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Talk Abstract/Outline
The Asynchronous Ballistic Approach to Reversible Superconducting Logic
 Why Reversible Computing?

 Relevant classic results in the thermodynamics of computing (since generalized to quantum case)

 Two major types of approaches to reversible computing in superconducting circuits:
 Adiabatic approaches – Well-developed today.

 Likharev’s parametric quantron (1977); more recent QFP tech (YNU & collabs.) w. substantial demo chips.
 Ballistic approaches – Much less mature to date.

 Fredkin & Toffoli’s early concepts (1978–’81); much more recent work at U. Maryland, Sandia, UC Davis 

 Focus of talk: The relatively new asynchronous ballistic approach to RC in SCE
 Addresses concerns w instability of the synchronous ballistic approach
 Potential advantages of asynchronous ballistic RC (vs. adiabatic approaches)
 Relevant progress that has been made by various groups to date
 Major outstanding research challenges that remain to be addressed at this time



Why Reversible Computing?
Thermodynamics of computing: Relevant classic results

Based on the pioneering historical insights of  Landauer & Bennett…

1. Fundamental Theorem of  the Thermodynamics of  Computing 
◦ Unification of  physical and information-theoretic entropy.

◦ Implies interconvertibility of computational and non-computational entropy.

2. Landauer’s Principle (proper) 
◦ Loss of known/correlated computational information to a 

thermal environment transforms it into new physical entropy.

3. Conventional digital architectures (which discard correlated
information all the time) have a fundamental efficiency limit…

◦ energy dissipation per bit of  information loss.
◦ Actual losses per bit erased in practical designs tend to be at least 10s–1000s of  kT.

4. Alternative reversible digital architectures which transform states
1:1 can (at least in principle) avoid the Landauer limit.

◦ There is no known fundamental efficiency limit for reversible machines.
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The two major approaches to reversible computing
Both relevant in superconducting electronics

Adiabatic approaches – based on gradually transforming a device’s potential energy surface
◦ General method suggested in Landauer’s original (1961) paper.

◦ By definition, transitions are slow compared to the natural relaxation timescale of  the device.

◦ First historical example of  an engineered fully adiabatic electronic logic cell: 
◦ Likharev’s parametric quantron (1977) – Use a control current 𝐼ୡ to raise/lower the potential energy barrier between loop states.

◦ Modern AQFP/RQFP technology from YNU has a similar spirit, but is much more well-developed.

Ballistic approaches – based on ballistic dynamics & elastic interactions between DOFs
◦ Assumes relatively slight coupling between dynamical DOFs and the thermal environment…

◦ Interactions happen fast relative to that coupling, so there isn’t time for the dynamical 
excited state to relax thermally – dynamical energy largely conserved in the DOFs of  interest.

◦ Early electronic & mechanical concepts proposed by Fredkin & Toffoli:
◦ Early electronic concept (1978) as an underdamped LC circuit with idealized switches…

◦ Simple mechanical thought experiment (1981)… “Billiard Ball Model”

◦ But, almost no engineering development of  this approach from 1980 – 2010!
◦ Why? The original concept appeared to have intractable issues w. synchronization / chaotic instabilities…
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Can we envision reversible computing as 
a deterministic elastic interaction process?

Historical origin of  this concept:
◦ Fredkin & Toffoli’s Billard Ball Model of  

computation (“Conservative Logic,” IJTP 1982).
◦ Based on elastic collisions between moving objects.
◦ Spawned a subfield of  “collision-based computing.”

◦ Using localized pulses/solitons in various media.

No power-clock driving signals needed!
◦ Devices operate when data signals arrive.
◦ The operation energy is carried by the signal itself.

◦ Most of  the signal energy is preserved in outgoing signals.

However, all (or almost all) of  the existing design concepts for ballistic computing invoke implicitly 
synchronized arrivals of  ballistically-propagating signals…

◦ Making this work in reality presents some serious difficulties, however:
◦ Unrealistic in practice to assume precise alignment of  signal arrival times.

◦ Thermal fluctuations & quantum uncertainty, at minimum, are always present.
◦ Any relative timing uncertainty leads to chaotic dynamics when signals interact.

◦ Exponentially-increasing uncertainties in the dynamical trajectory.
◦ Deliberate resynchronization of  signals whose timing relationship is uncertain incurs an inevitable energy cost.

Can we come up with a new ballistic model that avoids these problems?

Ballistic Reversible Computing7



Ballistic Asynchronous Reversible Computing (BARC)
Problem: Conservative (dissipationless) dynamical systems generally tend to exhibit chaotic 
behavior…

◦ This results from direct nonlinear interactions between multiple continuous dynamical degrees of  
freedom (DOFs), which amplify uncertainties, exponentially compounding them over time…
◦ E.g., positions/velocities of ballistically-propagating “balls” 

◦ Or more generally, any localized, cohesive, momentum-bearing entity:  Particles, pulses, quasiparticles, solitons…

Core insight: In principle, we can greatly reduce or eliminate this tendency towards 
dynamical chaos…

◦ We can do this simply by avoiding any direct interaction between continuous DOFs of  different 
ballistically-propagating entities

Require localized pulses to arrive asynchronously—and furthermore, at clearly distinct, non-
overlapping times

◦ Device’s dynamical trajectory then becomes independent of  the precise (absolute and relative) pulse 
arrival times
◦ As a result, timing uncertainty per logic stage can now accumulate only linearly, not exponentially!

◦ Only relatively occasional re-synchronization will be needed

◦ For devices to still be capable of  doing logic, they must now maintain an internal discrete (digitally-
precise) state variable—a stable (or at least metastable) stationary state, e.g., a ground state of  a well

No power-clock signals, unlike in adiabatic designs!
◦ Devices simply operate whenever data pulses arrive
◦ The operation energy is carried by the pulse itself

◦ Most of the energy is preserved in outgoing pulses
◦ Signal restoration can be carried out incrementally

Goal of  current effort at Sandia: Demonstrate BARC principles in an implementation 
based on fluxon dynamics in SuperConducting Electronics (SCE)
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One of  our early tasks:  Characterize the simplest nontrivial BARC device functionalities, given a few simple 
design constraints applying to an SCE-based implementation, such as:

◦ (1) Bits encoded in fluxon polarity; (2) Bounded planar circuit conserving flux; (3) Physical symmetry.

Determined through theoretical hand-analysis that the simplest such function is the
1-Bit, 1-Port Reversible Memory Cell (RM):

◦ Due to its simplicity, this was then the preferred target for our subsequent detailed circuit design efforts…

Simplest Fluxon-Based (bipolarized) BARC Function

+Φ଴

Ballistic interconnect (PTL or LJJ)

Moving
fluxon

−Φ଴

Stationary
SFQ

Some planar, unbiased, reactive SCE circuit w. a continuous 
superconducting boundary
• Only contains L’s, M’s, C’s, and unshunted JJs
• Junctions should mostly be subcritical (avoids RN)
• Conserves total flux, approximately nondissipative

−Φ଴ +Φ଴

Desired circuit behavior (NOTE: conserves flux, respects T 
symmetry & logical reversibility):
• If polarities are opposite, they are swapped (shown)
• If polarities are identical, input fluxon reflects

back out with no change in polarity (not shown)
• (Deterministic) elastic ‘scattering’ type interaction:  Input 

fluxon kinetic energy is (nearly) preserved in output fluxon

RM icon:

RM Transition Table



RM—First working (in simulation) implementation!10

Erik DeBenedictis: “Try just strapping a JJ across that loop.”
◦ This actually works!

“Entrance” JJ sized to = about 5 LJJ unit cells (~1/2 pulse width)
◦ I first tried it twice as large, & the fluxons annihilated instead…

◦ “If  a 15 μA JJ rotates by 2π, maybe ½ that will rotate by 4π”

Loop inductor sized so ±1 SFQ will fit in the loop (but not ±2)
◦ JJ is sitting a bit below critical with ± 1

WRspice simulations with ±1 fluxon initially in the loop
◦ Uses ic parameter, & uic option to .tran command

◦ Produces initial ringing due to overly-constricted initial flux
◦ Can damp w. small shunt G



Resettable version of RM cell—Designed & Fabricated!
Apply current pulse of  appropriate sign to flush the stored flux (the pulse here flushes out positive flux)

◦ To flush either polarity  Do both (±) resets in succession
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Overview of Some Recent Progress
BARC Element Classification

and Characterization 

RM Cell Testing Efforts

Exploration of  Novel Circuits
◦ Multi-port RM cell
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Remaining Challenges for the BARCS effort

Empirical validation

Better understanding role of physical symmetries in element design

Identifying a universal set of  elements that we also know how to implement!

Understanding the limits of energy efficiency of  this approach

Much work remains to be done …
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Ballistic Shift Registers14

Work by Osborn & Wustmann, arxiv:2201.12999



Ballistic Shift Registers, cont.15



Gigahertz Sub-Landauer Momentum Computing16

Work by Ray & Crutchfield, arxiv:2202.07122



Conclusion

The long-neglected ballistic mode of  reversible computing has recently attracted renewed interest

Classic problems with chaotic instability are seemingly addressed via the asynchronous approach 

Holds promise for achieving improved energy-delay products vs. adiabatic approaches
◦ Also, note that ballistic approaches are not viable in CMOS!

◦ Unique advantage of  superconductivity here.

Multiple US research groups in superconductor physics & engineering are making progress

We invite our international colleagues to join us in investigating this interesting line of  research

17


