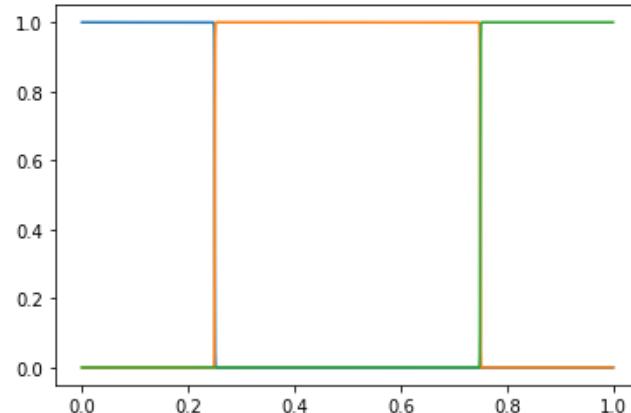
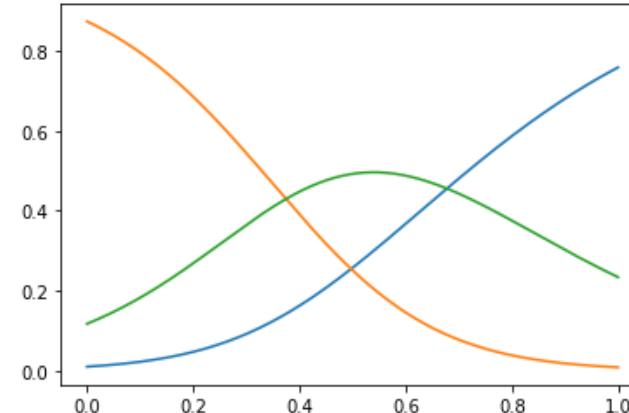
Example:

Consider a partition of $\Omega \subset \mathbb{R}^d$ into disjoint cells $\Omega = \bigcup_i C_i$. Then the indicator functions $\phi_i(x) = \mathbb{1}_{C_i}(x)$ form a POU.

Key role:

Localizing approximation
Identifying charts of atlas

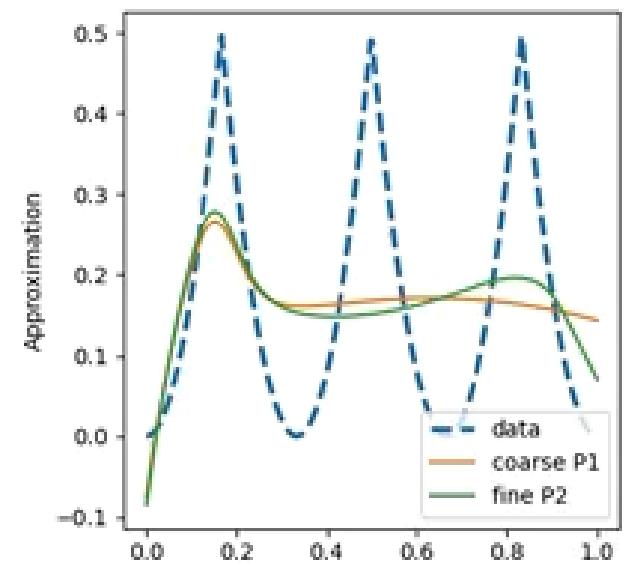
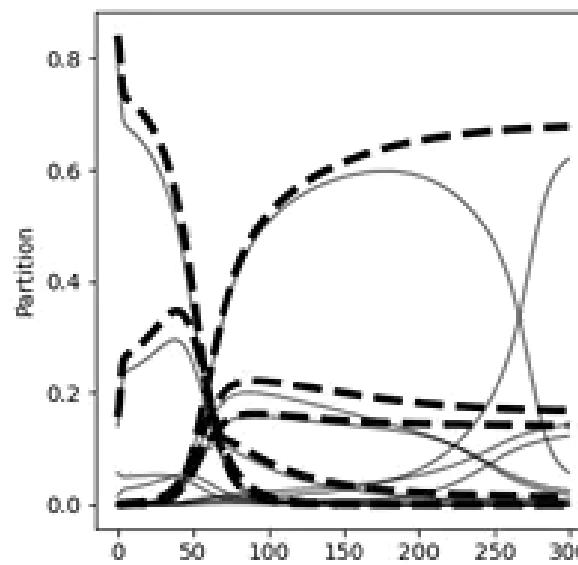
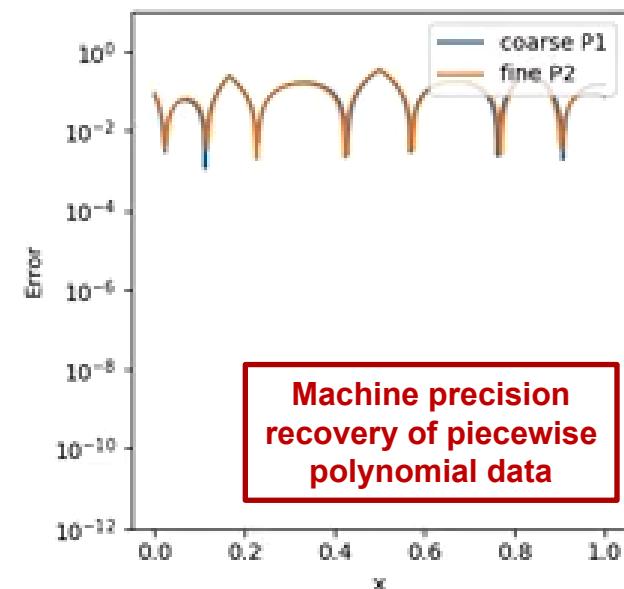
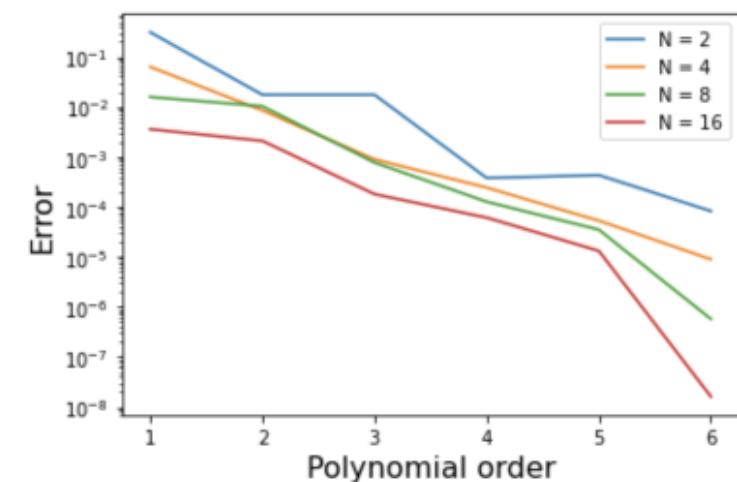
$$\phi_i(x) = \text{softmax} \circ NN(x; \theta)$$



POU corresponding to Cartesian mesh vs learnable POU with non-disjoint support

Fast multilevel deep approximation

All results shown for a single set of hyperparameters!



Spectral convergence for smooth data

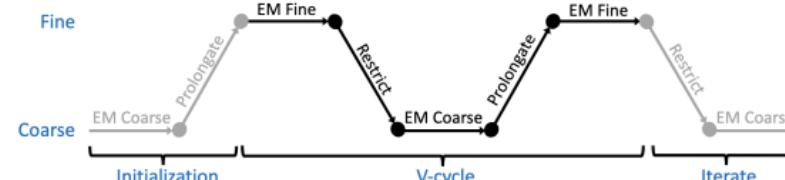


Figure 1: A two-level “V-cycle” for training the hierarchical POU networks. For details in pseudo-code see Algorithm 4.1, where the figure depicts the case $S_{pre} = 0$, $S_{coarse} = 1$ and $S_{post} = 1$.

Trask, Henriksen, Martinez, Cyr “Hierarchical partition of unity networks: fast multilevel training.” MSML2022

For physics: Learning primal/dual de Rham complexes

We first briefly recall some definitions and basic results from exterior algebra and differential forms, first introducing the abstract framework before specializing to the finite element exterior calculus (FEEC) setting. A *graded vector space* is a vector space V that can be expressed as $V = \bigoplus_{k=-\infty}^{\infty} V_k$, where V_k are subspaces. Introducing the linear map $\partial_k : V_k \mapsto V_{k-1}$ called the *boundary operator*, with the property $\partial_k \circ \partial_{k+1} = 0$, we define a *chain complex* as follows

$$\cdots \longrightarrow V_{k+1} \xrightarrow{\partial_{k+1}} V_k \xrightarrow{\partial_k} V_{k-1} \longrightarrow \cdots,$$

where we refer to elements $\Omega \in V_k$ as *chains* and associate with each a real-valued *cochain* $\omega \in V^k$, adopting the convention of using subscripts to denote sets of chains (V_k) and superscripts for sets of cochains (V^k). Given *coboundary* maps $d^k : \Lambda^k(\Omega) \mapsto \Lambda^{k+1}(\Omega)$ satisfying $d^k \circ d^{k-1} = 0$, and *codifferential* maps $d^k : V^k \mapsto V^{k+1}$ satisfying $d^{k-1} \circ d^k = 0$, we finally arrive at the following primal and dual *cochain complexes*.

$$\cdots \longrightarrow V^{k-1} \xrightarrow{d^{k-1}} V^k \xrightarrow{d^k} V^{k+1} \longrightarrow \cdots \tag{1}$$

$$\cdots \longleftarrow V^{k-1} \xleftarrow{d^{k-1}} V^k \xleftarrow{d^k} V^{k+1} \longleftarrow \cdots \tag{2}$$

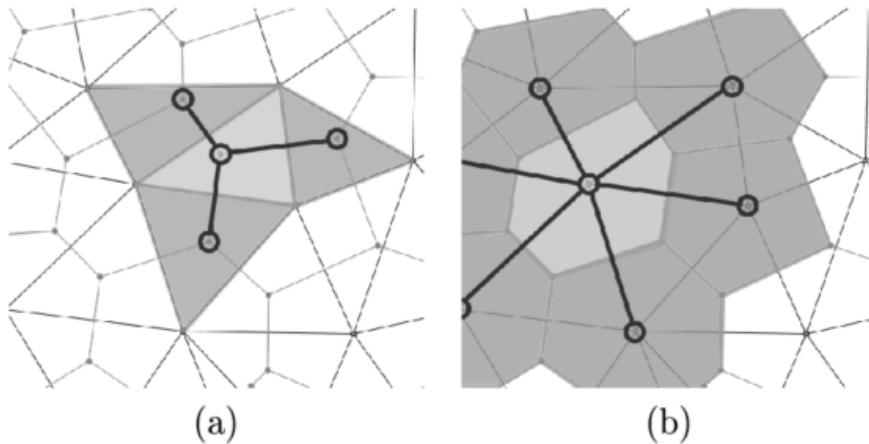
Example: continuous de Rham complex in 3D

$$0 \longrightarrow H_0(\text{grad}, \Omega) \xrightarrow{\text{grad}} H_0(\text{curl}, \Omega) \xrightarrow{\text{curl}} H_0(\text{div}, \Omega) \xrightarrow{\text{div}} L^2(\Omega) \longrightarrow 0.$$

Graph EC, DEC, FEEC... and they're all related

Primal Complex $\dots \longrightarrow V^{k-1} \xrightarrow{d^{k-1}} V^k \xrightarrow{d^k} V^{k+1} \longrightarrow \dots$

Dual Complex $\dots \longleftarrow V^{k-1} \xleftarrow{d^{k-1}} V^k \xleftarrow{d^k} V^{k+1} \longleftarrow \dots$



Discrete exterior calculus: a framework for computer simulation and geometric analysis based on advanced mathematical concepts
• R. Torres, Carlos R. S. Camilo (2016) Computer Science

D. N. Arnold and A. Logg, [Periodic Table of the Finite Elements](#), SIAM News, vol. 47 no. 9, November 2014.

DEC/graph
DOFs on differential forms of
primal/dual mesh/graph, using
Stokes theorem to derive discrete
differential operators

FEEC
Primal FEM space interpolating
differential forms, inducing dual
space through duality

Previous work with machine learnable graph calculus

$$\begin{array}{ccccccccc}
 C^0 & \xleftarrow{\mathbf{d}_0^*} & C^1 & \xleftarrow{\mathbf{d}_1^*} & C^2 & \xleftarrow{\mathbf{d}_2^*} & C^3 & \xleftarrow{\mathbf{d}_3^*} & \cdots \xleftarrow{\mathbf{d}_{d-1}^*} C^d \\
 \downarrow \mathbf{D}_0^{-1} & & \downarrow \mathbf{D}_1^{-1} & & \downarrow \mathbf{D}_2^{-1} & & \downarrow \mathbf{D}_3^{-1} & & \downarrow \mathbf{D}_d^{-1} \\
 C^0 & \xleftarrow{\delta_0^*} & C^1 & \xleftarrow{\delta_1^*} & C^2 & \xleftarrow{\delta_2^*} & C^3 & \xleftarrow{\delta_3^*} & \cdots \xleftarrow{\delta_{d-1}^*} C^d \\
 \downarrow \mathbf{B}_0 & & \downarrow \mathbf{B}_1 & & \downarrow \mathbf{B}_2 & & \downarrow \mathbf{B}_3 & & \downarrow \mathbf{B}_d \\
 C^0 & \xrightarrow{\mathbf{d}_0} & C^1 & \xrightarrow{\mathbf{d}_1} & C^2 & \xrightarrow{\mathbf{d}_2} & C^3 & \xrightarrow{\mathbf{d}_3} & \cdots \xrightarrow{\mathbf{d}_{d-1}} C^d
 \end{array}$$

$$\mathbf{B}_1 \delta_0 = \text{CURL} \mathbf{B}_0, \quad \mathbf{B}_2 \delta_1 = \text{DIV} \mathbf{B}_1,$$

$$\delta_0^* \mathbf{D}_0^{-1} = \text{CURL}^* \mathbf{D}_1^{-1}, \quad \mathbf{D}_1^{-1} \delta_1^* = \text{GRAD}^* \mathbf{D}_2^{-1}$$

KEY IDEA:

Augment graph exterior calculus with machine learnable metric information \mathbf{B}/\mathbf{D} which can be used to obtain Hodge Laplacians and fit to data

“Enforcing exact physics in scientific machine learning: a data-driven exterior calculus on graphs.” Trask, et al. JCP 2022

Theorem 3.1. *The discrete derivatives \mathbf{d}_k in (11) form an exact sequence if the simplicial complex is exact, and in particular $\mathbf{d}_{k+1} \circ \mathbf{d}_k = 0$. In \mathbb{R}^3 , we have $\text{CURL}_h \circ \text{GRAD}_h = \text{DIV}_h \circ \text{CURL}_h = 0$.*

Theorem 3.2. *The discrete derivatives \mathbf{d}_k^* in (11) form an exact sequence of the simplicial complex is exact, and in particular $\mathbf{d}_k^* \circ \mathbf{d}_{k+1}^* = 0$. In \mathbb{R}^3 , $\text{DIV}_h^* \circ \text{CURL}_h^* = \text{CURL}_h^* \circ \text{GRAD}_h^* = 0$.*

Theorem 3.3 (Hodge Decomposition). *For C^k , the following decomposition holds*

$$C^k = \text{im}(\mathbf{d}_{k-1}) \bigoplus_k \ker(\Delta_k) \bigoplus_k \text{im}(\mathbf{d}_k^*), \quad (17)$$

where \bigoplus_k means the orthogonality with respect to the $(\cdot, \cdot)_{\mathbf{D}_k \mathbf{B}_k^{-1}}$ -inner product.

Theorem 3.4 (Poincaré inequality). *For each k , there exists a constant $c_{P,k}$ such that*

$$\|\mathbf{z}_k\|_{\mathbf{D}_k \mathbf{B}_k^{-1}} \leq c_{P,k} \|\mathbf{d}_k \mathbf{z}_k\|_{\mathbf{D}_{k+1} \mathbf{B}_{k+1}^{-1}}, \quad \mathbf{z}_k \in \text{im}(\mathbf{d}_k^*),$$

and another constant $c_{P,k}^*$ such that

$$\|\mathbf{z}_k\|_{\mathbf{D}_k \mathbf{B}_k^{-1}} \leq c_{P,k}^* \|\mathbf{d}_{k-1}^* \mathbf{z}_k\|_{\mathbf{D}_{k-1} \mathbf{B}_{k-1}^{-1}}, \quad \mathbf{z}_k \in \text{im}(\mathbf{d}_{k-1}).$$

Thus, for $\mathbf{u}_k \in C^k$, we have

$$\inf_{\mathbf{h}_k \in \ker(\Delta_k)} \|\mathbf{u}_k - \mathbf{h}_k\|_{\mathbf{D}_k \mathbf{B}_k^{-1}} \leq C \left(\|\mathbf{d}_k \mathbf{u}_k\|_{\mathbf{D}_{k+1} \mathbf{B}_{k+1}^{-1}} + \|\mathbf{d}_{k-1}^* \mathbf{u}_k\|_{\mathbf{D}_{k-1} \mathbf{B}_{k-1}^{-1}} \right),$$

where constant $C > 0$ only depends on $c_{P,k}$ and $c_{P,k}^*$.

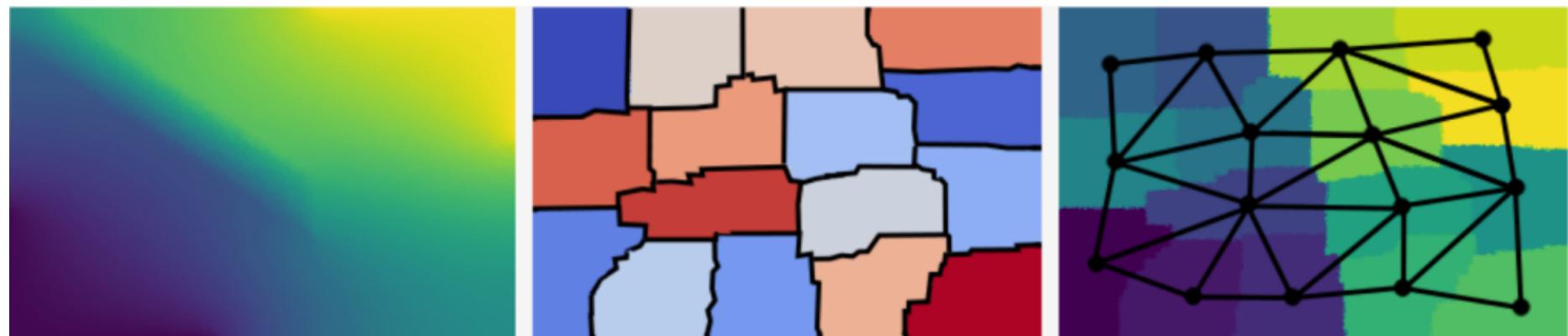
Theorem 3.5 (Invertibility of Hodge Laplacian). *The k^{th} -order Hodge Laplacian Δ_k is positive-semidefinite, with the dimension of its null-space equal to the dimension of the corresponding homology $H^k = \ker(\mathbf{d}_k)/\text{im}(\mathbf{d}_{k-1})$.*

Using DDEC to discover structure preserving surrogates

Structure preserving trainable exterior derivatives

$$d_0^* \mathbf{F} = f$$
$$\mathbf{F} + \xi d_0 \phi + \mathcal{N}_\eta(\phi) = 0$$

Black box NN flux



High-fidelity PDE solution

Post-process onto a coarsened graph

Average over partitions to obtain training data

General optimization problem

Fluxes:

$$\mathbf{w}_{k+1} = \mathbf{d}_k \mathbf{u}_k + \epsilon \mathcal{N} \mathcal{N}(\mathbf{d}_k \mathbf{u}_k; \xi),$$

Conservation:

$$\mathbf{d}_{k-1}^* \mathbf{d}_{k-1} \mathbf{u}_k + \mathbf{d}_k^* \mathbf{w}_{k+1} = \mathbf{f}_k.$$

→ $a(\mathbf{v}, \mathbf{u}; \mathbf{B}, \mathbf{D}) + N_{\mathbf{v}}[\mathbf{u}; \xi] = b(\mathbf{v})$

Invertible bilinear
form

Nonlinear
perturbation

If we can fit the model to data
while imposing equality
constraint, then during training
we restrict to manifold of
solvable models preserving
physics

$$\underset{\mathbf{B}, \mathbf{D}, \xi}{\operatorname{argmin}}, \|\mathbf{w} - \mathbf{w}_{\text{data}}\|^2$$

such that $\mathcal{L}[\mathbf{w}, \mathbf{u}; \mathbf{B}, \mathbf{D}, \xi] = 0$

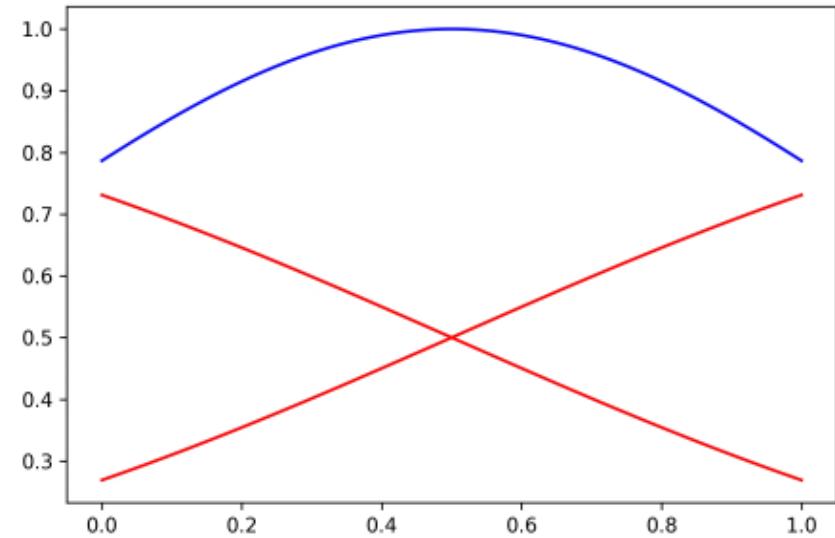
Theorem 3.6. *The equation (24) has at least one solution $\mathbf{u}_k \in \mathbb{V}$ satisfies*

$$\|\mathbf{u}_k\| \leq \frac{\|\mathbf{f}\|}{(C_p - C_N)}. \quad (26)$$

Can we connect to FEEC to **discover** graph?

Red: POU on cells
 Blue: Boundary of
 POUS

In limit of disjoint
 partitions, want to
 recover oriented
 Dirac distribution



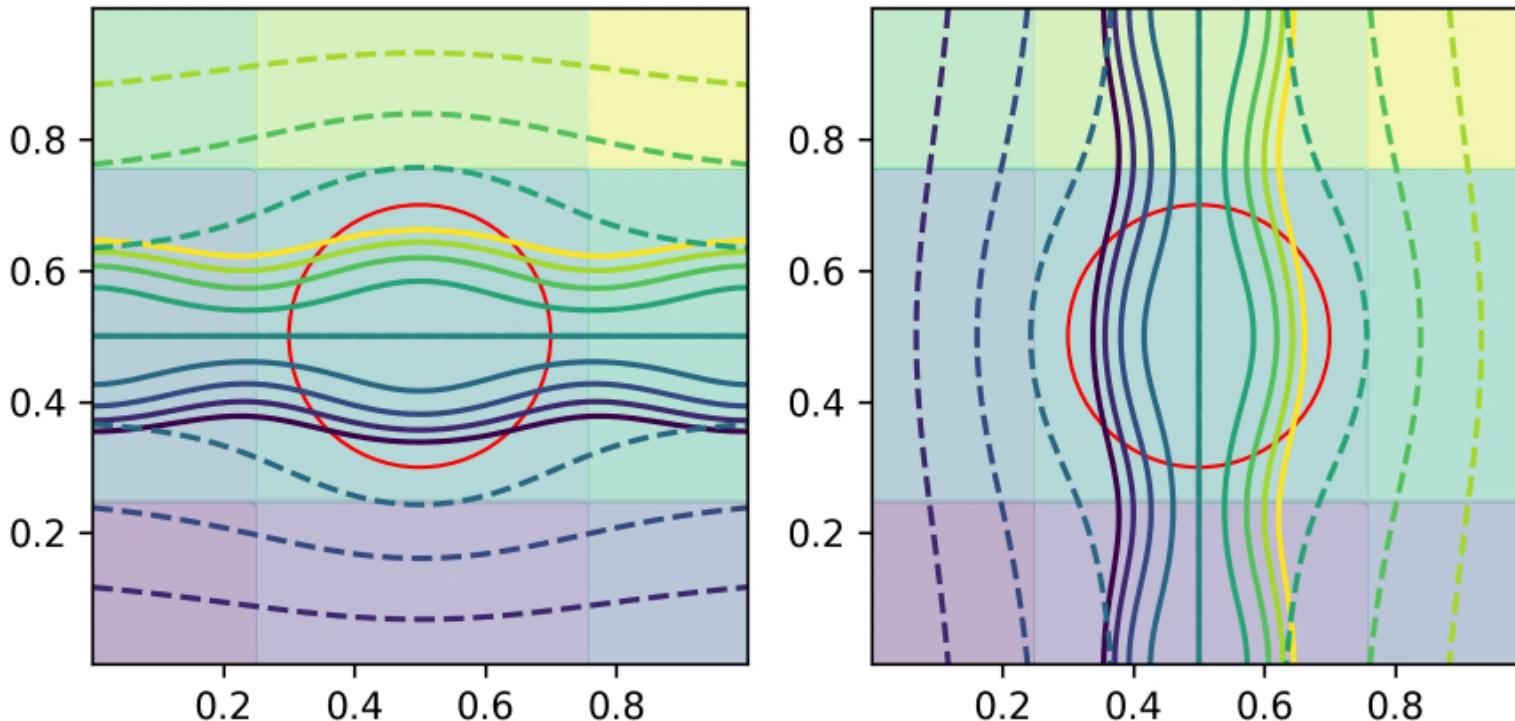
IDEA:

Use Whitney forms to learn physically relevant control volumes which best describe physics

$$\int_C \nabla \cdot \mathbf{u} dx = \int_{f \in \partial C} \mathbf{u} \cdot d\mathbf{A}$$

POUs generalize cell ↗ ↑ Defining boundary operator provides exterior derivative

Before we get in the weeds – what we’re building toward



Obtain a finite element with microstructure embedded in terms of local conservation balances, **bridging geometric and graph perspective**

Whitney forms defining data-driven differential forms

- Let $\psi_i = \phi_i$. Define a function space $V_0 = \{\sum_i c_i \psi_i(x) \mid c_i \in \mathbb{R}^{N_0}\}$.
- Integrating by parts we obtain

$$\begin{aligned}
 \int_{\Omega} \psi_i \nabla \cdot \mathbf{u} &= - \int_{\Omega} \nabla \phi_i \cdot \mathbf{u} + \int \phi_i \mathbf{u} \cdot dA \\
 \text{Multiply by } 1 = \sum_j \phi_j &= - \sum_j \int_{\Omega} \phi_j \nabla \phi_i \cdot \mathbf{u} + \int \phi_i \mathbf{u} \cdot dA \\
 \text{Add } 0 = \sum_j \nabla \phi_j &= \sum_{j \neq i} \int_{\Omega} (\phi_i \nabla \phi_j - \phi_j \nabla \phi_i) \cdot \mathbf{u} + \int \phi_i \mathbf{u} \cdot dA \\
 &= \sum_{j \neq i} \int_{\Omega} \psi_{ij} \cdot \mathbf{u} + \int \phi_i \mathbf{u} \cdot dA
 \end{aligned}$$

where $\psi_{ij} = \phi_i \nabla \phi_j - \phi_j \nabla \phi_i$, and we note that $\psi_{ij} = -\psi_{ji}$.

Compare to: $V_i \nabla \cdot \mathbf{u}_i = \sum_j \mathbf{A}_{ij} \cdot \mathbf{u}_{ij}$

Extensions to de Rham complex on arbitrary manifolds

Replace IBP with
Leibniz rule:

$$\int_{\Omega} (d\omega_k) \wedge \omega_l = (-1)^{k+1} \int_{\Omega} \omega_k \wedge (d\omega_l) + \int_{\partial\Omega} \text{tr } \omega_k \wedge \text{tr } \omega_l$$

Inductively define Whitney
form shape functions by
mimicking construction:

$$\psi_{j_0 \dots j_k}^k = k! \sum_{i=0}^k (-1)^i \phi_{j_i} d\phi_{j_0} \wedge \dots \wedge \widehat{d\phi_{j_i}} \wedge \dots \wedge d\phi_{j_k}$$

Obtain discrete
"differential form" DOFs
that induce coboundary
operator:

$$U_{j_0 \dots j_{k+1}} = \int_{\omega} u \wedge \psi_{j_0 \dots j_{k+1}}^{k+1}$$

$$D_k(U)_{j_0 \dots j_k} = (-1)^{n-1} \sum_{j_{k+1} \neq j_0, \dots, j_k} U_{j_0 \dots j_{k+1}} + \int \text{tr } u \wedge \text{tr } \psi_{j_0 \dots j_k}^k$$

Preserve exact sequence
property to induce de
Rham complex:

$$D_k \circ D_{k-1}(U)_{j_0 \dots j_{k-1}} = \int_{\Omega} d(du) \wedge \phi_{j_0 \dots j_k}^k = 0$$

Learning Whitney forms induces a graph complex

Given discrete operators

$$DIV(U)_i := \sum_{j \neq i} U_{ij}, \quad U_{ij} = \int_{\Omega} \psi_{ij} \cdot \mathbf{u}, \quad \forall \mathbf{u} \in H_0(\text{div})$$

$$CURL(U)_{ij} := \sum_{k \neq i,j} U_{ijk}, \quad U_{ijk} = 2 \int_{\Omega} \psi_{ijk} \cdot \mathbf{u}, \quad \forall \mathbf{u} \in H_0(\text{curl})$$

$$GRAD(U)_{ijk} := \sum_{l \neq i,j,k} U_{ijkl}, \quad U_{ijkl} = 6 \int_{\Omega} \psi_{ijkl} u, \quad \forall u \in H_0(\text{grad})$$

We obtain the expression unifying all 3 perspectives

$$DIV = \delta_0^T \mathbf{M}_1, \quad CURL = 2 \delta_1^T \mathbf{M}_2, \quad GRAD = 6 \delta_2^T \mathbf{M}_3$$

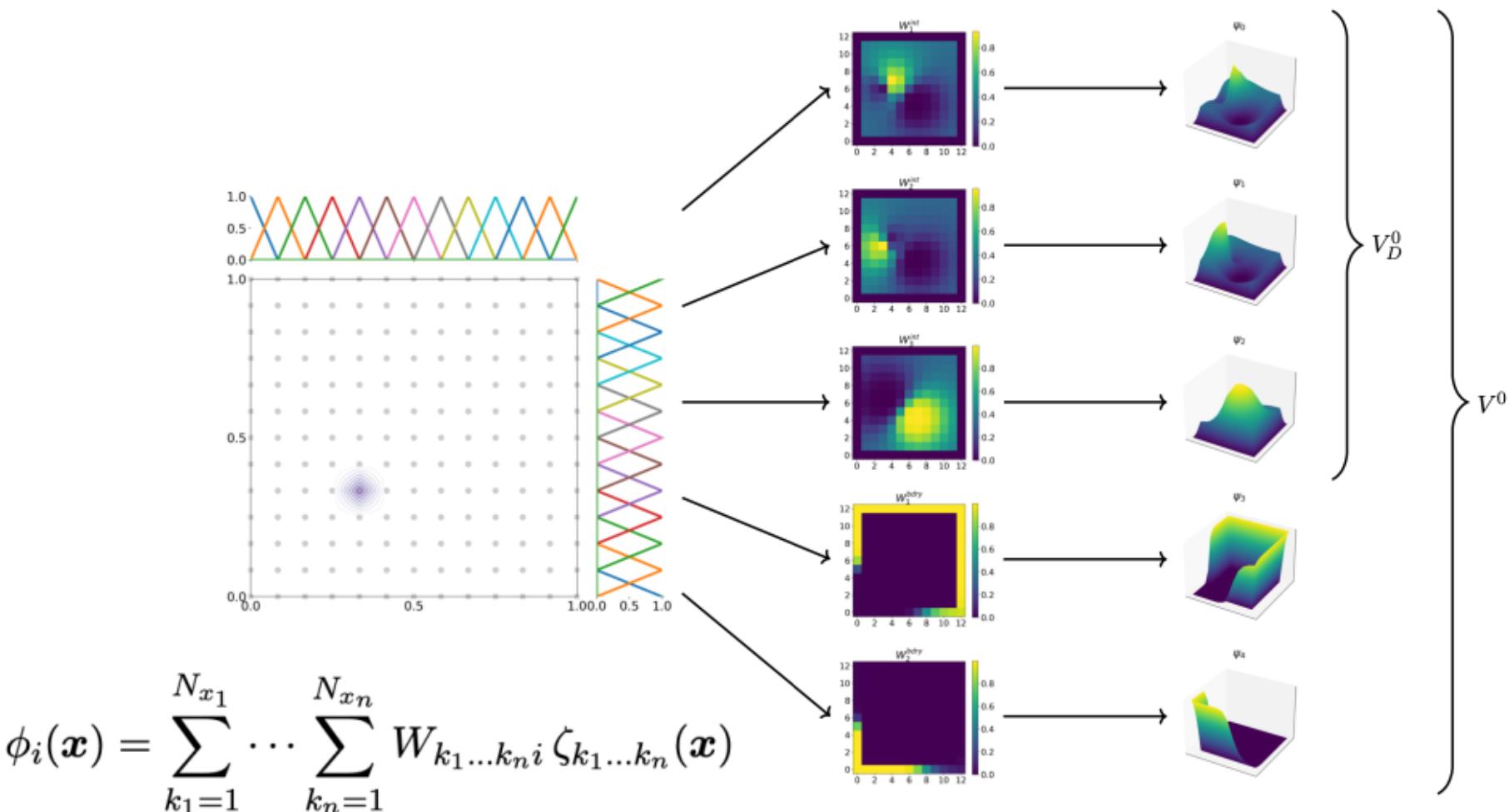
Exterior derivative
(DEC)

Graph
coboundary

FEEC mass
matrix

$$(\mathbf{M}_1)_{(ij),(ab)} = (\psi_{ab}, \psi_{ij}), \quad (\mathbf{M}_2)_{(ijk),(abc)} = (\psi_{abc}, \psi_{ijk}), \quad \text{and} \quad (\mathbf{M}_3)_{(ijkl),(abcd)} = (\psi_{abcd}, \psi_{ijkl})$$

Need POU architecture supporting exact quadrature



$$\phi_i(\mathbf{x}) = \sum_{k_1=1}^{N_{x_1}} \cdots \sum_{k_n=1}^{N_{x_n}} W_{k_1 \dots k_n i} \zeta_{k_1 \dots k_n}(\mathbf{x})$$

$$\mathbf{W}_{(n+1)} = \begin{bmatrix} \mathbf{W}_{(n+1)}^{\text{int}} & 0 \\ 0 & \mathbf{W}_{(n+1)}^{\text{bdry}} \end{bmatrix}$$

Whitney form construction: 0- and 1-forms

$$\begin{aligned}
 (\mathbf{F}, \mathbf{E}) - (\mathbf{d}^0 p_0, \mathbf{E}) &= (\mathbf{d}^0 p_D, \mathbf{E}) \\
 -(\mathbf{F}, \mathbf{d}^0 q_0) &= (f, q_0) - (g_N, q_0)_{\Gamma_N}.
 \end{aligned}$$

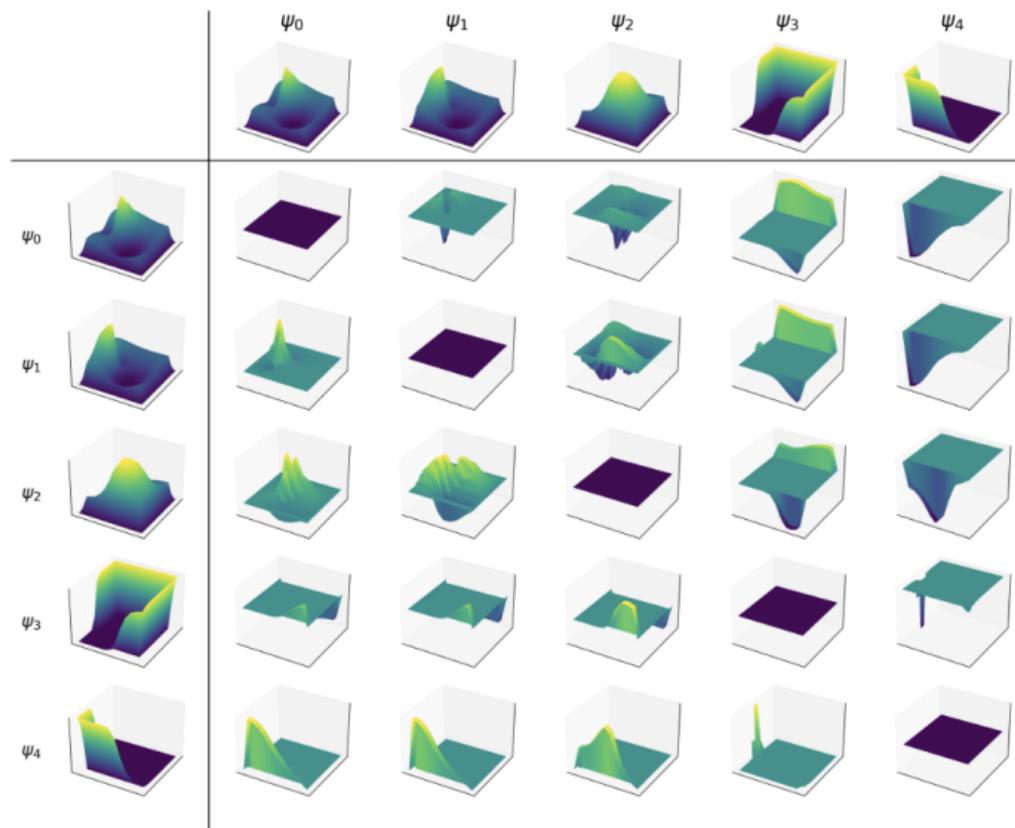
$$\mathbf{F} = \sum_{i,j} \hat{F}_{ij} \psi_{ij} \quad \psi_{ij} \in V^1$$

$$p_0 = \sum_i \hat{p}_i \psi_i \quad \psi_i \in V_D^0,$$

ψ_j

$$\min_{\xi} \left\| p_{\text{data}} - \left(p_D + \sum_i \hat{p}_i \psi_i \right) \right\|_2^2 + \alpha^2 \left\| F_{\text{data}} - \sum_{ij} \hat{F}_{ij} \psi_{ij} \right\|_2^2$$

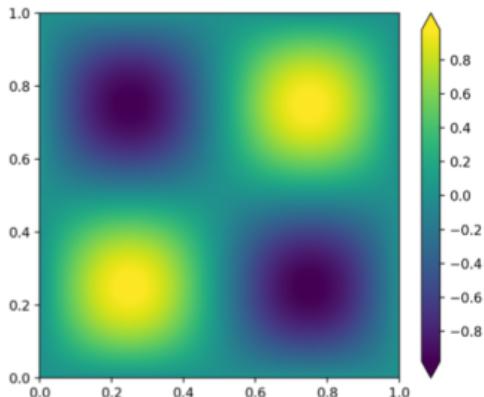
such that $\begin{bmatrix} \mathbf{M}_1 & -\mathbf{M}_1 \mathbf{D}_1^{-1} \delta_0 \mathbf{D}_1 \\ -\mathbf{B}_0^{-1} \delta_0^T \mathbf{B}_1 \mathbf{M}_1 & \mathbf{0} \end{bmatrix} \begin{bmatrix} \hat{\mathbf{F}} \\ \hat{\mathbf{p}} \end{bmatrix} = \begin{bmatrix} b_D \\ -b_f - b_N \end{bmatrix}$



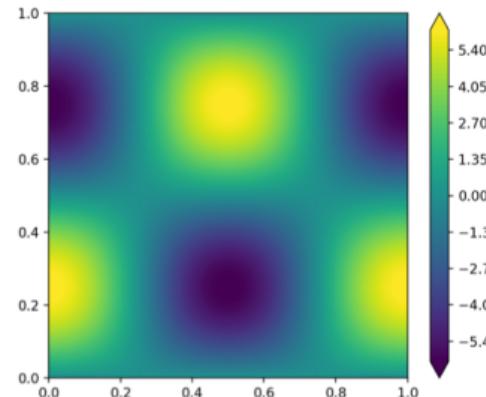
Graph structure (and corresponding relevant control volumes) are encoded via POU parameterization

Closed form quadrature allows backprop to find POUs which admit a model consistent to data

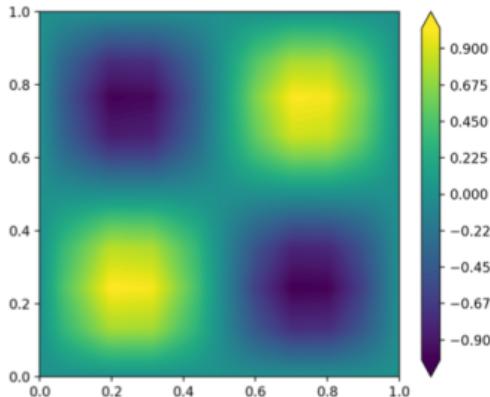
Convergence for smooth solutions



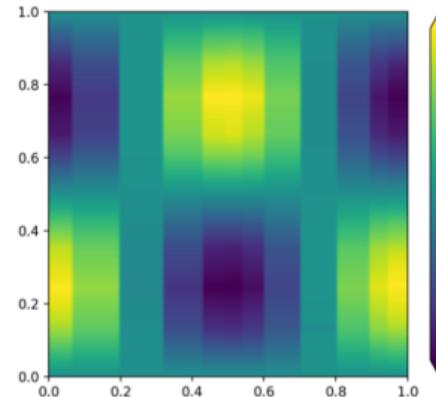
(a) True p



(b) True \mathbf{F}_x



(d) Predicted p



(e) Predicted \mathbf{F}_x

$$\mathbf{F} - \nabla p = 0$$

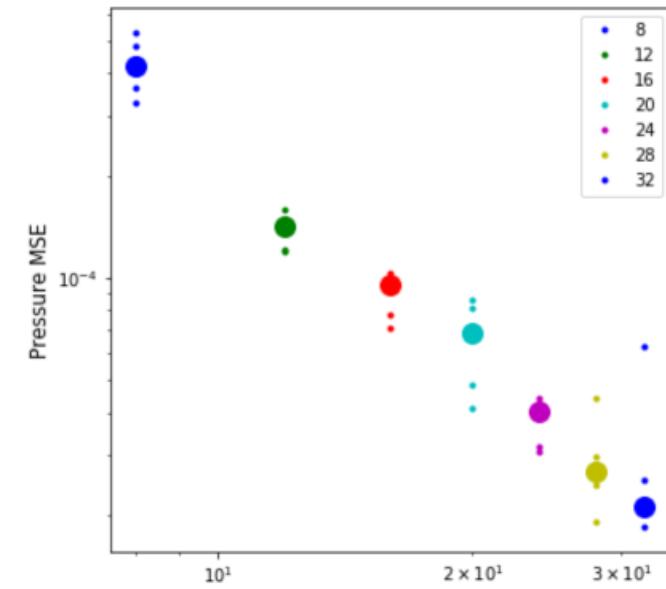
$$\nabla \cdot \mathbf{F} = -8\pi^2 \sin(2\pi x) \sin(2\pi y)$$

$$p = 0$$

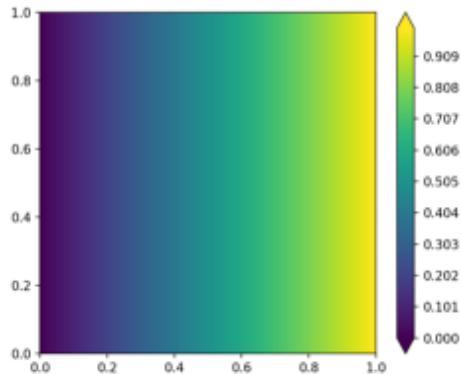
$$\mathbf{F} \cdot \vec{n} = 0$$

$$p(x, y) = \sin(2\pi x) \sin(2\pi y)$$

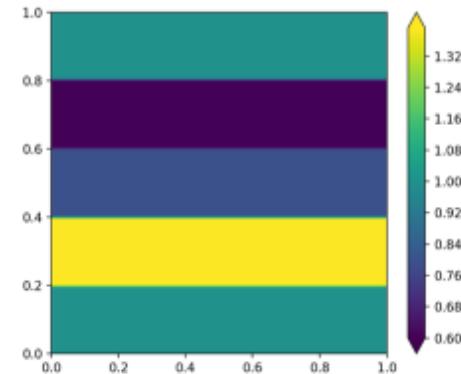
$$\mathbf{F}(x, y) = \begin{bmatrix} 2\pi \cos(2\pi x) \sin(2\pi y) \\ 2\pi \sin(2\pi x) \cos(2\pi y) \end{bmatrix}$$



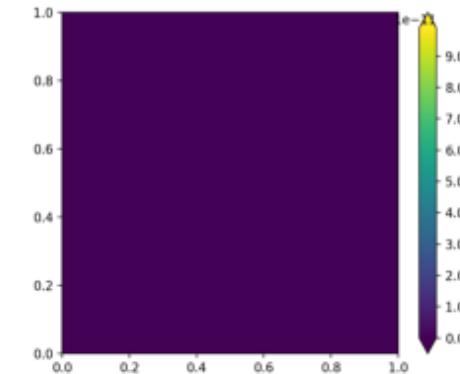
5-strip problem: treating material jumps



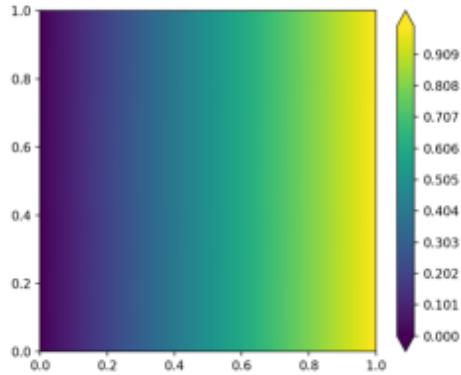
(a) True p



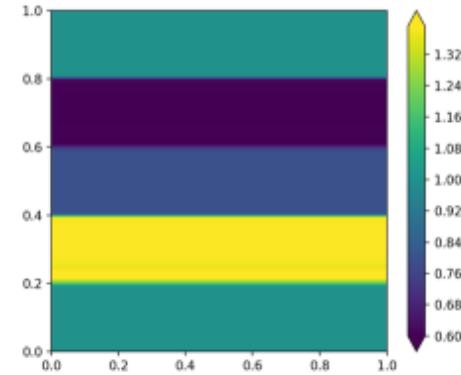
(b) True \mathbf{F}_x



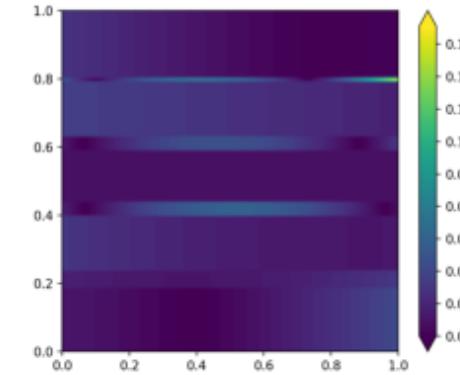
(c) True \mathbf{F}_y



(d) Predicted p

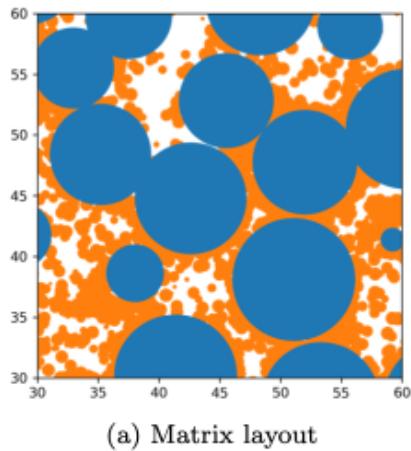
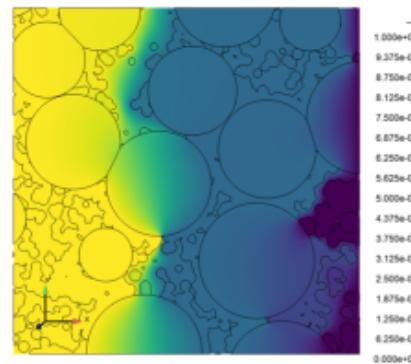
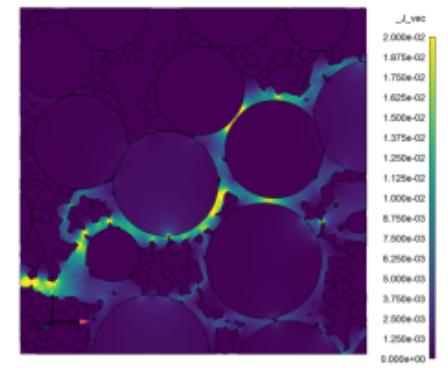


(e) Predicted \mathbf{F}_x



(f) Predicted \mathbf{F}_y

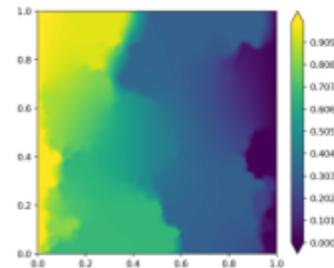
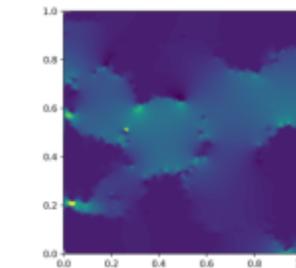
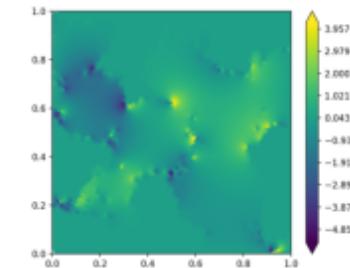
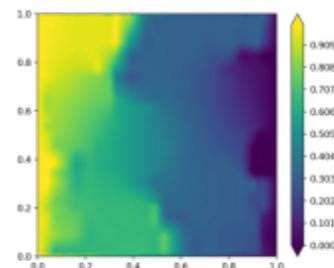
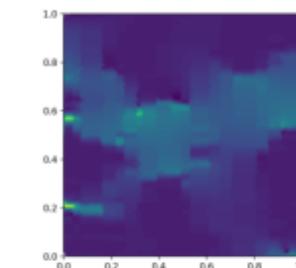
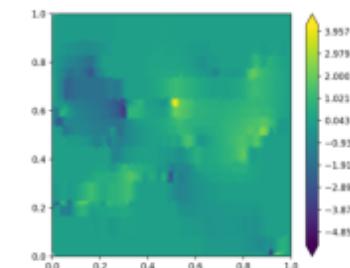
Digital twin of as-built lithium-ion battery microstructure



Replace a 5.89M finite element simulation of as-built geometry with 8 data-driven elements w/

~0.1% error

implemented in production FEM code



Conclusions and future directions

- POUs provide a path toward:
 - Developing nonparametric hp-convergent approximators
 - Discovering Whitney forms from data
 - Bridging gap geometric description of full-field data and graph models
- Resulting in data-driven models based on control volume
 - Which are conservative and guaranteed stable, even for nonlinear physics
 - Provide a structure-preserving parameterization of Dirichlet2Neumann map
- Future applications
 - Data-driven drift-diffusion equations for semiconductor physics
 - Data-driven modeling of quantum thermo-magnetic materials
 - Data-driven modeling of climate systems

Acknowledgements

Funding sources:

- DOE early career research program
- Philms (DOE:ASCR center for SciML)
- SNL LDRD
- NSF MSPRF fellowship

External Collaborators:

Xiaozhe Hu (Tufts)

George Karniadakis (Brown)

Eric Darve (Stanford)

Panos Stinis (PNNL)

Yue Yu (Lehigh)

Jeff Hyman (LANL)

Yuri Bazilevs (Brown)

John Foster (UT)

Internal Collaborators:

Additive manufacturing

Brad Boyce, Remi Dingreville, Cari Martinez

Microelectronics codesign

Andy Huang, Josh Shank, Suzy Gao

Quantum-continuum

Mitch Wood, Svetoslav Nikolov

Combustion

John Newson, Elizabeth Armstrong

Magnetohydrodynamics+ML

Eric Cyr

**Please contact for
postdoc/collaboration opportunities
(natrask@sandia.gov)**

Current and Former Postdocs:

Ravi Patel, **Mamikon Gulian, Kookjin Lee, Jonas Actor, Marshall Jiang, Amelia Henriksen, Elise Walker, Anthony Gruber, Troy Shilt**

Relevant publications

1. Jonas Actor, Andy Huang, Nathaniel Trask. "Polynomial-Spline Neural Networks with Exact Integrals". To appear on arxiv
2. Lee, Kookjin, Nathaniel Trask, and Panos Stinis. "Structure-preserving Sparse Identification of Nonlinear Dynamics for Data-driven Modeling." *arXiv preprint arXiv:2109.05364* (2021).
3. Trask, Nathaniel, Mamikon Gulian, Andy Huang, and Kookjin Lee. "Probabilistic partition of unity networks: clustering based deep approximation." *arXiv preprint arXiv:2107.03066* (2021).
4. Lee, Kookjin, Nathaniel A. Trask, and Panos Stinis. "Machine learning structure preserving brackets for forecasting irreversible processes." *arXiv preprint arXiv:2106.12619* (2021). (accepted to NeurIPS)
5. You, Huaiqian, et al. "Data-driven learning of nonlocal physics from high-fidelity synthetic data." *Computer Methods in Applied Mechanics and Engineering, AI special issue* (2021)
6. Patel, Ravi G., et al. "A physics-informed operator regression framework for extracting data-driven continuum models." *Computer Methods in Applied Mechanics and Engineering, AI special issue* (2021)
7. Lee, Kookjin, et al. "Partition of unity networks: deep hp-approximation." *arXiv preprint arXiv:2101.11256* (2021).
8. Trask, Nathaniel, Andy Huang, and Xiaozhe Hu. "Enforcing exact physics in scientific machine learning: a data-driven exterior calculus on graphs." *Journal of Computational Physics* (2022)
9. Patel, Ravi G., et al. "Thermodynamically consistent physics-informed neural networks for hyperbolic systems." *arXiv preprint arXiv:2012.05343* (2020).
10. Cyr, Eric C., et al. "Robust training and initialization of deep neural networks: An adaptive basis viewpoint." *Mathematical and Scientific Machine Learning*. PMLR, (2020).
11. Patel, Ravi G., et al. "A block coordinate descent optimizer for classification problems exploiting convexity." *arXiv preprint arXiv:2006.10123* (2020). 2021 AAAI-MLPS Conference
12. Gao, Xujiao, et al. "Physics-Informed Graph Neural Network for Circuit Compact Model Development." *2020 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)*. IEEE (2020)
13. Huang, Andy, et al. "Greedy Fiedler Spectral Partitioning for Data-driven Discrete Exterior Calculus." 2021 AAAI-MLPS Conference
14. Trask, Nathaniel, et al. "GMLS-Nets: A framework for learning from unstructured data." NeurIPS proceedings (2019)

Open source software

- GMLS-nets: learning from unstructured data through meshfree approximation (<https://github.com/rgp62/gmls-net>)
- MOR-Physics: Modal Operator Regression for physics discovery (<https://github.com/rgp62/MOR-Physics>)