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HydroGEN is advancing Hydrogen Shot

Goal: Accelerating R&D of innovative advanced water splitting (AWS) materials and 
technologies for clean, sustainable and low-cost hydrogen production (<$2/kg). 

National Lab Consortium Team

• Cost 
• Efficiency
• Durability

Challenges
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Two Step Water Splitting Using Metal Oxides
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Tred = 1300-1500° C

Tox = 800-1000° C
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Image courtesy of CU Boulder

pO2 @ TR = 10-3 – 10-6 atm

H2O: H2 10:1 (higher with 
advanced separation)
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Work Flow
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Materials Predicted via Machine Learning
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• Creation of training data set 
(DFT)

• Select structures
• Initial calculations (relaxation, 

spin, oxidation, enthalpy of 
formation, bandgap, electron 
effective mass)

• Defect calculations
• 200 host structures
• 1500 defect relaxation

• Graph Neural Network (GNN)
• Input: structures as graphs
• Input: host properties 

(oxidation…etc)
• Output: defect formation 

energy, pO2…etc Paper under review Nature Cat. 
Matthew Witman. 

Materials
Selection



∆Hd,min(Vo), eV ~ reduction enthalpy
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Top Candidates Selected from Machine Learning 
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• Ba2Fe2O5
• Chemical Looping (CO/CO2) [1]

• BaFe2O4
• Chemical Looping (CO/CO2) [2] 
• Shark Repellent [3]

• BaIn2O4
• Fuel Cells [4]

• BaIn2La2O7
• Proton Conductor [5]

[1] H. Bai, Fuel 307 (2022) 121847 
[2] T. Song, C.E. Journal 378 (2022) 124107
[3]Rice, Fishery Bullentin 109,4,394-401
[4]A. Muhammad, SSRN 2022-6-15
[5] D. Medvedev, Materials 2022 Paper under review Nature Cat. 

Matthew Witman. 
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Synthesis: Robust and Scalable
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Phase Stability (XRD) Under Reducing and Oxidizing Conditions
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Reduction
• 1300 °C under N2

Oxidation
• 800 °C under H2O:H2

Stability

BaFe2O4 BaIn2O4

BaIn2La2O7 LSM
LSM HEPO

BaIn2La2O7

LSM samples provide by Jian Luo (UCSD), Wei Li (WVU)



Failed Stability Test for Ba2Fe2O5
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ACers –NIST Database. Goto, Y., Takada, T. (1960)

Stability



STCH Stable (XRD) BaFe2O4 
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1300C N2

800C 18Hrs

800C H2O:H2

BaFe2O4

Ref.
04-011-9967

Stability



δ Initial -δ Final: Measure of Oxygen Reduction Capacity 
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δ - δ

Energy Environ. Sci., (2018) 11, 3256-3265

Reduction
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• Oxidation 1000 °C in Air
• Reduction 1200-1500 °C in N2 (~10ppm O2)
• Approximate material efficiency
• “Stable”

• CeO2

• BCM
• LSM
• LSM HEPO
• BaFe2O4

• “Unstable”
• Ba2Fe2O5

• BaIn2O4

δ Initial -δ Final: Measure of Oxygen Reduction Capacity 

Unstable 

δ - δ



Improved Low Temperature Reduction vs CeO2
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∆Hvo

CeO2 Data from Zinkevich
S.S. Ionics (2006) 177, 989-1001
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Improved Low Temperature Reduction vs CeO2
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CeO2 Data from Zinkevich
S.S. Ionics (2006) 177, 989-1001
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Observations and Future Work
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• Collect more data

• Materials selection
• Why do materials fail?
• Why do materials succeed?
• How do we improve 

materials?

• Stability
• HT-XRD
• Improve?
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Questions?


