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//HydroGEN is advancing Hydrogen Shot
74

Goal: Accelerating R&D of innovative advanced water splitting (AWS) materials and

technologies for clean, sustainable and low-cost hydrogen production (<$2/kg).
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P/ Two Step Water Splitting Using Metal Oxides
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P Materials Predicted via Machine Learning Lot

First-principles DFT workflow is robust but costly (using NRELMatDb hosts)

«  Creation of training data set
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/" Top Candidates Selected from Machine Learning Mareria}
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Synthesis: Robust and Scalable Synthesis P
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Reduction
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/" Phase Stability (XRD) Under Reducing and Oxidizing Conditions
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Failed Stability Test for Ba,Fe,O. Stability
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g O Initial -6 Final: Measure of Oxygen Reduction Capacity
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Improved Low Temperature Reduction vs CeO, AH.,
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Improved Low Temperature Reduction vs CeO, BH,,
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K/Observations and Future Work

* Collect more data Defect

Equilibria
* Materials selection
*  Why do materials fail?

- Why do materials succeed?
 How do we improve

Reactor
materials?
* Stability
« HT-XRD Delta Initial

* Improve? - Delta Final
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