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Thermal runaway propagation models:
from module scale to system scale
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Introduction
* Stationary energy storage systems (ESS) are increasingly deployed to maintaina ¢ A small amount of experimental data is available in the literature at the system scale.
robust and resilient grid. * Models are needed for safety predictions at the system scale, but several
* As system size increases, financial and safety issues become important topics. complexities are introduced when simulating large systems.
* Models enable knowledge to be applied to different scenarios and larger scales. ¢ To issue predictions that inform real-time intervention decisions, a balance must be
* A large body of work exists (both experiments and simulations) on propagating struck between model fidelity and computational speed.
thermal runaway at the module scale. * A system scale thermal network model is proposed to capture bulk heat transfer
processes.
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This level of fidelity is computationally expensive at the rack scale so heat generation is
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simplified to a constant rate over time that depends on the state of charge (SOC).
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* The available energy and heat release duration are predicted using the SOC when the

module reaches the critical thermal runaway temperature:

Thermal energy conservation module i in a network of N modules:
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10g o S o e T 2 30 3 e * A network model was formulated as a framework for beginning
Adjacent Conductance (6; )) Adjacent Conductance (6; ) to predict this behavior.
» Total propagation time for the example 12 module rack is plotted against a range of conductances. * The model requires system specifications and experimental data
* Dark gray regions represent conditions where thermal runaway does not consume the whole rack. to be validated.
* Losses to ambient compete with conduction to adjacent modules. * The key outputs that impact safety decisions are the total energy
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