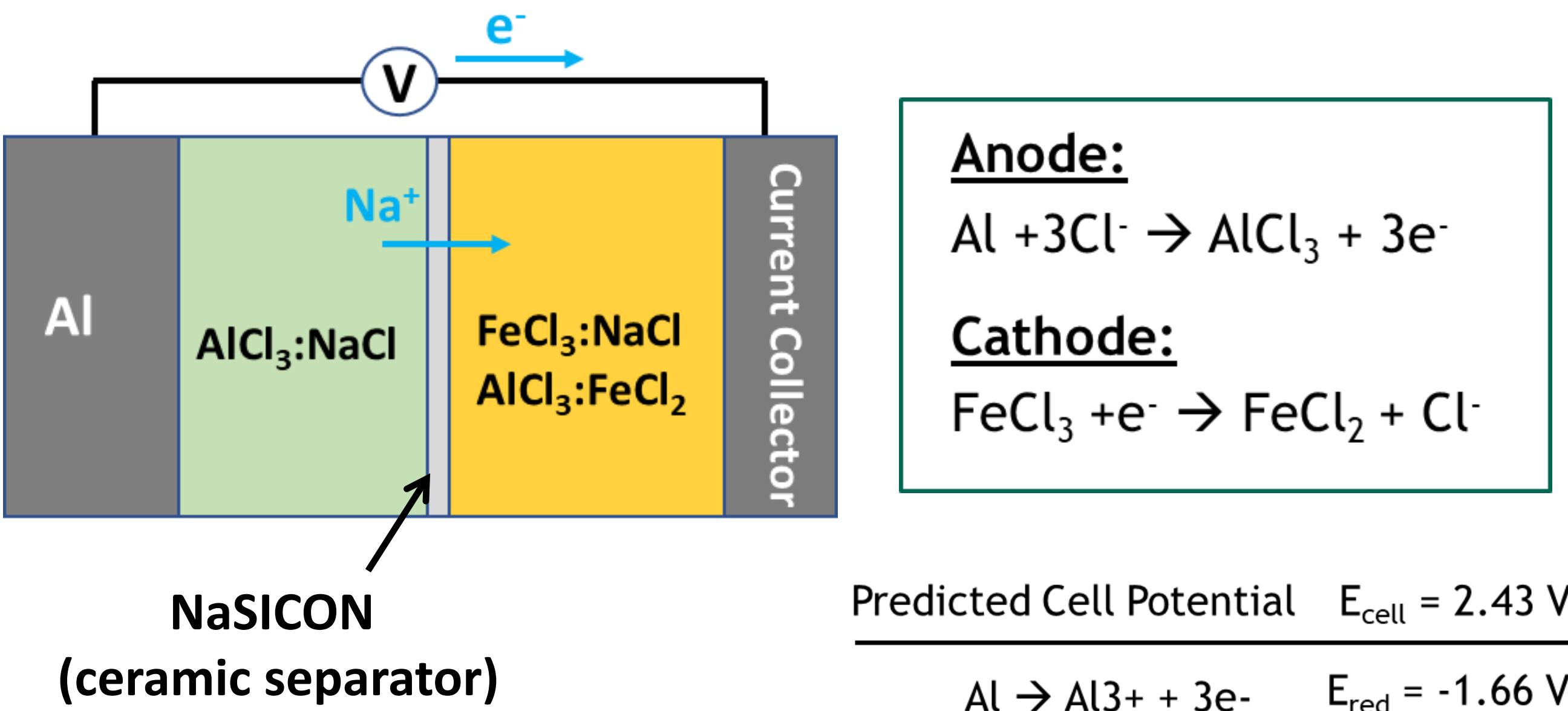


Al-Fe Based Molten Salts for Long Duration Energy Storage


Stephen J. Percival* and Erik D. Spoerke*
 Sandia National Laboratories, Albuquerque, NM, USA
 sperciv@sandia.gov edspoer@sandia.gov

Motivation & Objective

- There is a need for high energy density long duration energy storage that utilizes earth abundant elements, such as Al and Fe. Ternary molten salt compositions of $\text{AlCl}_3\text{-FeCl}_3\text{-NaCl}$ and $\text{AlCl}_3\text{-FeCl}_2\text{-NaCl}$ were evaluated for their phase behavior at intermediate temperatures (~ 160 - 210 °C).
- Objective:** Find and explore properties of a new molten salt system which utilizes Al and Fe components and can be operated as an electrochemically active medium for long duration energy storage.
- Compositions of $\text{AlCl}_3\text{-FeCl}_3\text{-NaCl}$ identified that were fully or nearly fully molten at 160 °C. The electrochemistry of these salts was probed and found that the Al is reducible and the Fe species will cycle between the $\text{Fe}^{3+}/\text{Fe}^{2+}$ oxidation states (as $\text{FeCl}_3/\text{FeCl}_2$) and remain dissolved in the melt at more elevated temperatures. Also found that AlCl_3 was needed in the melt to facilitate the FeCl_2 dissolution.

I. Al-Fe Battery Overview

- Battery composed of metallic Aluminum and utilizing AlCl_3 and FeCl_3 based molten salts as electrolytes

- Upon discharge:
 - Oxidize Al metal to AlCl_3 in a $\text{AlCl}_3\text{-NaCl}$ molten salt
 - Reduce FeCl_3 to FeCl_2 in a $\text{FeCl}_3\text{-AlCl}_3\text{-NaCl}$ molten salt
 - Na^+ transports through NaSICON separator
 - NaSICON prevents potentially unwanted reactions between Al metal and $\text{FeCl}_3/\text{FeCl}_2$ species

2. Active Materials Cost Analysis

Goal is for costs to be <\$16/kWh for system

Material	Cost (\$/kg)
Al	1.146
Fe	0.184
AlCl_3	1.5
FeCl_3	1
NaCl	0.05
Li metal	>100
Na metal	>50

Estimated active materials costs for 1 kWh = \$8.53

All materials are relatively cheap - compared to Na and Li

Summary

- New molten salts comprised of Al and Fe halides were evaluated for their composition and temperature dependent phase behavior. Compositions identified where salts are nearly fully molten at low to intermediate temperatures. Temperature dependent electrochemical behavior observed where FeCl_2 produced at the electrode surface (from FeCl_3 reduction) is insoluble in the melt at lower temperatures. By increasing the test temperatures, the produced FeCl_2 dissolves into the melt allowing the un-blocked electrode to sustain large reduction currents.
- Future work will investigate ways to increase FeCl_2 concentration in the melt and to facilitate its oxidation (perhaps using different electrode materials or higher surface area carbon felts) in order to optimize the molten salt catholyte electrochemical behavior in a working battery and demonstrate it in a working battery.

The views expressed here do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Acknowledgments:

This work was supported by the Energy Storage Program, managed by Dr. Imre Gyuk, in the U.S. Department of Energy's Office of Electricity.