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Context Interpretability Example

Motivation: Proliferation of machine learning surrogates in scientific computing

* User preferences and application needs will affect interpretability through weights

Framework Applied to Surrogates

«  Data-driven, constructed with input-output pairs (X, Y) inI(R, S, E)

*  Physical model structure, often PDE-based * User |:noisy data, large computational budget

*  Expensive data collection wy = 0.7, w, = 0.15, w3 = 0.15
 Target map f finite- or infinite-dimensional Robustness (d = 2) Scalability (o = 0) Efficiency (d = 2,0 = 0) * User 2:noiseless data, small computational budget
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* Repeated evaluations of surrogate f3 ¢ Gaussian Process (N — 6) N L0 wy = 0.1, w, = 0.25, ws = 0.65
+  Goal: Standardized framework to view surrogates N M 10t * R S, and E set to average values over respective domains
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Fig. I: RalSE framework. (N=1024) R R =
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*  Accuracy (a): varies inversely with error B — . | i o 0
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Elfg v =Ex. g 107y * Can also use RalSE to demonstrate low-rank structure by fixing size of reduced
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(N=1024) = 051 Tt T 1077 2 asis in definition of scalability
* Robustness (R): constancy of a w.r.t. standard deviation ¢ of additive noise 105 * Caveats
in training outputs B e 0.0f | | | | — | | | | ] | = * We do not catch all surrogate features in RalSE (e.g., parallelizability,
: : 0 0. : : 102 10°
9 n “ storage, dependence on regularity)
¢ —x o | . 10° . : :
R(o) =~ (8_ log (5[ XY])) 7 v(x) =e 10 . Magnitude and rate of change of error are important
o Tensor Train - : / s * End-user may want different y(x) across R, S, and E
oo o . . . (N=1024) &= 0.5 e N 10—2%
*  Scalability (S): constancy of a w.r.t. dimension of input space d = dim(X) o -
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»  Efficiency (E): speed of increase in a w.r.t. N = |X| " * Novel and comprehensive set of metrics to evaluate surrogate models in practice
9 Operator Inference g * Designed so that R, I, S, and E range from O to |
= e R e e e N S Y e S -2 O ole ore - . .
E(N)=1-7 (— 9(log V) log (E[nyD) (N=80) " - g * Interpretability depends on robustness, scalability, efficiency, and subjective
\/ doditBosHgonre , [ : : ~ 10735 preferences of decision-maker
° HH [ - 1 1 1 Learn reduced dynamics from snapshots _ _ R ) R
Interpretability (I): user-defined convex combination of R, 5, and E LN Y P e ———— i == — i * Framework for the community and for Sandia’s own surrogate modeling needs
I(R,S,F) = w1 R+ wyS +wsE ’ - * Manuscript in preparation
w; > 0, w1 + wo +ws =1 v ' * Large cross-section of methods written accessibly
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Fig. 2: Final-time concentrations for different parameter choices (left). Scalar response surface (right).
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