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Introduction

 Flaring (or combustion) of natural gas occurs during
production and extraction of oil from the subsurface

* Due to the expense of current techniques used to capture or
recover the natural gas, the gas is often burned for safety,
economic, or operational reasons

 Global flaring results in ~300 — 600 million metric tons of CO,
being emitted into the atmosphere annually
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Objectives

* Develop a solar-thermal system to process natural gas
currently wasted at extraction sites through routine flaring

» Use compositionally complex, multi-cationic aluminate spinel
catalysts to convert CH, + CO, to H, + CO

» Use a trough-type collector to concentrate and direct sunlight
onto a specially designed tube reactor to heat the contained
catalyst to relevant reaction temperatures (700 °C — 800 °C)

> Mobile design
o |ldentify configurations to achieve desired temperatures



Parabolic Trough

Configuration




LS-2 Parabolic Trough
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Computational Fluid

Dynamics (CFD) Modeling




Solidworks Flow Simulation Summary
CFD model employs half-symmetry

LS-2 collector from SEGS plant
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Assumptions

* Product of the heat of reaction (259 kdJ/mol) and molar flow rate of
each reactant gas used to determine thermal power (heat sink)
required for the reaction

> The kinetics of reaction are neglected
o Reaction assumed to be complete within the prescribed catalyst bed

* The solar irradiance on the parabolic-trough collector was 1000
W/m? with a normal incidence angle and 94% collector reflectivity

* Both radiative (o = ¢ = 0.9) and convective heat loss from the
receiver were simulated under quiescent conditions



Optical Analysis
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2 I |ncident solar radiation on receiver tube
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CFD Results




14 ‘ Parametric Analysis

Gas Flow Rate Receiver Concentration Bulk Average Catalyst
(cfm)* Emissivity Ratio** Temperature (°C)
1 1 0.9 ~70

444
2 10 0.9 -70 353
3 1 0.2 -70 688
4 10 0.2 -70 556
5 1 0.9 -120 558
6 10 0.9 -120 497
7 1 0.2 ~120 876
8 10 0.2 ~120 777

*1 ¢fm = 0.000472 m3/s
**Trough apertures of 5 m and 8.4 m yield geometric concentration ratios of ~70 and ~120,
respectively, with a receiver tube diameter of 0.07 m.



s I Gas flow trajectories colored by temperature

Gas flow rate = 10 cfm
Receiver emissivity = 0.2

Concentration ratio = 120 Gas flow

Temperature [°C]




o | Temperature profile within receiver tube

800
Gas flow rate = 10 cfm [ e
Receiver emissivity = 0.2 i
Concentration ratio = 120 Gas flow 20

j j Temperature [*C]

Iauo

644

332
176
20

Temperature [*C]

Temperatures and velocity vectors
near end of catalyst bed



17

Temperatures along centerline and bottom of

receiver
1000

900

00
-
o

700
600
500
400
300
200
100

Porous Matrix Temperature [°C]

_

o

- ———

——  — e,

e

Gas flow rate

> =10 cfm

Receiver em

Concentratic
A" AT AN ALY L LW Lo gu pw

issivity = 0.2

yn ratio = 120
"4 I | IS ANTV LIV A\~ 4

— Receiver Centerline

—Receiver Near Bottom

4
Length [m]

I I Em B



1 I Gas velocities along receiver tube
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v I Pressure drop along receiver tube
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Conclusions




21 1 Conclusions

* CFD analyses of solar thermal dry
reforming of methane (DRM)
o LS-2 parabolic trough collector
- CO, and CH, gas flow = 1, 10 cfm
o Receiver tube emissivity = 0.2, 0.9
o (Geometric concentration ratio = 70, 120

« >700 °C average catalyst bed
temperature achieved with high E
concentration factor and low receiver
emissivity




2 | Future Work

* Evaluate technoeconomic trade-offs

o Larger trough apertures (5 m to ~8 m) to increase concentration
ratio from ~70 to ~120

o Use of selective coatings and materials to reduce receiver-tube
emissivities to ~0.2

» Parasitic power requirements of the blower

 Kinetics of reaction and required length of the catalyst bed as
a function of flow rate and other operating conditions



