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ABSTRACT

We demonstrate machine learning methods to reduce bottlenecks in CAD-to-simulation workflows for critical ND
analysis. Classification of common mechanisms such as fasteners and springs requiring common simplification and
preparation procedures are first addressed. We introduce a new topology-based method for extracting features from
CAD parts based on geometry queries from a third party CAD kernel. A supervised learning classification procedure
is then used to predict its categorization from a rage of pre-defined categories. We demonstrate improved performance
for our classification procedures over similar published work. Also demonstrated new reduction operations to meet
analysis input specifications that rapidly transform CAD parts identified as fasteners and springs into simulation-
ready proxies. We also introduce a new in-situ classification tool that allows for custom categorization and easy
addition of user-defined training data.
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1. INTRODUCTION

Complex assemblies frequently include many common
mechanisms such as bolts, screws, springs, bearings
and so forth. In practice, analysts will spend extensive
time identifying and then transforming each mecha-
nism to prepare for analysis. For example, bolted con-
nections may require specific geometric simplifications,
specialized meshing and boundary condition assign-
ment. For assemblies with hundreds of bolts, model
preparation can be tedious and often error prone. This
work uses machine learning methods to rapidly clas-
sify CAD parts into categories of mechanisms. Once
classified the analyst is able to preview and apply
category-specific solutions to quickly transform them
to a simulation-ready form.
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Figure 1 illustrates the new environment where vol-
umes of a CAD assembly are first grouped using our
proposed classification procedure in real time. In this
example, volumes classified as bolts can be quickly re-
duced to a simulation-ready form with a single opera-
tion that may include automatic defeaturing, meshing
and boundary condition assignment. The user may
preview the reduced form from a wide variety of op-
tions and apply the reduction operation to multiple
bolts at the same time. Motivated by specific user-
driven use cases, additional reduction operations con-
tinue to be developed for other part categories.

The focus of this work is to identify a machine learn-
ing model that can predict specific categories of mech-
anisms in real time from a set of parts in a complex
CAD assembly. Our objective is to facilitate rapid
category-specific reduction operations with the aim of
appreciably reducing user time in preparing models for
analysis.
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Figure 1: Proposed environment for classification and reduction of fasteners.

2. BACKGROUND

While machine learning is widely used in text, image,
audio, and video analysis, there has been little research
on the application of machine learning to model prepa-
ration for simulation. One notable work in this area is
[1], which describes a limited environment for defea-
turing CAD models where machine learning is driven
by heuristic rule-based outcomes. While proposing
several new criteria for evaluating defeaturing results
from trained models, they rely on human interaction
to judge the quality of results, making scalability prob-
lematic.

ML-based part classification is often used for rapid
sorting of mechanisms for industrial manufacturing
processes. Recent work that has demonstrated ma-
chine learning methods useful for shape recognition
and classification of CAD models include references
[2, 3, 4]. Unfortunately, these methods stop short
of driving modifications to the CAD model such as
those required for mesh generation and simulation. Of
note, is the work from Lambourne et. al. [5] that
suggests sorting part classification models into one of
four groups: point cloud, volumetric, image-based and
graph-based approaches. Reference [5] provides a brief
review of each of these methods, citing several exam-
ples along with their benefits and drawbacks.

For our application, a complex CAD assembly is usu-
ally produced by advanced 3D design tools such as

Solidworks [6] or PTC Creo [7] often for the purposes
of design and manufacturing. Analysts normally use a
modified form of the original CAD assembly as the ba-
sis for a computational simulation model. The assem-
bly data consists of multiple parts typically described
in a file format such as .step or .sat. They will de-
scribe a hierarchical arrangement of entities including
vertices, curves, surfaces and volumes or boundary rep-
resentation (BREP) and where each entity has an un-
derlying numerical description [8]. These formats of-
ten use metadata conventions that can identify a name
or other attribute which can aid in part classification.
However, as we frequently encounter data from nu-
merous sources including legacy CAD assemblies, we
cannot assume a consistent metadata convention and
must use other means for classification.

3. OVERVIEW

Supervised machine learning is typically character-
ized as a problem where, given a training dataset
{(x1,y1), ..., (xn,yn)} with vector input features x
and vector output features y (typically referred to as
labels or ground-truth), it is assumed that there exists
an unknown function y = f(x) that maps input fea-
tures to output features. Using a learning algorithm,
a model can be trained (or fit) to the data, so that
the model approximates f . Once a model has been
trained, it can be used to evaluate new, previously-
unseen input vectors to estimate (or predict) the cor-



responding output vectors. To apply supervised ma-
chine learning in a new problem area, the researcher
must determine what the domain-specific outputs will
be, identify the available domain-specific input fea-
tures that can be used to predict them, and create
a training dataset containing enough examples of each
to adequately represent their distributions.

For this work, our first decision was to limit our scope
to the classification of individual CAD parts. Next,
we needed to define our machine learning model out-
puts or labels. Since our goal is to classify geometric
volumes based on a mechanism’s function we selected
a few common categories including: bolt, nut, washer,
spring, ball, race, pin and gear. Similarly, the input
features x for each model are chosen to characterize
the local CAD model geometry and topology that we
presumed would drive those outcomes.

Given a machine learning model that can predict a
classification category for a geometric volume we can
use the predicted classification to present users with a
categorized list of parts based on its mechanism func-
tion.

4. FEATURES

To predict mechanism categories based on a geometric
volume requires characterization of the geometry and
topology of the CAD part. For each volume G3 com-
posed of vertices, curves and surfaces, a characteristic
feature vector xG3 was defined.

The selected features that characterize G3 are based
upon a fixed-length set of numerical values describing
the geometric volume. Table 1 describes the attributes
used for the features of G3. Attributes are queried
from a geometry engine for each volume and used to
construct xG3 .

For this work, we selected 48 features based on com-
mon characteristics of curves, surfaces and volumes
frequently used for mesh generation. Each feature is
easily computed or derived from common query func-
tions of a 3D geometric modeling kernel [9]. A repre-
sentative sample of these features is included in table
1, along with a brief description of each.

5. GROUND TRUTH

For our supervised machine learning model associated
with each volume G3, we needed to provide a ground
truth classification. This was done initially by devel-
oping a python script that would read a CAD part
and present the operator with an isometric image of
the volume. To evaluate our methods, we initially used

Table 1: table
Representative sample 48 features computed for each

CAD volume used for training data.
ID Feature Description

0 genus∗ number of through
holes

1 min aspect tight bbox. min l/w

2 max aspect tight bbox. max l/w

3 volume bbox ratio∗ volume/vol. tight
bbox.

4 princ moments[0]∗ principal moment

5 princ moments[1] moment of inertia

6 princ moments[2]∗ smallest moment

7 dist ctr to bbox ctr distance vol. centroid
to bbox. centroid

9 min area ratio min area / tot surf
area

10 max area ratio max area / tot surf
area

19 area ratio end area w/curves
225◦ > θ > 360◦

20 area ratio interior∗ area w/curves
0◦ > θ > 135◦

21 area ratio side area w/curves
135◦ > θ > 225◦

23 area no curvature area surfs with no
curvature (planar)

24 area low curvature area surfs with rad >
100 * small curve

25 area med curvature area surfs with rad.
> 10 * small curve

26 area high curvature∗ area surfs. with rad.
> small curve

27 curve length len. all curves /
bbox. diagonal

28 curve to area ratio len. all curves *
bbox. diagonal / tot.
area

32 len straight ratio∗ len. linear curves /
len. all curves

38 reversal angles∗ len. curves w/ext.
315◦ > θ > 360◦

39 corner angles len. curves w/ext.
225◦ > θ > 315◦

40 side angles∗ len. curves w/ext.
135◦ > θ > 225◦

41 end angles ratio len. curves w/ext.
0◦ > θ > 135◦

∗ indicates features used in reduced set

5035 single-part ACIS files that were gathered from in-
ternal proprietary Sandia sources as well as external
sources including GrabCAD [10]. GrabCAD is a free
subscription service that provides a large database of
CAD models in a wide variety of formats. Contribu-



tions to GrabCAD come from a multiplicity of sources
including industrial, aerospace, transportation, ani-
mation, and many others.

Selected CAD assemblies were processed by our
python script and separated into individual parts. The
operator then chose from the predefined set of 9 mech-
anism categories for each CAD part. At that time, a
feature vector, xG3 was generated and appended to
one of 9 .csv files named for its classification category.
For example, if the operator identifies the part as a
gear, features are computed for the volume and ap-
pended to a file named gear.csv. While any CAD
kernel with the relevant evaluators could be used, we
developed our tool using both the Spatial ACIS [9] and
Sandia SGM kernels.

We note that subsequent work described in section 7
extends the specification of ground truth so that cat-
egories can be dynamically established and enhanced
from directly within the CAD tool environment.

6. MACHINE LEARNING METHODS

Many tools for ML classification exist in the litera-
ture and are available as open-source tools. As such,
we were able to leverage existing ML tools without a
need to develop new ML technology. We investigated
the following classification approaches: ensembles of
decision trees (EDT) random forest [11] using Scikit-
learn [12] and deep learning techniques using neural
networks (NN) with PyTorch [13].

6.1 Neural Network

Neural Networks are a class of machine learning meth-
ods inspired by the human brain consisting of multiple
layers of ”neurons” or nodes that activate based on
various input criteria. The NN is designed such that
the input layer consists of a set of characteristic fea-
tures, and the final output layer is a resulting predicted
value or classification. NN is often applied to image
recognition applications where the input features are
comprised of a set of intensity or RGB values on a 2D
matrix of pixels. The output layer may include a small
set of nodes, where for example, the probability of the
image depicting a cat or dog is predicted.

A neural network is ”trained” by providing multiple
instances of features with known outcomes or ”labels”.
As more training data is provided, floating point val-
ues or weights are adjusted at each of the nodes of the
NN, so that a set of features with a known label will
produce the expected result. An accurate model, once
it has been trained, should be able to ingest features
not yet encountered and produce a correct predicted
outcome or classification. As NN training is a com-
mon procedure, many open-source tools are available

for managing and training NN models. For our pur-
poses we selected PyTorch [13] as the tool to model
our classification method.

Our application is ideally suited to a traditional classi-
fication problem, where our input layer consists of the
48 features computed from the characteristics of the
CAD part. Our output layer consists of 9 nodes rep-
resenting each of our initial 9 classification categories.
While various experiments were implemented, we ar-
rived at a single hidden layer using a batch size of 128
which doubled in size between Sigmoid activations to
provide the final 9 category output. A Sigmoid acti-
vation is terminology used in NN to indicate a specific
threshold at which a neuron will ”fire” or adjust its
weight.

Each of the 9 output nodes is a floating point value
which roughly approximates a probability score of
whether the CAD part, represented by the 48 input
features, can be categorized by one of the 9 categories,
where each of the 9 positions of the output vector cor-
respond to one of the 9 categories.

We initially noted long training times (i.e. hours or
days) with our Neural Network (NN) when using the
full 48 features. As a result, we ran several experi-
ments to determine the cause and to reduce overall
run-time.

6.1.1 Feature Correlation

We note that our selection of features was based
mostly on intuition, where values considered to be
unique to a specific CAD part were computed and used
as a feature. The weakness to this approach is that
some features may be highly correlated with others.
This means that two or more features may be related
so that ignoring or dropping one of the features will not
affect the predicted outcome appreciably. Techniques
for measuring feature correlation have been well estab-
lished in the ML literature.

For our features, we discovered that many were highly
correlated and speculated that feature reduction would
reduce the computational time for training. To de-
termine feature correlation, we used the Spearman’s
correlation coefficient [14] which measures monotonic
relationships between features.

A stepwise removal of features was conducted by elim-
inating the feature that had the highest correlation.
Single eliminations were done one at a time because of
both the small number of features to perform the anal-
ysis and because it is possible that removing one highly
correlated feature eliminates other correlations within
the set until the remaining features had a Spearman’s
ρ of .29 or less. The 9 features that were extracted
using this method are indicated with an asterisk ∗ in



Figure 2: Examples of CAD parts used to develop ground truth for mechanism classification

table 1. These features could best be described as
composite features of the removed features and there-
fore contained the majority of the information needed
to perform the classification.

Using the reduced set of features, the training time
for the Neural Net was reduced to 15 minutes on a
MacOS and 9 minutes on a Linux machine with an
NVIDIA Quadra RTX 6000 24GB GPU. While the
computation time was reduced from days to minutes
with the feature reduction, the Neural Network com-
putation time could not compete with a 30-seconds or
less training time with EDT. We also note that addi-
tional modifications to the NN parameters have since
improved the performance of the 48 and 9 feature NN
model computation times (see table 3), however even
with additional performance improvements in training
the NN, it could not compete with the EDT method
described below.

6.2 Ensembles of Decision Trees

An EDT is a collection of individual decision trees,
each of which is trained on a subset of the full train-
ing data. At evaluation time, the EDT’s prediction is
a weighted sum of the predictions of each of its indi-
vidual trees. In prior work, [15][16] the authors used
a regression EDT to predict mesh quality outcomes
based on local geometric features of a CAD model.
This work uses a similar approach where we extend

EDT to use geometric features for classification.

As we noted above, the features we developed for this
work have a high level of interdependence or multi-
collinearity. This appears not to be a problem for
EDT, since the model will trim/prune the tree as it
randomly selects the best output for the class through
a voting process. Even with the full 48 features, train-
ing the EDT can be completed in a few seconds on
most regular 64bit MacOS and WindowsOS systems.

As a result of experimentation with various ML tools
and approaches, including NN and EDT outlined here,
we established EDT as our model of choice. As il-
lustrated in table, 3, EDT was far more efficient in
training the models. As our objective was to incorpo-
rate real-time in-situ training, it was critical to have a
method that could quickly regenerate, given new train-
ing data. It also appeared from our study that NN was
more sensitive to feature interdependence. We did not
observe the same issues with EDT. As a consequence,
this reduced the need to do extensive work to iden-
tify a set of features with minimal interdependence.
Finally, we noted comparable accuracy with both NN
and EDT, with a minor advantage with EDT.

7. IN-SITU CLASSIFICATION

Soon after developing our initial classification meth-
ods, it became apparent that analysts wanted an in-
teractive method to enhance their training data or



add additional custom categories. As a result, one of
our proposed objectives was to develop methods that
would allow for these requests. The Normal devel-
oper training scenario (shown in figure 3(a)) depends
on gathering many examples of CAD parts that are
representative of the 9 initial categories. The devel-
oper will then assign ground truth or labels to each
CAD part; features will then be computed and writ-
ten to a .csv file. At some point, when the developer
feels there is a representative sample, the model can
be trained using the sklearn RandomForestClassifier

(EDT) functions in a separate python script (see sec-
tion 10.1), and a serialized snapshot of the resulting
model written to a pickle file. Prediction, under the
Normal developer driven training, the pickled model
is loaded once when invoking the ML tools. Each re-
quested prediction will then use the static unpickled
model to invoke sklearn to discern a classification from
the initial set of 9 categories (see section 10.2).

(a) Static SL model (b) Dynamic SL model

Figure 3: Dynamic supervided learning (SL) model for
custom in-situ classification of CAD parts

To expand the applicability of the supervised learning
procedures to allow for in-stu classification, our objec-
tives included the following:

1. Custom categories: Allow the user to dynami-
cally add additional classification categories from
within the CAD tool.

2. User defined training data: Allow the user to in-
teractively add additional ground truth to their
training models.

3. Sharable training data: Allow users to share user
training data.

4. Reclassification: Allow users to modify the clas-
sification assignment.

5. In-situ training: Allow the user to update the
classification model on demand.

Figure 3(b) outlines how this was achieved. Starting
with the existing training data the user may interac-
tively identify one or more parts. A category string

may be selected from existing categories or they may
stipulate a new category. A feature vector (see table 1)
is then computed for each selected volume and written
to a .csv file in a persistent user directory.

Each time the user data is updated, the current EDT
model is discarded and a new one generated using both
the user-defined training data and the existing set. Be-
cause the efficiency of EDT training is almost instan-
taneous (less than one second), rebuilding the EDT
model after each change to the training data has a
minimal performance affect. With a new EDT model
loaded consisting of both developer and user-defined,
the user is now ready to make additional predictions
using the standard pattern outlined in section 10.2.

We note that as the classification training data is es-
tablished and refined, it may be necessary to reclas-
sify a part by changing its ground truth or label. The
ML library allows for this situation by implementing
a remove data() function. Given a set of features for
a CAD part, it will search through the existing data.
If it locates an identical row in one of the .csv files,
it will remove it. A new row will then be added to
the corrected class category and retraining invoked to
update the EDT model.

In practice the analyst would want to provide many
ground truth examples. When establishing a new cat-
egory, limited training data may result in overfitting.
Overfitting [17] is a common problem in machine learn-
ing when a statistical model fits exactly against its
training data. When this happens, the model will
likely not perform well with data it has not yet seen.
While in general, overfitting can be a problem in de-
veloping a general ML classification method, it can be
useful in initially establishing the category on known
problems. As the analysts provides more, diverse ex-
amples of ground truth, the overall accuracy for unseen
models will inevitably increase.

8. RESULTS

We report initial results in table 2 from both NN and
EDT models using both the full 48 features and the
reduced set of 9 features. To evaluate our results, we
use K-Fold cross validation [18] using k = 5 and n = 5,
where we assign a randomized 80% for training, and
20% testing over a total of 25 iterations.

Performance of both methods are also reported in ta-
ble 3 where the total time for training is reported for
each of our 4 models. The reported performance in
table 3 is the average training time for one occurrence
of our K Fold cross validation procedure.

These results show an obvious performance benefit to
using EDT over neural networks for our training set,
with about a three orders magnitude difference. While



Table 2: Accuracy of EDT and NN models on 5035 CAD parts using 5X5 K fold cross validation.
EDT NN

48 features 9 features 48 features 9 features
precision recall precision recall precision recall precision recall support

bolt 100.0 99.0 97.5 98.0 98.5 99.0 95 95.6 998
nut 100.0 100.0 100.0 96.2 97.5 86.8 84.0 73.2 114
washer 97.6 97.6 97.4 90.5 94.8 96.2 79.3 76.4 204
spring 100.0 100.0 100.0 91.3 97.2 93.2 89.3 77.6 110
ball 100.0 100.0 100.0 100.0 99.7 100.0 99.9 100.0 543
race 100.0 100.0 94.3 100.0 95.7 96.0 90.1 87 148
pin 100.0 100.0 100.0 100.0 98.2 97.8 92.0 94.3 328
gear 100.0 93.3 96.3 86.7 92.0 91.9 79.4 47.2 210
other 99.0 99.8 97.6 98.8 97.8 98.1 89.7 93.9 2380
total 99.4 99.3 97.9 97.7 97.7 95.5 91.0 83.5 5035

Table 3: Performance of EDT and NN models. 5035
models with 5x5 K fold cross validation

EDT NN
46 features 9 features 46 features 9 features

0.83s 0.51s 541s 512s

both models were above 95% precision and recall when
using the full features set, we note a significant de-
grading of accuracy for reduced features on NN. We
observed that although we achieved a small perfor-
mance improvement for both EDT and NN on our re-
duced features, there was minimal benefit in pruning
features.

9. COMPARISON

To compare our procedure with other machine learning
methods, we use the Mechanical Component Bench-
mark (MCB) [19][20] which provides two large data
sets of over 58,000 mechanical parts. The first set (A)
is separated into 68 categories and the second (B) uses
a smaller set of about 18,000 objects separated into 25
categories. Each of the objects is in the form of an .obj
file. We note that the .obj format, often used in graph-
ics applications, uses only facets (triangles) to describe
the boundary of the object. Although this format is
not well-suited to a BREP-based approach like ours,
we were still able to adapt most of the training data
for our EDT classification method.

As our features are dependent upon these topological
entities, to utilize this data we first generate a mesh-
based BREP [21], breaking the surfaces and curves
where angles exceeded 135 degrees. We also noted
other anomalies which could not be robustly repre-
sented using our current methods [21]. As a conse-
quence, we discarded those that did not meet our cri-
teria prior to evaluation.

To facilitate consistency in evaluation, MCB includes
separate training and testing collections of parts for

both sets A and B. For set A we tested 5713 objects
on 68 classes and set B, 2679 objects on 25 classes.
We compared our results to multiple published deep
learning models reported in, Kim, et. al [19] on the
same data sets. We replicate their data in table 4 for
Accuracy over Object and Average Precision for both
MCB sets A (68 classes) and B (25 classes) and add
results from our EDT model to the table as Our EDT
Model for comparison.

Table 4: Comparison of 7 deep learning models to our
EDT model.

Accuracy (%) Precision (%)

Method A B A B

PointCNN 93.89 93.67 90.13 93.86
PointNet++ 87.45 93.91 73.45 91.33
SpiderCNN 93.59 89.31 86.64 82.47
MVCNN 64.67 79.17 77.69 79.82
RotationNet 97.35 94.73 87.58 84.87
DLAN 93.53 91.38 89.80 90.14
VRN 93.53 85.44 85.72 77.36

Our EDT Model 97.04 92.9 91.79 85.81

We note that accuracy and precision of our EDTmodel
is on par or better than most of the other reported
deep learning methods. Kim, et. al [19] does not re-
port performance metrics for comparison.

10. IMPLEMENTATION

To deliver the new part classification capabilities to
analysts, the new tools were initially implemented
within a Meshing Toolkit. Both a command line capa-
bility and graphical user interface were implemented
and were built upon a new machine learning library ac-
cessed via an application programming interface (API)
through C++ or python.

Our objective in developing a new ML library was



to provide a common environment for external CAD-
based applications to use these tools without the need
to access the capabilities through a specific end-user
meshing tool. This allows external applications to link
with the ML libraries and include its headers, as a
third-party library. While the meshing tool served as
the initial recipient and test case for the ML libraries,
they were developed with the intent of including them
in next generation software.

Included in the ML libraries are functions to gener-
ate the standard set of 48 features given a single part
CAD model. This involves querying the CAD kernel
to compute each of the 48 features shown in table 1.
While initially the features were generated based on
the ACIS [9] kernel, we have more recently developed
a CAD abstraction interface that allows for other CAD
kernels. For our purposes, we specifically targeted an
internally-developed geometry kernel that is currently
under development.

The following is a general outline of the procedure used
to train a set of CAD parts and generate predictions:

10.1 Training

1. Generate training data: Section 5 describes
our initial procedures developed for generating
training data. This involves providing a fixed
set of .csv files named according to their clas-
sification category, where each row of a .csv file
contains exactly 48 entries corresponding to the
features of one CAD volume. For our purposes, it
is presumed that we have sufficient training data
to deliver accurate results.

2. Import training data: We use standard
python tools for importing each of the .csv files
and store the features and labels as vectors,
X train and Y train respectively.

3. Execute EDT training:. In this step we in-
voke the sklearn RandomForrestClassifier class
directly using the following functions:

model = sklearn.ensemble.

RandomForestClassifier(

n_estimators = tree_count,

max_depth = max_depth)

model = model.fit(X_train, Y_train)

Sklearn also allows for optional arguments to
permit customization of the decision tree meth-
ods. The tree count and max depth arguments
control the maximum number of decision tress
and the maximum depth of branching permit-
ted for each individual tree respectively. Ex-
perimentation revealed that tree count = 5 and

max depth = 20 provided the optimal perfor-
mance/accuracy tradeoffs. Larger cut-off val-
ues for these arguments can potentially deliver
marginally more accurate results, but can result
in longer prediction times and larger pickled mod-
els.

4. Serialize EDT model: Once a successful EDT
model is generated, it can be dumped to a pickle
file. This will encode the model object as a byte
stream on disk for later use when predicting clas-
sification categories.

10.2 Prediction

1. Import serialized classification model: In
this step, the serialized EDT model object is im-
ported and stored. Once successfully imported, it
can be queried to predict any classification, given
a set of features.

2. Identify CAD part: The user will identify one
or more CAD parts for which a classification cat-
egory is to be predicted.

3. Generate features: The 48 features described
in table 1 are computed for each CAD part.

4. Transform/scale the features: As features
normally cannot be used directly, a scaling
pipeline is first applied to each of the features.

5. Predict: Sklearn is invoked and a result vector
of probabilities returned.

Y_classify = model.predict_proba(

X_classify)

In this function, X classify is a 2-dimensional
vector if size = 48 × n where 48 is the number
of features and n is the number of CAD parts.
The return vector Y classify is a vector of size
= 9 × n, where 9 is the number of classification
categories.

6. Identify highest probability: For our pur-
poses we always select the category with the
greatest probability as the selected classification
category. It may however be useful to provide the
probability or confidence values to the user when
results are not clearly defined.

11. REDUCTION OF CAD PARTS

As part of this study, we not only wanted to identify
certain categories of mechanisms commonly encoun-
tered in design solid models, we also needed to provide



simplified methods for rapidly reducing the original
solid model representation to something that can be
used in an analysis with little user interaction. As an
exemplar problem, we focused on the fastener reduc-
tion problem but also addressed reduction of spring
components. Additional mechanism types will be ad-
dressed as the need arises.

After a user study of analysts in our organization, we
identified two main categories of mechanisms that re-
main primary roadblocks; fasteners and spring.

11.1 Fastener Reduction

Fasteners may require various representations depend-
ing on the physics and fidelity of the simulation. In
some cases, the simplification, boundary condition as-
signment and meshing of an individual fastener could
take upwards of 30 minutes to an hour of user time.
With many assemblies consisting of tens or hundreds
of bolted connections, fastener preparation becomes a
tedious, time consuming and potentially error prone
endeavor.

We outline one possible automatic recipe for reducing
bolts for analysis. In this case a diagram of a single
bolt, fastening two volumes is shown in figure 4 where
an optional insert, or cylindrical band, is modeled sur-
rounding the shaft of the bolt, which is often modeled
physically overlapping its surrounding geometry. In
this scenario, the user may choose from multiple op-
tions when reducing the fasteners, including removal
of chamfers, rounds, cavities, modification of the di-
ameter of hole or bolt, adjusting alignment and fit of
the bolt with the hole, separation into different vol-
umes representing head, shaft and plug components,
hex meshing at a specific resolution, and automatic
assignment of boundary conditions.

In practice, the user will typically experiment with in-
put options, using the GUI panel illustrated in figure
1 and then apply the same reduction recipe to multi-
ple bolts simultaneously. A few examples of options
applied to the bolt pictured in 5(a) are pictured with
results display in figures 5(b) - (e)

11.1.1 Bolt Reduction Algorithm

The following method illustrates the procedure used
for reducing one or more fasteners and their surround-
ing geometry to a simulation-ready state.

Input: One or more volumes classified as ”bolt”.
Optional corresponding volumes classified as ”insert”
may also be specified.

Output: A reduced set of bolt and insert geometry,
optionally webcut, meshed with boundary conditions

Figure 4: Example before and after the Reduce oper-
ation. Also shows optional insert geometry at the bolt
shaft.

(a) (b) (c) (d) (e)

Figure 5: Example of four different variations of syntax
for the reduce bolt fit volume command on a single bolt.

applied. Depending upon user options, the neighbor-
ing volumes may also be modified.

Method:

1. Identify Nearby Volumes: This will include
at least one upper volume (dark grey volume in
figure 4) and a lower volume (light grey volume
in figure 4). If not already provided by the user,
an optional insert volume can also be determined
based on proximity.

2. Identify dimensions, axis, and surfaces of
the bolt: This will include top and bottom sur-
faces as well as shaft and head. These can be
extracted based on expected common character-
istics of known bolt geometry.

3. Autosize: If a mesh size is not specified by the
user, an autosize is computed, which is a mesh
size based on the relative dimensions of the bolt
volumes. While used for meshing, this value is
also used for determining tolerances in diagnos-
tics used in the next step.



4. Identify surfaces to be removed: Geometric
diagnostics are performed to determine whether
the bolts’ surfaces have certain traits. These
include: blends, chamfers, cavities, close loops,
small faces or conical surfaces.

5. Simplify bolt geometry: Successive CAD op-
erations to remove the surfaces identified in step
4. are performed. We note that removal of a
surface of one trait characteristic, may introduce
other surfaces that require removal. As a result,
steps 4 and 5 will be repeated until no further
surface removal operations are possible.

6. Align bolt to hole axis: If the align bolt option
is used, check for alignment of the hole and bolt
axis. If not properly aligned, transform the bolt
geometry to match the hole.

7. Simplify insert geometry: If an insert is
present, use the procedure described in steps 4
and 5 to simplify the insert geometry.

8. Modify Bolt Diameter: If a diameter value
is specified in the command, use a CAD surface
offset operation to adjust the diameter of the bolt
shaft.

9. Simplify Hole Geometry: If the simplify hole
option is used, we identify any chamfers or rounds
decorating the hole geometry as well as any con-
ical surfaces as the bottom of the hole. These
surfaces are also removed.

10. Remove gaps and overlaps between shaft
and lower volume: If the tight fit option is
used, the hole surfaces from the lower volume are
identified and removed. A boolean subtract op-
eration is then performed between the lower vol-
ume and the overlapping portion of the bolt shaft
geometry. This will leave the shaft and lower vol-
ume exactly matching, eliminating any gaps or
overlaps. Note that this option is not valid if an
insert geometry is present.

11. Remove Insert overlap: If an insert is present,
its geometry may overlap the lower volume and
potentially the bolt shaft. Use a boolean subtract
operation to remove material from the insert vol-
ume to eliminate any overlap.

12. Webcut: If the webcut option is used, the head
will be cut from the shaft by using a sheet ex-
tended from the base of the bolt head. Separat-
ing the shaft from the plug is done by web-cutting
using a sheet extended from the top surface of the
lower volume. A merge operation is done between
the three bolt components to ensure a contiguous
mesh will be generated.

13. Webcut head for multisweep: If the key cav-
ity remains in the bolt geometry, and the mesh
option is used, we will attempt to webcut the
bolt head using the cylindrical surface extended
from the bolt shaft. This is done to facilitate use
of the pave-sweep many-to-one tool. Where the
cavity remains in the bolt, more than one target
surface would be required, which is infeasible for
many-to-one sweeping.

14. Create blocks: Blocks are created for each
bolt component and insert (if present) and
named/numbered according to the user input op-
tions. Where multiple bolts are reduced in the
same command, the user can specify consecutive
numbering conventions so that, for instance, all
bolt heads have the same block ID, or alterna-
tively, each successive bolt head gets assigned an
incremented block ID number.

15. Mesh: In this step we invoke the internal mesh-
ing tools and use the input mesh size (or auto-
size computed in step 3), followed by the pave
and sweep tools to generate a hex mesh on each
of the bolt components as well as the insert, if
present. We also check mesh quality following
meshing and report potential element quality is-
sues to the user.

While this procedure is a representative recipe for re-
duction of fasteners, several other use cases were ad-
dressed that included physics, analysis code and reso-
lution requirements. Some of the results of these re-
duction options are illustrated in figure 1.

Figure 6(a) shows an example of the use of the fastener
reduction operators on an assembly containing many
similar bolted connections. Here we illustrate one
group of similar fasteners that all require similar analy-
sis preparation. Traditional approaches would require
hours of tedious geometry manipulation by an expe-
rienced engineer/analyst, as well as wearisome book-
keeping of boundary conditions. Figure 6(b) shows
the result of a single reduction operation that uses the
method described above. Once classification is com-
plete, the user can select similar bolts and apply the
same reduction recipe, including meshing and bound-
ary condition assignment. For this example, the full
reduction operation on the 16 bolts in figure 6 took ap-
proximately 17 seconds on a desktop machine running
serial.

11.2 Spring Reduction

Another time sync we observed from Sandia’s ND ana-
lysts was in preparing springs for analysis. In this case,
a full 3D solid representation of the spring would re-
quire enormous numbers of hexes or tets to accurately



(a) Bolts prior to reduce operations.

(b) Bolt after reduce operations.

Figure 6: Example reduction of 16 bolts: simplified, fit to
geometry, cut, merged and meshed with single operation

model the physics. Instead, a dimensionally reduced
version of the spring is usually used in the analysis.

In this work we developed a tool, that given a 3D
solid model of a spring, will dimensionally reduce it
to one or more geometric curves at the axis of the he-
lical geometry. (see figure 7) These curves can then
be meshed using internal meshing tools to place finite
element beam elements along the curves. The beam
elements can also be automatically assigned to a ma-
terial block.

11.2.1 Spring Reduction Algorithm

Input: One or more volumes classified as ”spring”.

Output: One or more connected spline curves follow-
ing the mid-curve of the spring. Optionally meshed
with beam elements.

Method:

Figure 7: Example of spring reduction from solid to beam
representation

1. Heal surfaces: Check for parts that have blends
or surfaces that can be split into parts. Merge
tangent surfaces together.

2. Identify tube-like surfaces: Identify surfaces
of type cylinder, tori, NURBs with circular cross
section, and helical sweeps that sweep a circle
along a helix.

3. Extract mid-curves: From each surface iden-
tified in #2 extract the curve at middle of cross
section.

4. Trim Curves: Identify capping surfaces and
trim mid-curves with caps.

5. Join Curves: If requested, join mid-curves into
a single wire body.

6. Create Spline: If a single curve is desired, fit
all mid-curves to a single NURBs curve.

7. Generate beam mesh: generate beam ele-
ments and/or blocks defined based on user input.

12. CONCLUSION

Engineering analysts responsible for design and vali-
dation of critical ND assemblies continue to struggle
with an enormous bottleneck of preparing models for
analysis from a design solid model. This work has ex-
plored one avenue for exploiting current technologies
in AI and machine learning to reduce time to sim-
ulation, increase reproducibility and credibility, and
decrease the most tedious and error prone tasks. We
have accomplished this by demonstrating new classi-
fication and reduction capabilities that can identify



specific categories of mechanisms from a large assem-
bly and rapidly reducing them to a simulation-ready
state. The result is a procedure that is much more
efficient, less tedious and error prone, with the poten-
tial of standardizing common preparation tasks across
the ND community. Initial demonstration of use-case-
driven recipes for reduction of common mechanisms
have yielded positive results. This work will serve as
the framework for further extensions to the reduction
operations for other categories of mechanisms as mo-
tivated by analyst requests and requirements.

We have also demonstrated a new in-situ ML-based
tool that can be queried and updated on demand.
This work will be foundational to leveraging expertise
of experienced analysts and engineers in a sharable
central repository. Currently this work provides for
on-the-fly custom classification as well as suitability
predictions for one class of geometric operators (thin
volume reduction). This work should be foundational
in establishing a centralized knowledge base for CAD
and model preparation operations to assist the next
generation of ND analysts.
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