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Problem: Applying Al/ML data-driven models in

high-consequence engineering applications require
guarantees to establish notions of trust

(1) How to provide convergence guarantees

Designing architectures + optimizers that provide notion of “grid
convergence” critical for verification and validation
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Problem: Applying Al/ML data-driven models in

high-consequence engineering applications require
guarantees to establish notions of trust

(2) How to build surrogates that guarantee stability, physical
realizability + generalizability?

Unification of mimetic PDE discretization, algebraic topology
and inverse problems
SciML as reliable as traditional FEM 4




Sandia
m National

Laboratories

QR MM

3G =

Hierarchical partition of unity networks
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Todays talk will focus on
structure preservation, but
partition-of-unity turns out to
address first issue as well R

o EwERgY NSSA

Hierarchical partition of unity networks: fast multilevel training

118 views Aug 31, 2022 Title: Hierarchical partition of unity netwaorks: fast multilevel training

1. Cyr, Eric C., et al. "Robust training and initialization of deep neural networks: An adaptive basis
viewpoint." Mathematical and Scientific Machine Learning. PMLR, (2020).
2. Patel, Ravi G., et al. "A block coordinate descent optimizer for classification problems exploiting convexity." arXiv
preprint arXiv:2006.10123 (2020). AAAI-MLPS
3. Lee, Kookjin, et al. "Partition of unity networks: deep hp-approximation." arXiv preprint arXiv:2101.11256 (2021) AAAI
-MLPS
Trask, N., Gulian, M. “Probabilistic partition of unity networks: clustering based deep approximation.”
Trask, Henriksen, Martinez, Cyr “Hierarchical partition of unity networks: fast multilevel training.” Accepted
to MSML2022, preprint on Researchgate
6. Armstrong, E., Hansen, M.A., Knaus, R.C., Trask, N.A., Hewson, J.C. and Sutherland, J.C., 2022. Accurate
Compression of Tabulated Chemistry Models with Partition of Unity Networks. Combustion Science and Technology,
pp.1-18. 5
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How do DNNs work? The problem with universal approximation (i {?':gdm'

Theorem 2. Let o be any continuous sigmoidal function. Then finite sums of the
Jorm
Glx) = . ayo(y7x + 0)
5 10" 4 are dense in C(1.). In other words, given any f € C(I,) and £ = 0, there is a sum, G(x),
B of the above form, for which
@g oo IG(x) - fix)l <& forall xel,
5 Traditional networks
E C A, stagnate as width/depth
0 e dep' th 8 is increased due to
| m depth 12 optimization error Recent work (Opschoor 2020)
10 . . .
—A— depth 16 barrier establishes more constructive
—#— depth 20 . .
10° 12 interpretation
8 16
Emulation Emulation
of partition of of monomials on
unity each partition

Opschoor, J.A., Petersen, P.C. and Schwab, C., 2020. Deep ReLU networks and high-order finite element
methods. Analysis and Applications, 18(05), pp.715-770. 6
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Definition: Partition of unity (POU)
A collection of functions {¢;} . satisfying

e Key role:
¢ ¢ >0 Localizing approximation
o =1 ldentifying charts of atlas
Example:

Consider a partition of Q@ C R? into disjoint cells Q@ = |J; C;. Then the indicator
functions ¢;(z) = 1¢,(x) form a POU.

¢i(x) = softmax o NN(x;0)

10 1

0.3
0.3 1

0.6
06 1

0.4 4
04 4

02 0.2 1

0.0 1 0.0
T T T T T T

POU corresponding to Cartesian mesh vs learnable POU with non-disjoint support




All results shown for a
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Fast multilevel deep approximation g i) bt
hyperparameters!
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Figure 1: A two-level “V-cycle” for training the hierarchical POU networks. For details in pseudo-
100 4 ; ; . . . code see Algorithm 4.1, where the figure depicts the case S, = 0, Scoarse = 1 and
1 2 3 4 5 & Spost = 1.
Polynomial order
Spectral convergence Trask, Henriksen, Martinez, Cyr “Hierarchical partition
for smooth data of unity networks: fast multilevel training.” MSML2022 8
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For physics: Learning primal/dual de Rham complexes ) feo

We first briefly recall some definitions and basic results from exterior algebra and differential forms,
first introducing the abstract framework before specializing to the finite element exterior calculus
(FEEC) setting. A graded vector space is a vector space V that can be expressed as V = @, Vi,
where V}, are subspaces. Introducing the linear map 9y : Vi — Vi called the boundary operator, with
the property 0k o 9r41 = 0, we define a chain complez as follows

1 i
-—th+1 +}Vk k}Vk_l—}---?

where we refer to elements ) € V; as chains and associate with each a real-valued cochain w € V¥,
adopting the convention of using subscripts to denote sets of chains (V) and superscripts for sets
of cochains (V*). Given coboundary maps d* : A¥(Q) — A*1(Q) satisfying d¥ o d*~! = 0, and
codifferential maps d* : V¥ — V**1 satisfying d*~! o d* = 0, we finally arrive at the following primal
and dual cochain complezes.

N VN 1 (1)

e — Vk_l

Vel o« vk Ve ... (2)
dgk—1 ak

Example: continuous de Rham complex in 3D

0 —— Ho(grad, Q) =% Hy(curl, Q) —L Ho(div, Q) Y5 L2(Q) —— 0.

9



Graph EC, DEC, FEEC... and they’re all related i E;ﬁdm'

k-1 k
Primal Complex oo —— VL d—:r vk d—} Vel L.

Dual Complex . < yk-1 Edk—l Vk ,T Vel L.

D. N. Arnold and A. Logg, Periodic Table of the Finite Elements, SIAM News, vol. 47 no. 9, November 2014.

DEC/graph
DOFs on differential forms of
primal/dual mesh/graph, using
Stokes theorem to derive discrete
differential operators

FEEC
Primal FEM space interpolating
differential forms, inducing dual

space through duality 0



https://www.semanticscholar.org/author/R.-Torres/102865157
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Previous work with machine learnable graph calculus i) faor

ol Ct < C? o3 il
d5 d; " d; Cd; di_,
[par | e o oz
0 % 1»5I 2)55 3!6‘; @d
Co < s C1 ¢ oL - C NIRRT w— 0}
50 B 51 B 52 B 53 ‘sd—l B
By 1 2 3 d
d d d d dg_
co .ot S22 2,83 2, 2 od

B]_ﬁ;} — CURLB[}, B251 — DIVB]_,

6Dy ! = CURL*'D;', D;'é; = GRAD'D;'

KEY IDEA:
Augment graph exterior calculus with

machine learnable metric information
B/D which can be used to obtain
Hodge Laplacians and fit to data

Theorem 3.1. The discrete derivatives dg in form an eract sequence if
the simplicial complex is exact. and in particular dpy ody = 0. In R3, we
have CURLy, o GRAD;, = DIV, o CURL,, = 0.

Theorem 3.2. The discrete derivatives dj, in form an exact sequence of
the simplicial complex is exact, and in particuler dj ody, , = 0. In R3, DIV o
CURL} =CURL; o GRAD; =0.

Theorem 3.3 (Hodge Decomposition). For C¥, the following decomposition
holds
Cck = im(dk,l)@k ker(Ak)GBk im(dy), (17)

where P, means the orthogonality with respect to the (-, )y, g—1-inner product.
Pk

Theorem 3.4 (Poincaré inequality). For each k, there exists a constant cp
such that

HzfﬁHDkB;l < prk’“de]CHDkJrlkail’ z;; € im(dy,),
and another constant c}‘p’k such that
HZkHDkB}:l < C*P.k||dz-—1zkr”Dk_lBkijlv z; € im(d—1).

Thus, for ux € C%, we have

. *
B Dl € (0o i sl

where constant C' > 0 only depends on cpy and cp,.

Theorem 3.5 (Invertibility of Hodge Laplacian). The k'*-order Hodge Lapla-
cian Ay is positive-semidefinite, with the dimenston of its null-space equal to
the dimension of the corresponding homology H* = ker(d;,)/im(dy_1).

“Enforcing exact physics in scientific machine learning: a data-
driven exterior calculus on graphs.” Trask, et al. JCP 2022
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Using DDEC to discover structure preserving surrogates ) e

Structure preserving daF — f

trainable exterlor
derivatives

F + Sdogb + Ny () =

Black box NN flux

7\

Average over
partitions to obtain
training data

High-fidelity PDE Post-process onto a
solution coarsened graph

12
-~ ...
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General optimization problem ) e

Fluxes: WEi1 = dek + ENN(dkuka 5)?
Conservation: dk—l d;;—luk —|— dZWkJrl == fk

m) o(v,u; B, D)+ Ny[u;£] = b(v)

Invertible bilinear Nonlinear
form perturbation

argmin, ||W — Wyata| |2

If we can fit the model to data B,D,¢
while imposing equalit
© Imposing equality such that L{w,u;B,D,£&] =0
constraint, then during training
we reStFICt tO manlfOId Of Theorem 3.6. The equation has at least one solution u, € V satisfies
solvable models preserving el < 1 el . 26)
physics v

13
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Can we connect to FEEC to discover graph? ) e

1.04
Red: POU on cells  °?] /\
Blue: Boundary of 5.

POUS

In limit of disjoint 0.6 1
partitions, wantto .
recover oriented
Dirac distribution

: Ny Jrepem-aA

Use Whitn_ey forms to POUs generalize cell
learn physically relevant

control volumes which

best describe physics

Defining boundary operator provides
exterior derivative

14




Before we get in the weeds — what we’re building toward

Sandia
National
Laboratories

Production
BC + solution [ rraning — 3 Mimetic FEM o

Obtain a finite element with microstructure embedded in terms of local
conservation balances, bridging geometric and graph perspective

15




Whitney forms defining data-driven differential forms ) e

e Let 1); = ¢;. Define a function space V = {Zg citvi(x) | ¢ € RN‘D}.

e Integrating by parts we obtain

/ng;v-u=—/ﬂvtfgﬁi-u—l—/¢iu°dl4

Multiply by 1=, 6, = —Z/ »iVoi- - u+ /Qﬁiu-d}l

ni0=5, %% —; / (696, 6,96 -u+ [ 6u-dA
_;/% u—l—/cz‘)zu dA

where 1;; = ;V¢; — ¢;V¢;, and we note that ¢;; = —1);;.

Compare to:  V;V-u; =) Ay -uy;
S
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Extensions to de Rham complex on arbitrary manifolds i)t

Re_Pla_ce IBP with / (dwy) Aw; = (—1)F1 / wi A (dwy) —I—f tr wi A trw;
Leibniz rule: Q Q a0

Inductively define Whitney k _ _
form shape functions by Ve =k Z(_l)lfﬁji dpjo N+ Ndoj, A= Ndoj,
mimicking construction: i=0

k+1
u N wjﬂ'”jk-l—l

Obtain discrete
”differential form” DOFs Ujoeojrir = /

that induce coboundary

operator:
Dk(U)jD”'jk = (_l)n_l Z Ujﬂ"'jk-l—l + ftrui\trquﬂ Tk

jk-l—l?éjﬂﬁ'“ 1Tk

Preserve exact sequence
property to induce de
Rham complex:

Dk ODk—l(U)jnmjk—l = / d(d”ﬂ:) A qﬁjo Jk =0

17
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Learning Whitney forms induces a graph complex ) foses

Given discrete operators

DIV(U)E* = Z Uij, Ui'j = /leij -u, Vu € H{](div)

J#i
CURL(U).;;J; = Z Uz’jk: Uijk = 2/ 'l,[}z'jk U, Yu e H{)(Clll'l)
k#i,j Q
GRAD(U )ijk = Z Uijkt, Uijr = SL¢ijk£u: Vu € Hy(grad)
l#i,3,k

We obtain the expression unifying all 3 perspectives

DIV = §IM;, CURL =26TM,, GRAD =642 Mj

RN

Exterior derivative Graph FEEC mass
(DEC) coboundary matrix

(M1) (i), (ab) = (Wabs Yij)s (M2) (k). (abe) = (Pabes Yijr), and (M3)(ijki). (abed) = (Yabeds Vijkt)
18




Need POU architecture supporting exact quadrature i) i

laboratories
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ki=1

Wmt 0
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Whitney form construction: 0- and 1-forms i) Moo

laboratories

Vi

(F,E) — (d°po, E) = (d°pp, E) : | ) |
—(F,d“qa) = (f,q0) — (gn:q0)ry Q ’/
F = ZFU% pij € V! " *3|| ”|
meXas  wews -y v ® @

V;
| | |
W2 l"g/ ’/ ~!/| ,
min || Paata — (p_o +¥ﬁf¢£) 2+ ) s I|l g | /l --zr ~/|
-B; 11;31."3311\41 _MIDOI_IEUDI] [g] N [—bfbf bN] 1§ | |

Graph structure (and corresponding relevant control volumes) are
encoded via POU parameterization

2 A
o || Faata — E Fijbi;
ij

such that [

Closed form quadrature allows backprop to find POUs which admit a
model consistent to data 20
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Convergence for smooth solutions i)t

F-Vp=0
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5-strip problem: treating material jumps i)t
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Digital twin of as-built lithium-ion battery microstructure ) e,

laboratories
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nm" 1857
Replace a 5.89M finite element . | "
simulation of as-built geometry : v )
with 8 data-driven elements w/ conomm e
~0.1% error (b) True Fy
implemented in production .
FEM code - o -
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Conclusions and future directions i) tators

= POUs provide a path toward:
= Developing nonparametric hp-convergent approximators
= Discovering Whitney forms from data
= Bridging gap geometric description of full-field data and graph models

= Resulting in data-driven models based on control volume

= Which are conservative and guaranteed stable, even for nonlinear
physics

= Provide a structure-preserving parameterization of
Dirichlet2Neumann map

= Future applications

= Data-driven drift-diffusion equations for semiconductor physics
= Data-driven modeling of guantum thermo-magnetic materials

= Data-driven modeling of climate systems
24
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