

Modeling Arctic Sea Ice with a Discrete Element Model

Kara Peterson, Dan Bolintineanu, Svetoslav Nikolov,
Joel Clemmer, Devin O'Connor
Sandia National Laboratories

Adrian Turner
Los Alamos National Laboratory

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Meshfree and Novel Finite Element Methods with Applications (MFEM)
September 26, 2022

Importance in global climate

- Reflects solar radiation
- Insulates ocean from atmosphere
- Influences ocean circulation

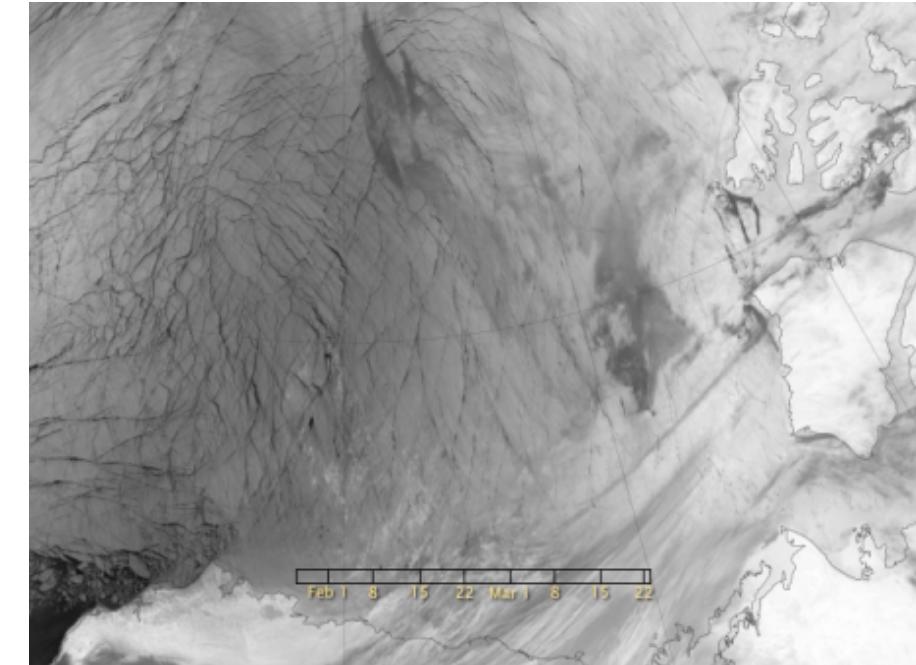
Sea ice models must capture

- Mechanical deformation due to surface winds and ocean currents
- Formation of leads (cracks) and pressure ridges
- Annual cycle of growth and melt due to radiative forcing

Visualizations by [Trent L. Schindler](https://svs.gsfc.nasa.gov/) <https://svs.gsfc.nasa.gov/>

3 SEA ICE MODELING

- Most sea ice models in coupled Earth system models use a continuum formulation (Turner et al. 2022, Rampal et al. 2016)
- At high resolutions (~5-6 km) isotropic continuum models do not approximate the dynamics well
- Discrete element method
 - Lagrangian particles
 - Captures anisotropic, heterogeneous nature of sea ice deformation
 - Explicit fracture and break-up of pack
- Previous DEM sea ice modeling efforts focused primarily on regional scale, short-term simulations (Hopkins 2004)



NASA Earth Observatory images by Jesse Allen using VIIRS day-night band data from the [Suomi National Polar-orbiting Partnership](#).

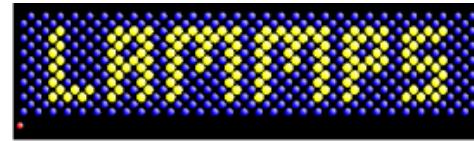
<https://visibleearth.nasa.gov/images/80752/extensive-ice-fractures-in-the-beaufort-sea/807561>

Our objective is to develop a computationally efficient global climate scale sea ice model using DEM.

DISCRETE ELEMENT MODEL FOR SEA ICE (DEMSI)

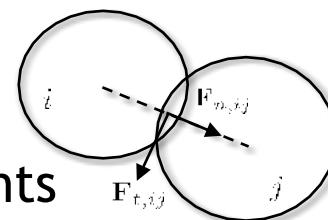
Dynamics: Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) (Thompson et al. 2022)

- Particle based molecular dynamics code
- Includes support for DEM and history dependent contact models

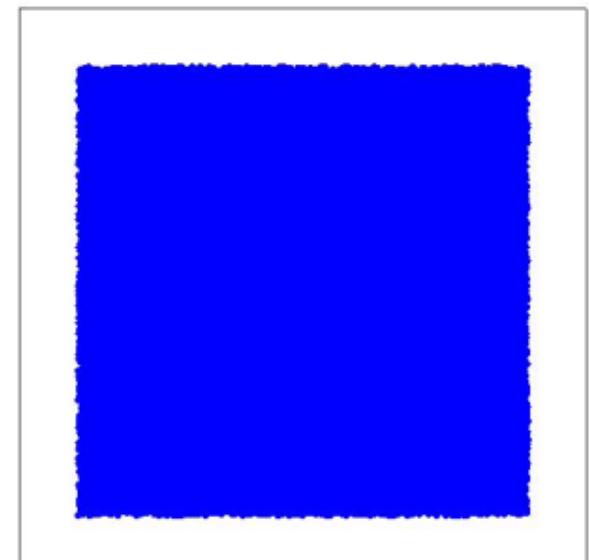


Thermodynamics: CICE Consortium Icepack Library (Hunke et al. 2018)

- State-of-the-art sea-ice thermodynamics package
- Includes vertical thermodynamics, salinity, shortwave radiation, snow, melt ponds, ice thickness distribution, biogeochemistry

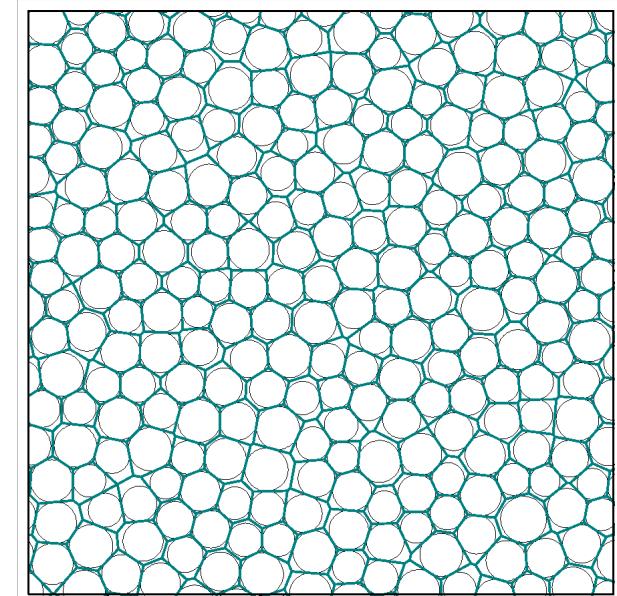


- Dynamics are computed using circular Lagrangian elements
- Interactions via contact forces for bonded and unbonded elements
- Enables capture of complex anisotropic deformation and fracture



REPRESENTATION OF SEA ICE IN DEMSI

- Individual ice floes are not resolved at the climate modeling scale
- Each circular discrete element particle represents a region of ice with varying thickness including open water
- Sea ice column thermodynamics model (Icepack) evolves
 - Ice thickness distribution
 - Ice concentration or fractional area of ice in each element
 - Ice thermodynamics (temperature/enthalpy) in vertical layers
- Discrete element contact model evolves 2-D sea ice dynamics
 - Velocity convergence/divergence impacts ice thickness distribution
- Effective particle area
 - Defined by Voronoi tessellation of particles
 - Provides a method to define conserved quantities covering the domain



6 CONTACT MODEL

- Based the work of Hopkins 2004, Wilchinsky et al. 2010 applied to circular elements
- Sets normal ($F_{n,ij}$) and tangential ($F_{t,ij}$) forces
- Considers bonded and unbonded states
 - Mechanical forces break up bonds
 - Freezing/solidification creates bonds between elements
- Viscous dampening force added to bonded elements based on Siku model in Kulchitsky et al., 2017
- Includes sea ice ridging under convergence

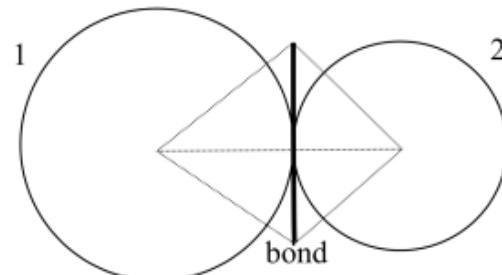
$$\text{Total force on particle } i: \mathbf{F}_i = \sum_{j,j \neq i}^N (\mathbf{F}_{n,ij} + \mathbf{F}_{t,ij}) + \mathbf{F}_{ext}(\mathbf{r}_i)$$

$$\mathbf{F}_{ext}(\mathbf{r}_i) = \rho_a C_a \|\mathbf{v}_a\| \mathbf{v}_a \pi R_i^2 + \rho_w C_w \|\mathbf{v}_w - \mathbf{v}_i\| (\mathbf{v}_w - \mathbf{v}_i) \pi R_i^2 - f_c m_i (\mathbf{k} \times \mathbf{v}_i) + f_c m_i (\mathbf{k} \times \mathbf{v}_w)$$

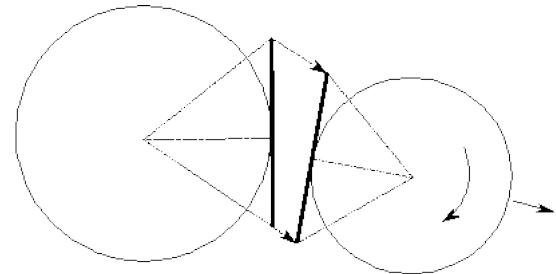
Wind drag

Ocean drag

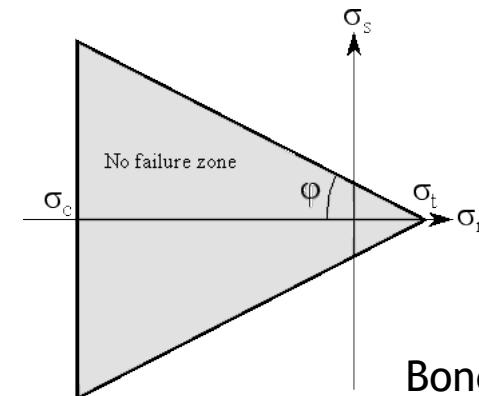
Coriolis force Surface tilt



Two particles in equilibrium
($F_{n,ij} = F_{t,ij} = 0$)



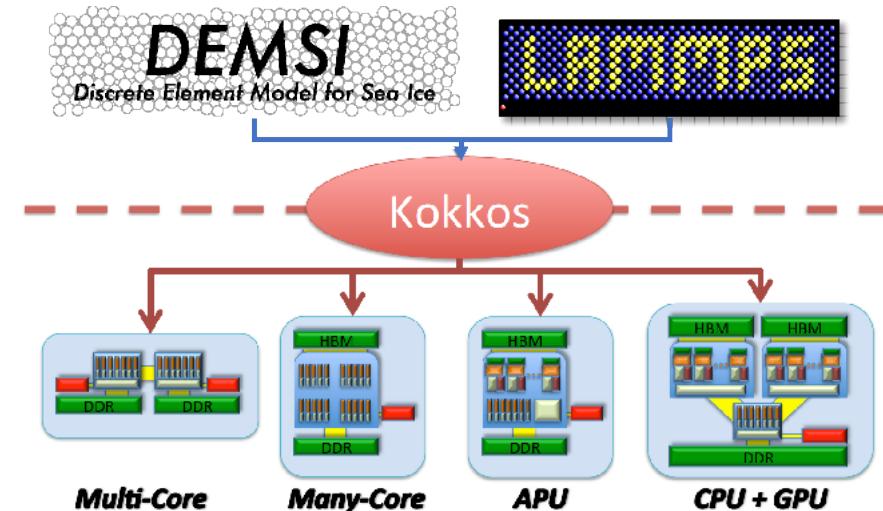
Two bonded particles
in relative motion



Bond failure set by
Mohr-Coulomb fracture law

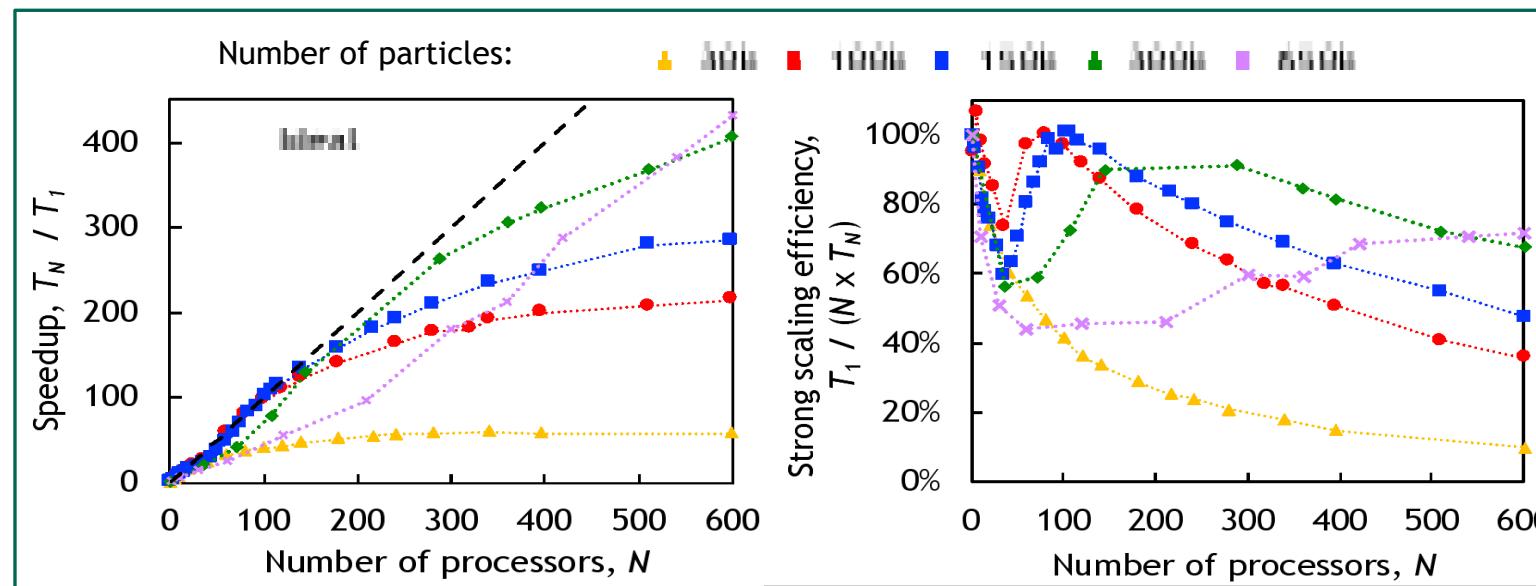
COMPUTATIONAL PERFORMANCE

- Contact model implemented in LAMMPS
 - Computationally efficient providing high-performance baseline
 - Leverages Kokkos ecosystem for performance portability
- Good strong scaling results for uniform stress test case with varying particle count

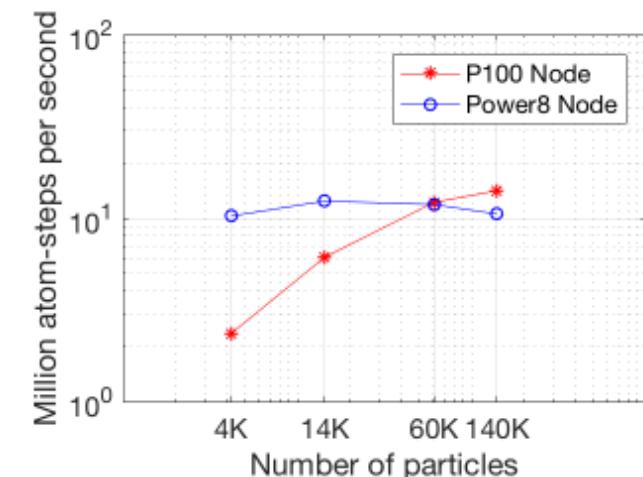


<https://github.com/kokkos>

Strong scaling on CPU



Preliminary look at GPU performance:
Results for Nvidia Tesla P100 GPU node
versus Power8 node with eight Garrison
dual socket cores

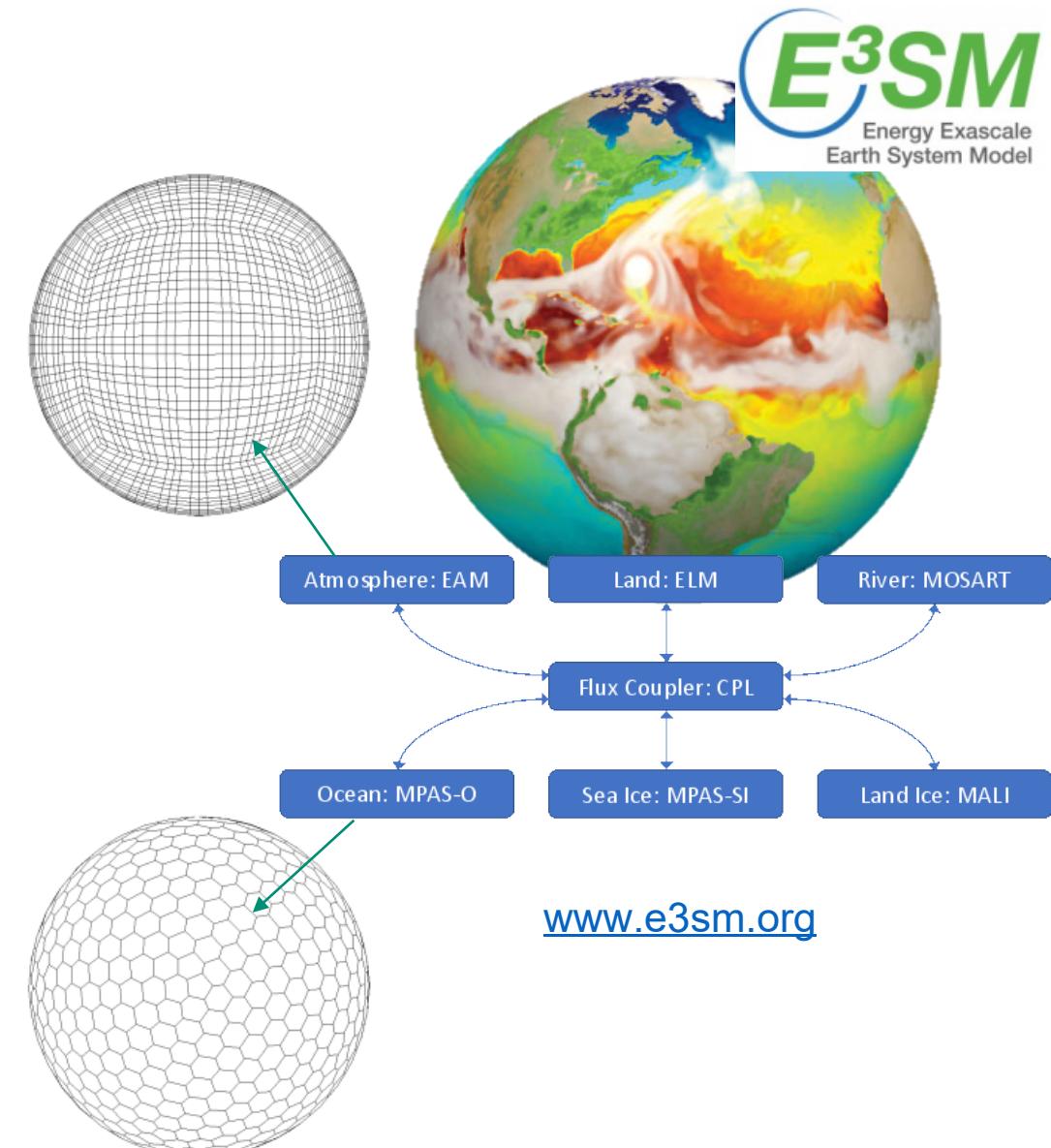


Coupling with ocean and atmosphere models

- DEMSI under development for the Energy Exascale Earth System Model (E3SM)
- Requires interpolation between Lagrangian particles and Eulerian grids
- Work to incorporate unstructured Voronoi grid in DEMSI is ongoing

Particle-to-particle remap

- Periodic remap to initial particle distribution to manage large deformations and particle clustering
- Provides method for adding new particles due to thermodynamic growth



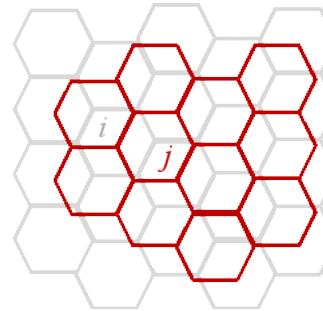
9 GEOMETRIC REMAP

- Adapted geometric remap algorithm to spherical particles (Turner, *et al.* GMD 2022).
- Conservative, bounds preserving, and 2nd order accurate.
- Compatible remap for hierarchical set of tracers depending on sea ice fractional area and volume.

Steps in Algorithm

- Determine overlap polygons and remap effective element area

$$e_j = \sum_i e_{ij} = \sum_i \frac{A_{P_{ij}}}{A_{P_i}} e_i.$$



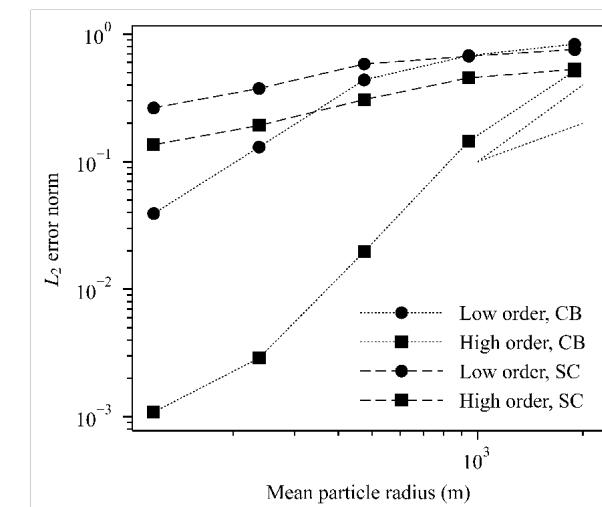
- Compute linear reconstructions of average tracer fields

$$c^p(\mathbf{r}) = c + \alpha_c \nabla c \cdot (\mathbf{r} - \bar{\mathbf{r}}) \quad \bar{\mathbf{r}} = \frac{1}{A} \int_A \mathbf{r} dA,$$

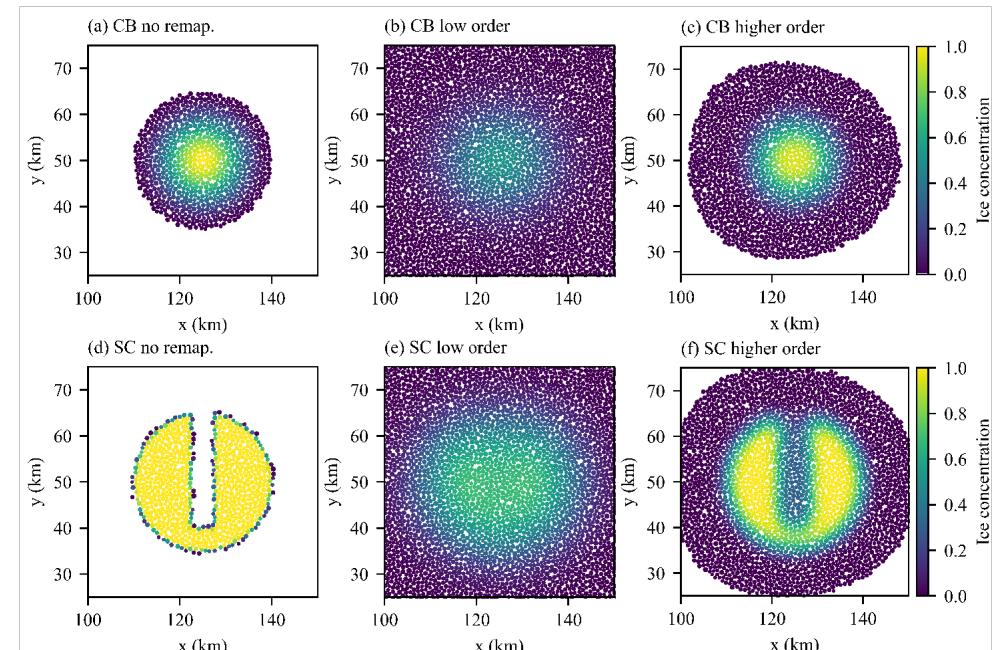
- Integrate conserved variable reconstructions over intersection polygons

$$\mathcal{A}_{jk} = \sum_i e_{ij} \frac{1}{A_{P_{ij}}} \int_{A_{P_{ij}}} c_{ik}^p(\mathbf{r}) dA,$$

- Enforce bounds preservation using optimization-based flux correction



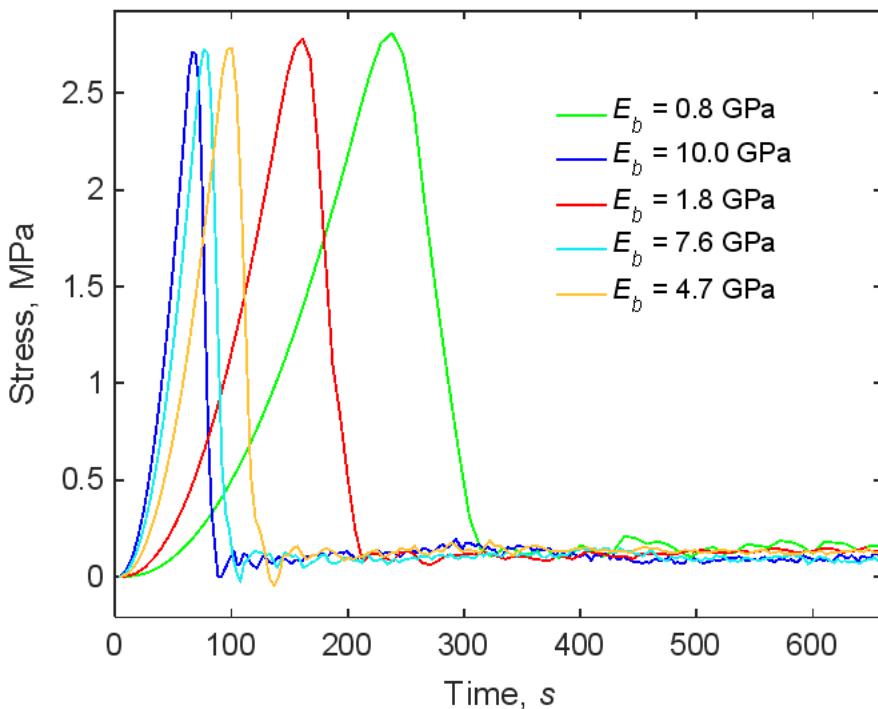
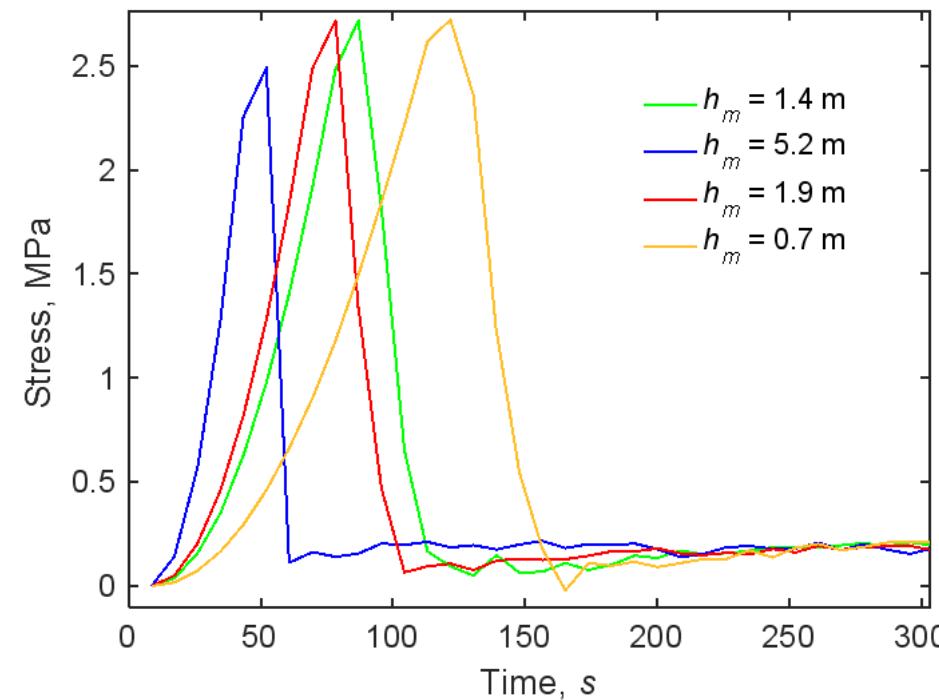
- Cosine bell and slotted cylinder
- Irregular initial particle distribution
- 100 km of translation (200 time steps)



CONTACT MODEL UNIAXIAL COMPRESSION

- Holding all parameters constants except bond moduli (E_b) and bond thickness (h_m).
- Brittle-like failure as E_b and h_m increase.
- Consistent with results in the literature (Herman 2016).
 - $E_b = 1$ Gpa (when varying h_m)
 - $h_m = 0.2$ m (when varying E_b)

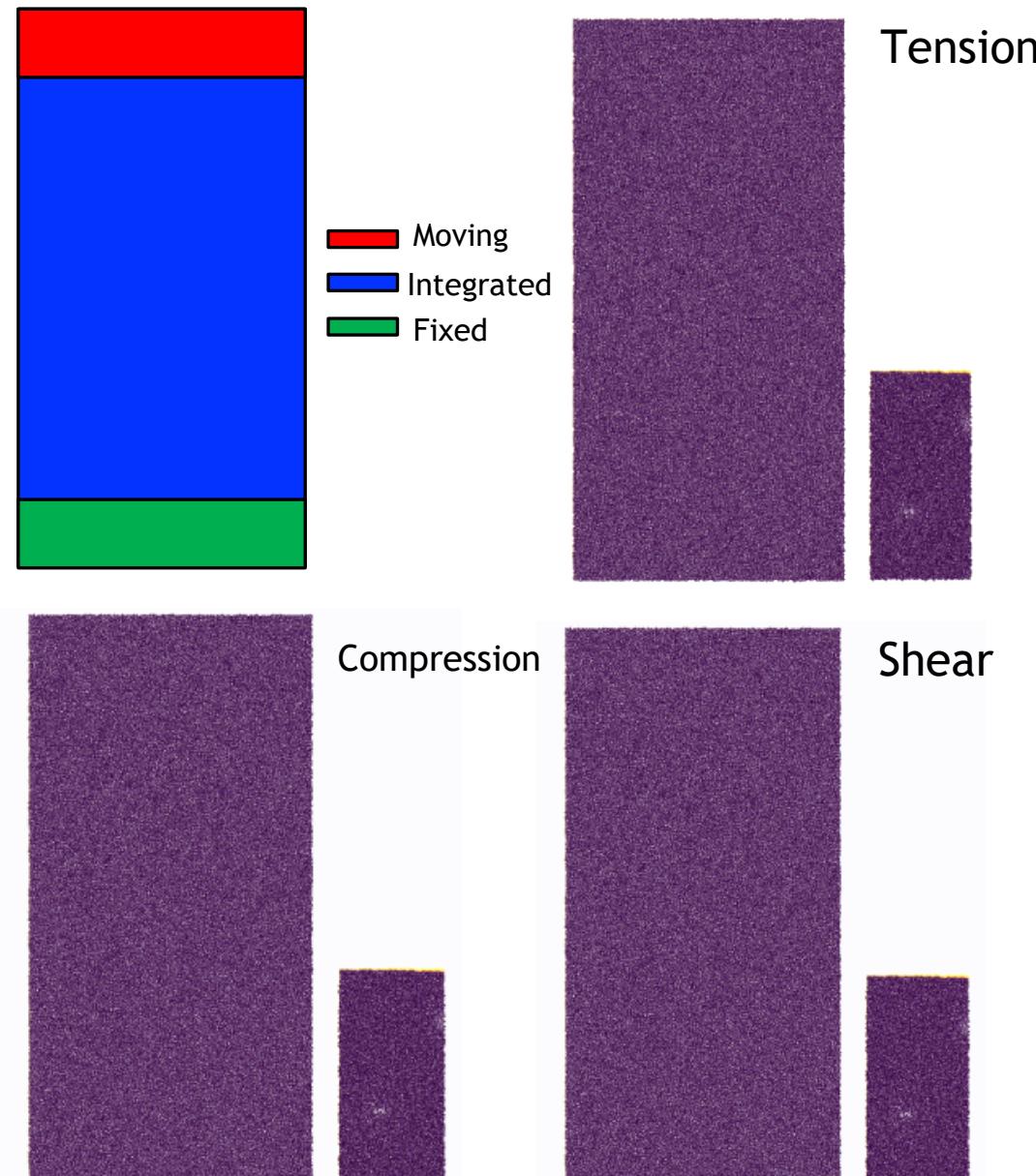
Contact parameter
Compressive breaking stress coeff. = 1285.0
Tensile breaking stress coeff. = 0.1
Friction angle = 13.0°
Bonded damping coeff. = 1.0×10^4
Tangential friction coeff. = 0.3
Nonbonded normal damping coeff. = 0.1
Nonbonded tangential damping coeff. = 1.0×10^5
Critical crushing thickness = 0.2 m
Plastic friction coeff. = 26126.0 N/m
Plastic hardening coeff. = 9.28 N/m ²
Poisson ratio = 0.3



CONTACT MODEL PARAMETER SENSITIVITY ANALYSIS

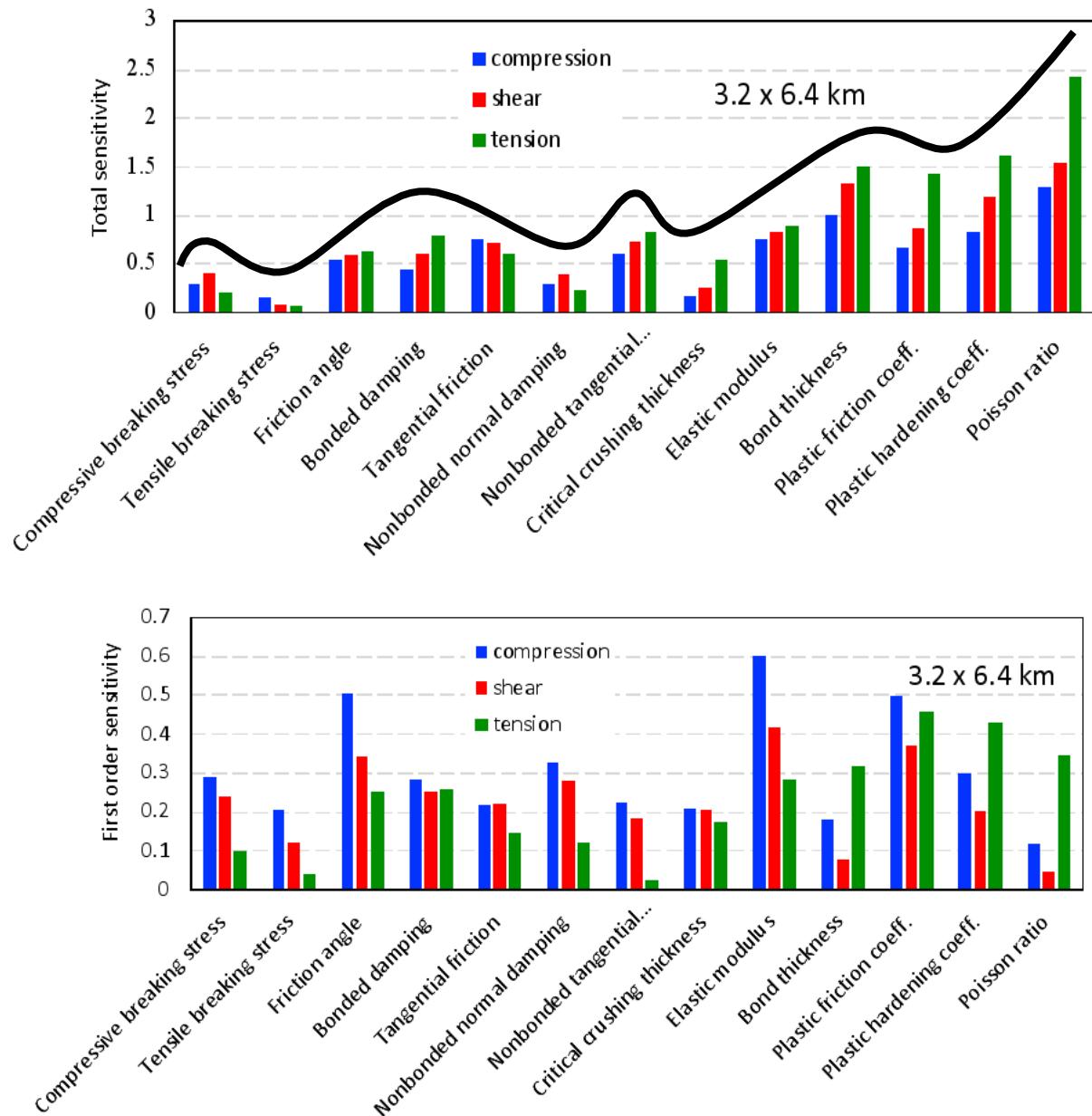
- Sensitivity analysis is first step in parameter optimization and calibration.
- Mechanical test cases: compression, tension, shear.
- 2 sample test sizes: 2 km x 2.4 km, 3.2 km x 6.4 km.
- 13 contact parameters.
- Sobol sensitivity analysis with Saltelli sampling.

X_i	Contact parameter	Low. bnd.	Upp. bnd.	Unit
1	Compressive breaking stress coeff.	100	5000	-
2	Tensile breaking stress coeff.	0.01	0.9	-
3	Friction angle	12	19	°
4	Bonded damping coeff.	1000	5×10^4	-
5	Tangential friction coeff.	0.05	0.7	-
6	Nonbonded normal damping coeff.	0.01	0.7	-
7	Nonbonded tangential damping coeff.	1×10^4	5×10^5	-
8	Critical crushing thickness	0.01	0.7	m
9	Elastic modulus	1×10^8	1×10^{10}	Pa
10	Bond thickness	0.1	10	m
11	Plastic friction coeff.	6000	4.6×10^4	N/m
12	Plastic hardening coeff.	5	15	N/m ²
13	Poisson ratio	0.2	0.45	-



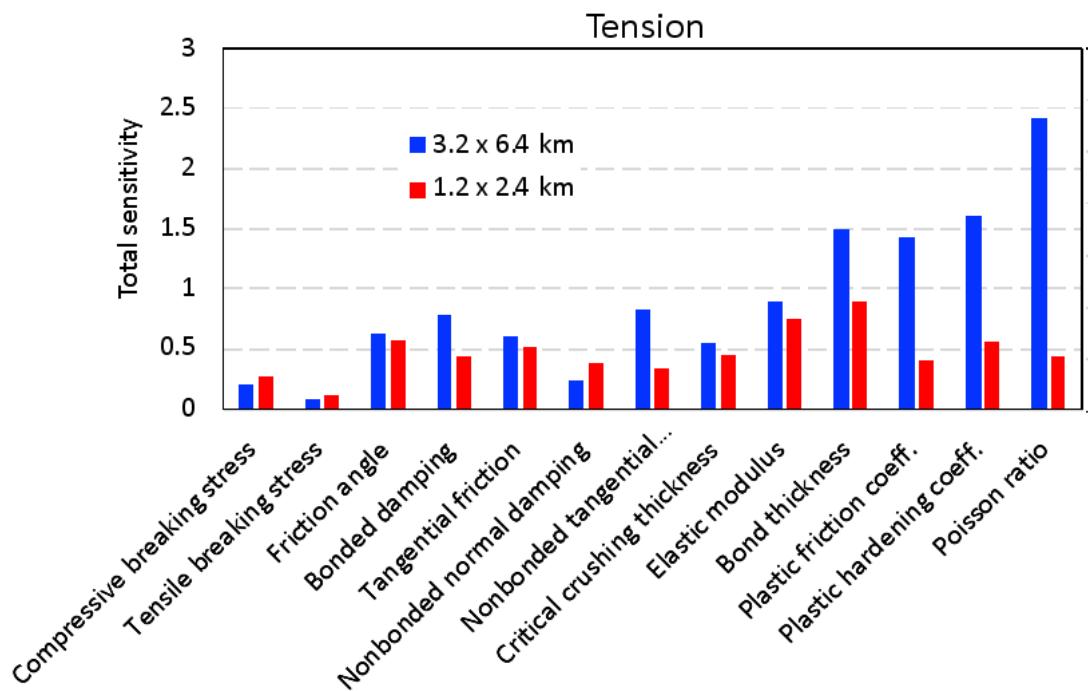
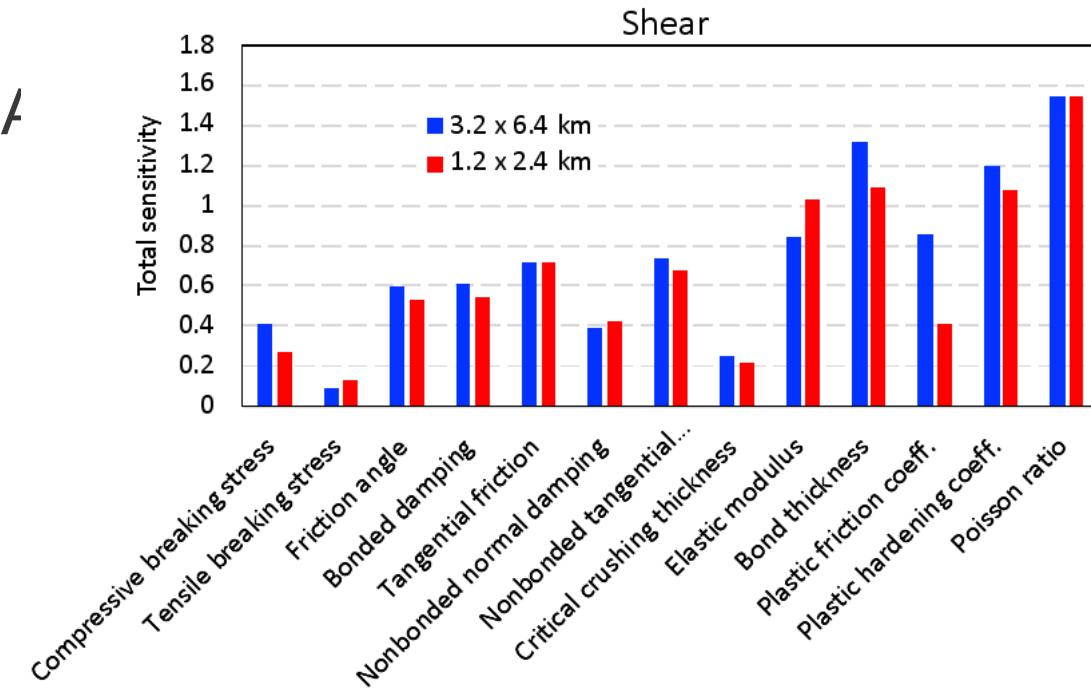
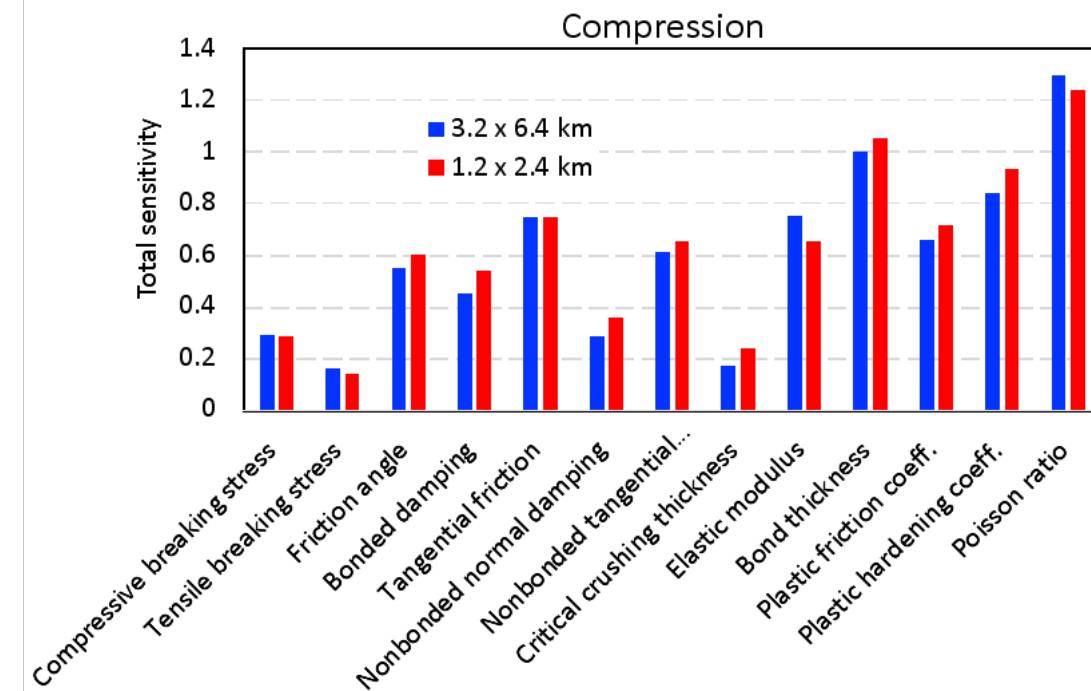
SENSITIVITY ANALYSIS RESULTS

- Sobol sensitivity examines how input parameters affect variance of expected value.
- Total sensitivity
 - Includes all parameter interactions.
 - Similar trends for all three cases.
 - Poisson ratio has the largest impact.
- First order sensitivity
 - Direct effect of given parameter on variance of expected value.
 - Excludes higher-order interactions between parameters.
 - Differences in parameter importance between the test cases.
 - **Compression**: Elastic modulus and friction angle.
 - **Shear**: Elastic modulus and plastic friction coefficient.
 - **Tension**: Plastic friction coefficient and plastic hardening coefficient.



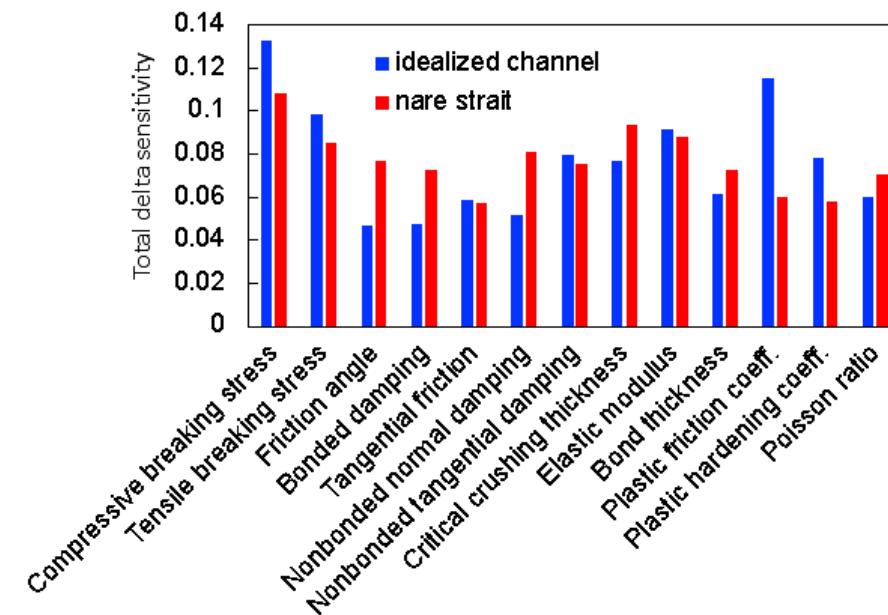
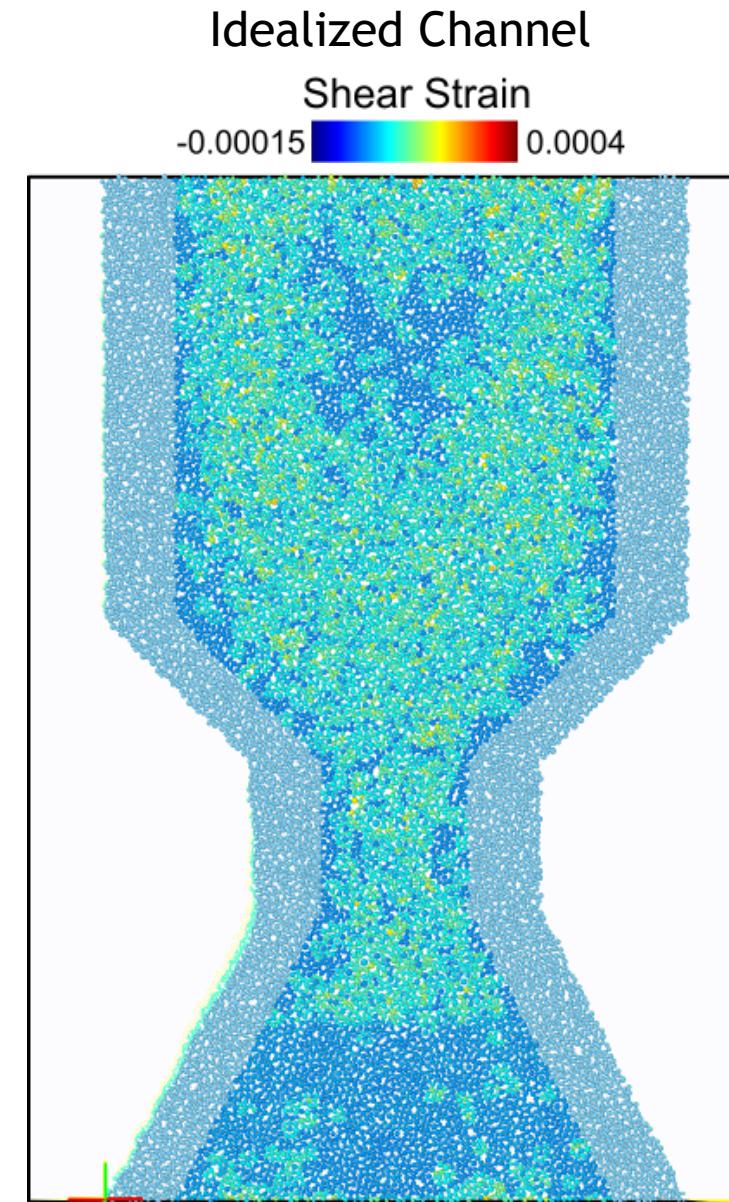
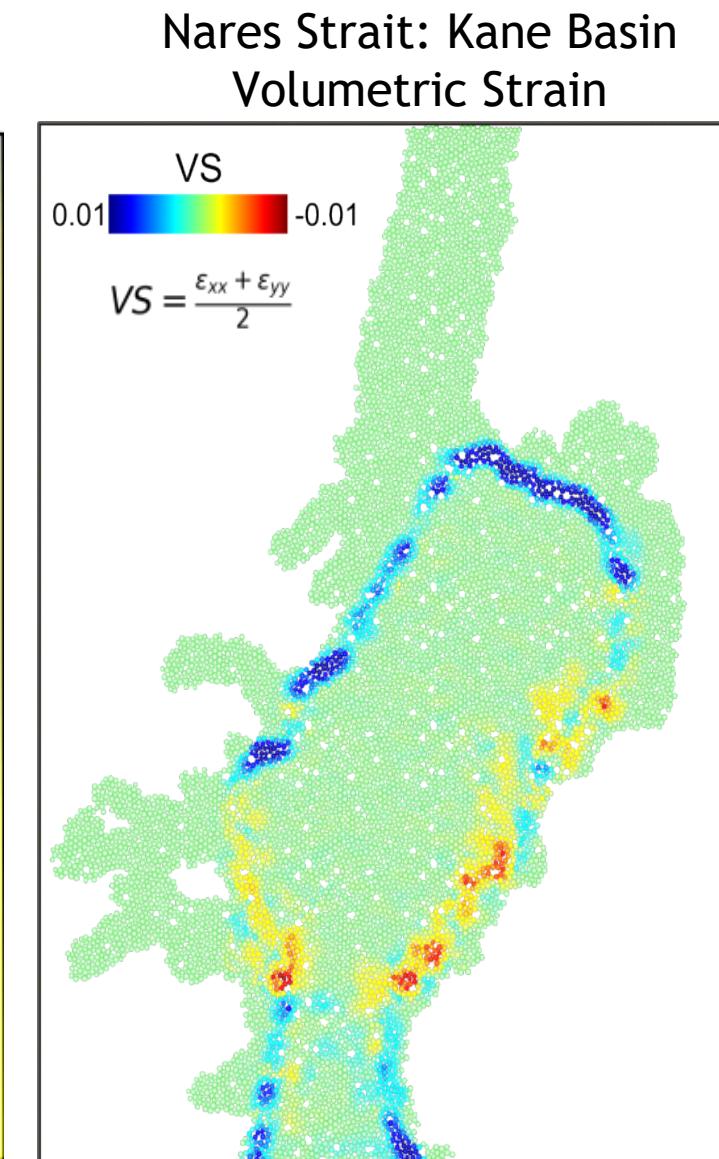
SENSITIVITY ANALYSIS SIZE IMP/

- No size dependence in compression.
- Plastic friction coefficient shows size dependence in shear.
- In tension total sensitivities shows strong size dependence.
 - Possibly due to local heterogeneity in 1.2×2.4 km sample.



PARAMETER SENSITIVITY FOR MORE COMPLEX GEOMETRIES

- Delta & Sobol sensitivity analyses conducted.
- Using 3584 samples drawn from Saltelli distribution.
- Delta sensitivity analysis examines relation between PDF of input/output values.



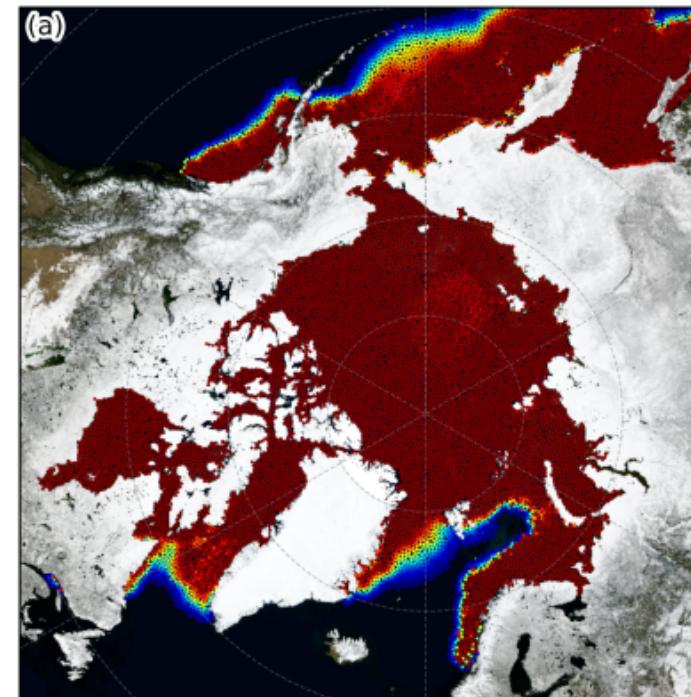
CONCLUSIONS

DEMSI under development as a component of Energy Exascale Earth System Model (E3SM)

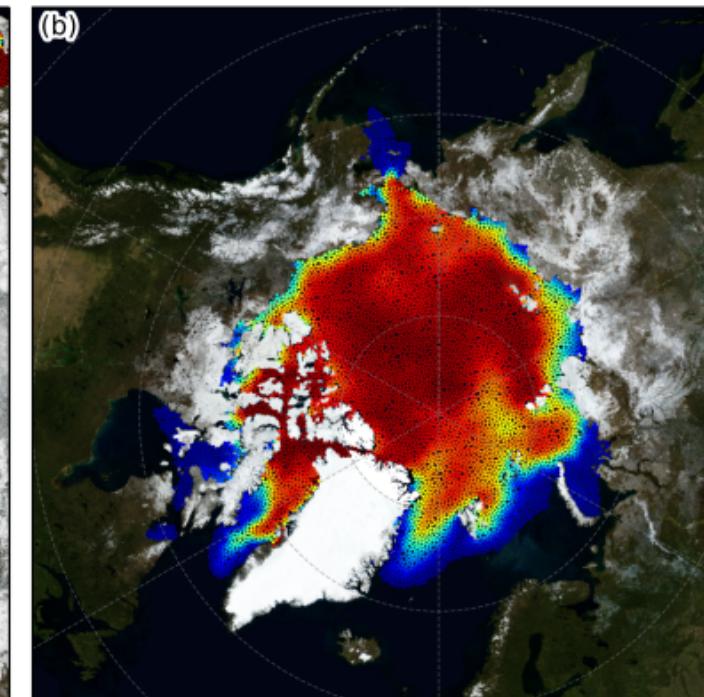
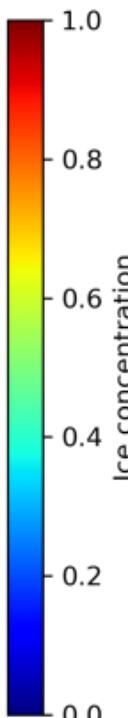
- Leverages LAMMPS and IcePack libraries.
- Incorporates bonded and unbonded contact model.
- Implements conservative particle remap algorithm to handle new ice growth and particle clustering.
- Contact model parameter sensitivity analysis performed
 - Identified important parameters.
 - Next steps are parameter calibration and optimization.

Northern hemisphere sea ice concentration
Average element radius is ~20km

1st March 2001



1st September 2001



REFERENCES

- Herman, A., Discrete-Element bonded-particle Sea Ice model DESIgn, version 1.3a - model description and implementation, *GMD*, 9, 1219-1241, <https://doi:10.5194/gmd-9-1219-2016> , 2016.
- Hopkins, M. A., A discrete element Lagrangian sea ice model, *Engineering Computations*, 21, 2-4, 2004.
- Hunke, E., R. Allard, D. Bailey, P. Blain, T. Craig, A. Damsgaard, F. Dupont, A. DuVivier, R. Grumbine, M. Holland, N. Jeffery, J.-F. Lemieux, A. Roberts, M. Turner, and M. Winton, CICE consortium/icepack version 1.1.0 (version icepack1.1.0), *Zenodo*, <https://doi:10.5281/zenodo.1891650> 2018.
- Rampal, P., Bouillon, S., Ólason, E., and Morlighem, M.: neXtSIM: a new Lagrangian sea ice model, *The Cryosphere*, 10, 1055-1073, <https://doi.org/10.5194/tc-10-1055-2016> , 2016.
- Thompson, A. P., H. M. Aktulga, R. Berger, D. S. Bolintineanu, W. M. Brown, P. S. Crozier, P. J. in 't Veld, A. Kohlmeyer, S. G. Moore, T. D. Nguyen, R. Shan, M. J. Stevens, J. Tranchida, C. Trott, S. J. Plimpton, LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales,, *Comp Phys Comm*, 271, 2022.
- Turner, A., K. Peterson, and D. Bolintineanu, Geometric remapping of particle distributions in the Discrete Element Model for Sea Ice. *GMD*, 15, 1953-1970, <https://doi.org/10.5194/gmd-15-1953-2022>, 2022.
- Turner, A. K., W. H Lipscomb, E. C. Hunke, D. W. Jacobsen, N. Jeffery, D. Engwirda, T. D. Ringler, J. D. Wolfe, MPAS-Seaice (v1.0.0): Sea-ice dynamics on unstructured Voronoi Meshes, *GMD*, 15, 3721-3751, <https://doi.org/10.5194/gmd-15-3721-2022>, 2022.