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SEA ICE IN THE EARTH SYSTEM2

Visualizations by Trent L. Schindler  https://svs.gsfc.nasa.gov/

Importance in global climate 
• Reflects solar radiation

• Insulates ocean from atmosphere

• Influences ocean circulation

Sea ice models must capture 
• Mechanical deformation due to surface winds and 

ocean currents 
• Formation of leads (cracks) and pressure ridges
• Annual cycle of growth and melt due to radiative 

forcing 

https://svs.gsfc.nasa.gov/cgi-bin/search.cgi?person=1058


SEA ICE MODELING3

Our objective is to develop a computationally efficient global climate scale sea ice model using DEM.

NASA Earth Observatory images by Jesse Allen using VIIRS day
-night band data from the Suomi National Polar-orbiting 
Partnership.
https://visibleearth.nasa.gov/images/80752/extensive-ice-
fractures-in-the-beaufort-sea/80756l 

• Most sea ice models in coupled Earth system models use 
a continuum formulation (Turner et al. 2022, Rampal et 
al. 2016) 

• At high resolutions (~5-6 km) isotropic continuum models 
do not approximate the dynamics well

• Discrete element method
• Lagrangian particles
• Captures anisotropic, heterogenous nature of sea ice 

deformation
• Explicit fracture and break-up of pack

• Previous DEM sea ice modeling efforts focused primarily 
on regional scale, short-term simulations (Hopkins 2004)

http://npp.gsfc.nasa.gov/
http://npp.gsfc.nasa.gov/
https://visibleearth.nasa.gov/images/80752/extensive-ice-fractures-in-the-beaufort-sea/80756l
https://visibleearth.nasa.gov/images/80752/extensive-ice-fractures-in-the-beaufort-sea/80756l


DISCRETE ELEMENT MODEL FOR SEA ICE (DEMSI)4

• Particle based molecular dynamics code 
• Includes support for DEM and history dependent contact models

Thermodynamics: CICE Consortium Icepack Library (Hunke et al. 2018)
• State-of-the-art sea-ice thermodynamics package 

• Includes vertical thermodynamics, salinity, shortwave radiation, snow, 
melt ponds, ice thickness distribution, biogeochemistry

• Dynamics are computed using circular Lagrangian elements 

• Interactions via contact forces for bonded and unbonded elements

• Enables capture of complex anisotropic deformation and fracture

Dynamics: Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) (Thompson et al. 2022) 



REPRESENTATION OF SEA ICE IN DEMSI5

• Individual ice floes are not resolved at the climate 
modeling scale

• Each circular discrete element particle represents a 
region of ice with varying thickness including open water

• Sea ice column thermodynamics model (Icepack) evolves
• Ice thickness distribution
• Ice concentration or fractional area of ice in each element
• Ice thermodynamics (temperature/enthalpy) in vertical 

layers

• Discrete element contact model evolves 2-D sea ice 
dynamics 
• Velocity convergence/divergence impacts ice thickness 

distribution

• Effective particle area
• Defined by Voronoi tessellation of particles
• Provides a method to define conserved quantities covering 

the domain



CONTACT MODEL6

Total force on particle i: 

Wind drag Ocean drag Coriolis force Surface tilt

Two bonded particles
in relative motion

Bond failure set by 
Mohr-Coulomb fracture law

• Based the work of Hopkins 2004, Wilchinsky et al. 
2010 applied to circular elements

• Sets normal (ᵃ� _(ᵅ� ,ᵅ�ᵅ� )) and tangential (ᵃ� _(ᵆ� ,ᵅ�ᵅ� )) 
forces

• Considers bonded and unbonded states
• Mechanical forces break up bonds
• Freezing/solidification creates bonds between 

elements

• Viscous dampening force added to bonded 
elements based on Siku model in Kulchitsky et al., 
2017

• Includes sea ice ridging under convergence



COMPUTATIONAL PERFORMANCE7

• Contact model implemented in LAMMPS
• Computationally efficient providing high-

performance baseline
• Leverages Kokkos ecosystem for performance 

portability
• Good strong scaling results for uniform stress test 

case with varying particle count

Preliminary look at GPU performance: 
Results for Nvidia Tesla P100 GPU node 
versus Power8 node with eight Garrison 

dual socket cores

Strong scaling on CPU

Number of particles:



INTERPOLATION & REMAP IN DEMSI8

Coupling with ocean and atmosphere models
• DEMSI under development for the Energy 

Exascale Earth System Model (E3SM)
• Requires interpolation between Lagrangian 

particles and Eulerian grids
• Work to incorporate unstructured Voronoi 

grid in DEMSI is ongoing

Particle-to-particle remap
• Periodic remap to initial particle distribution 

to manage large deformations and particle 
clustering

• Provides method for adding new particles 
due to thermodynamic growth

www.e3sm.org

http://www.e3sm.org/


GEOMETRIC REMAP 9

1. Determine overlap polygons and remap effective 
element area

2. Compute linear reconstructions of average tracer 
fields

3. Integrate conserved variable reconstructions over 
intersection polygons

4. Enforce bounds preservation using optimization-
based flux correction

Steps in Algorithm 

• Adapted geometric remap algorithm to spherical particles 
(Turner, et al. GMD 2022).

• Conservative, bounds preserving, and 2nd order accurate.
• Compatible remap for hierarchical set of tracers depending 

on sea ice fractional area and volume.

• Cosine bell and slotted cylinder 

• Irregular initial particle distribution

• 100 km of translation (200 time steps)



CONTACT MODEL UNIAXIAL COMPRESSION 10
Contact parameter

Compressive breaking stress coeff. = 1285.0
Tensile breaking stress coeff. = 0.1

Friction angle = 13.0°
Bonded damping coeff. = 1.0 x 104

Tangential friction coeff. = 0.3
Nonbonded normal damping coeff. = 0.1

Nonbonded tangential damping coeff. = 1.0 x 105

Critical crushing thickness = 0.2 m
Plastic friction coeff. = 26126.0 N/m
Plastic hardening coeff. = 9.28 N/m2

Poisson ratio = 0.3



CONTACT MODEL PARAMETER SENSITIVITY ANALYSIS11

• Sensitivity analysis is first step in parameter optimization 
and calibration.

• Mechanical test cases: compression, tension, shear. 
• 2 sample test sizes: 2 km x 2.4 km, 3.2 km x 6.4 km.
• 13 contact parameters.
• Sobol sensitivity analysis with Saltelli sampling.

Tension

Shear

Moving

Integrated
Fixed

ᵄ� ᵅ� Contact parameter Low. bnd. Upp. bnd. Unit

1 Compressive breaking stress coeff. 100 5000 -
2 Tensile breaking stress coeff. 0.01 0.9 -
3 Friction angle 12 19 °
4 Bonded damping coeff. 1000 5x104 -
5 Tangential friction coeff. 0.05 0.7 -
6 Nonbonded normal damping coeff. 0.01 0.7 -
7 Nonbonded tangential damping coeff. 1x104 5x105 -
8 Critical crushing thickness 0.01 0.7 m
9 Elastic modulus 1x108 1x1010 Pa
10 Bond thickness 0.1 10 m
11 Plastic friction coeff. 6000 4.6x104 N/m
12 Plastic hardening coeff. 5 15 N/m2

13 Poisson ratio 0.2 0.45 -

Compression



SENSITIVITY ANALYSIS RESULTS12

• Sobol sensitivity examines how input parameters 
affect variance of expected value.

• Total sensitivity 
• Includes all parameter interactions.
• Similar trends for all three cases.
• Poisson ratio has the largest impact.

•  First order sensitivity
• Direct effect of given parameter on variance of 

expected value. 
• Excludes higher-order interactions between parameters. 
• Differences in parameter importance between the test 

cases.
• Compression: Elastic modulus and friction angle.
• Shear: Elastic modulus and plastic friction coefficient.
• Tension: Plastic friction coefficient and plastic 

hardening coefficient.



SENSITIVITY ANALYSIS SIZE IMPACT13

• No size dependence in compression.
• Plastic friction coefficient shows size 

dependence in shear.
• In tension total sensitivities shows 

strong size dependence.
• Possibly due to local heterogeneity in 

1.2 x 2.4 km sample.



PARAMETER SENSITIVITY FOR MORE COMPLEX 
GEOMETRIES14

Nares Strait: Kane Basin
Volumetric Strain

Idealized Channel
• Delta & Sobol sensitivity 

analyses conducted.
• Using 3584 samples drawn from 

Saltelli distribution.
• Delta sensitivity analysis 

examines relation between PDF 
of input/output values.



CONCLUSIONS15

Northern hemisphere sea ice concentration 
Average element radius is ~20km

1st September 2001 1st March 2001

DEMSI under development as a component of 
Energy Exascale Earth System Model (E3SM)

• Leverages LAMMPS and IcePack 
libraries.

• Incorporates bonded and 
unbonded contact model. 

• Implements conservative 
particle remap algorithm to 
handle new ice growth and 
particle clustering.

• Contact model parameter 
sensitivity analysis performed 

• Identified important 
parameters. 

• Next steps are parameter 
calibration and optimization.
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