
Sandia National Laboratories is a multimission laboratory managed and operated by National 
Technology &Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell 
International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration 
under contract DE-NA0003525.
SAND No. ____________

RaISE:  A Framework to Characterize Surrogate Models in Scientific Machine Learning

Context
• Motivation:  Proliferation of machine learning surrogates in scientific computing

• Data-driven, constructed with input-output pairs ( "𝑋, "𝑌)
• Physical model structure, often PDE-based
• Expensive data collection

• Target map 𝑓 finite- or infinite-dimensional
• Repeated evaluations of surrogate 𝑓 !", !$
• Goal:  Standardized framework to view surrogates
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• Accuracy (a): varies inversely with error

• Robustness (R): constancy of a w.r.t. standard deviation 𝜎 of additive noise 
in training outputs

• Scalability (S): constancy of a w.r.t. dimension of input space 𝑑 = dim(𝒳)

• Efficiency (E): speed of increase in a w.r.t.𝑁 = "𝑋

• Interpretability (I): user-defined convex combination of R, S, and E

Model Use-Case

• 2D convection–diffusion with Gaussian source and parameterized velocity field
• Parameters: KL coefficients, independent and uniformly distributed on −1,1
• QoI: State/point-value at final time
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Fig. 2:  Final-time concentrations for different parameter choices (left).  Scalar response surface (right).

Framework Applied to Surrogates

Interpretability Example
• User preferences and application needs will affect interpretability through weights 

in I(R, S, E)
• User 1: noisy data, large computational budget

𝑤% = 0.7, 𝑤& = 0.15, 𝑤' = 0.15
• User 2: noiseless data, small computational budget

𝑤% = 0.1, 𝑤& = 0.25, 𝑤' = 0.65
• R, S, and E set to average values over respective domains

Summary and Next Steps
• Novel and comprehensive set of metrics to evaluate surrogate models in practice
• Designed so that R, I, S, and E range from 0 to 1

• Interpretability depends on robustness, scalability, efficiency, and subjective 
preferences of decision-maker

• Framework for the community and for Sandia’s own surrogate modeling needs
• Manuscript in preparation
• Large cross-section of methods written accessibly
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Robustness 𝑑 = 2 Efficiency 𝑑 = 2, 𝜎 = 0Scalability 𝜎 = 0

Gaussian Process
(N=40)

Polynomial Chaos Expansion
(N=40)

Multilayer Perceptron 
(N=1024)

Wavelets 
(N=1024)

Tensor Train 
(N=1024)

Operator Inference
(N=81)

Fourier Neural Operator 
(N=5000)

Deep Operator Network 
(N=5000)
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Fig. 3:  RaISE applied to function and operator approximation methods. FNO diagram from [Li 2021].

Method Large noise, 
large budget

Small noise, 
small budget

GP 0.63 0.75
PCE 0.59 0.83
MLP 0.78 0.64

Wavelet 0.56 0.62
Tensor Train 0.59 0.76
OpInf 0.71 0.35

FNO 0.48 0.51
DeepONet 0.74 0.49

Remarks
• Can also use RaISE to demonstrate low-rank structure by fixing size of reduced 

basis in definition of scalability
• Caveats
• We do not catch all surrogate features in RaISE (e.g., parallelizability, 

storage, dependence on regularity)
• Magnitude and rate of change of error are important
• End-user may want different γ(𝑥) across R, S, and E
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Fig. 1:  RaISE framework.
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