SAND2022-12946C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressediin
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Geometric data analysis through
quantum dynamics

Mar Apr May Jun y
date 2020 2 . -

— o -

Mohan Sarovar oy

Sandia National Laboratories, Livermore, CA

SIAM Mathematics of Data Science
September 2022 :
— —  @ENERGY NJISA

Sandia National Laboratories is a
multimission laboratory managed and
operated by National Technology and

Engineering Solutions of Sandia LLC, a wholly
owned subsidiary of Honeywell International
Inc. for the U.S. Department of Energy’s
National Nuclear Security Administration
under contract DE-NA0003525.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly.owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration/under contract' DE-NA0003525.



, I Manifold learning and its applications

* Manifold learning, or resolving geometric structure of data enables many tasks:
« Visudlization

« Representation of data in reduced order coordinates

« Classification, anomaly detection, image segmentation, autonomous driving,
augmented readlity, ...
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; | Manifold learning and its applications

* Manifold learning, or resolving geometric structure of data enables many tasks:
« Visudlization

« Representation of data in reduced order coordinates

« Classification, anomaly detection, image segmentation, autonomous driving,
augmented readlity, ...

* The manifold hypothesis: “high dimensional data tend to lie in the vicinity
of a low dimensional manifold”.
« e.g., images, randomly generated image of NxN pixels will almost surely not
correspond to a real world scene.
« e.g. data generated by a dynamical system will follow some equation of
motion

Fefferman, Mitter, Narayanan. J. Am. Math. Soc., 29, 983 (2016)



Continuum quantum dynamics on manifolds &
+ 1 geodesic flow

i ~ Laplace-Beltrami operator for
Consider: H =+/Ay;“ " manifold v0) = [0z)

[e) = etV A 10,) is astate that has singular support along geodesics in all directions




Continuum quantum dynamics on manifolds &
s | geodesic flow

i ~ Laplace-Beltrami operator for
Consider: H =+/Ay;“ " manifold v0) = [0z)

[e) = etV A 10,) is astate that has singular support along geodesics in all directions
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Continuum quantum dynamics on manifolds &
o I geodesic flow

. ~ Laplace-Beltrami operator for
Consider: H = \/Ag/ mé’md P 1%0) = [0z)

1) = eV 29|5,) is a state that has singular support along geodesics in all directions

Example: sphere




Continuum quantum dynamics on manifolds &
71 geodesic flow

i ~ Laplace-Beltrami operator for
Consider: H = \/Ag‘/ manifold [tho) = [0z)

[e) = etV A 10,) is astate that has singular support along geodesics in all directions

This statement can be understood in various ways
1. Math: Microlocal analysis — wavefront set associated to hyperbolic dynamics
2. Physics: Free motion of localized particle (photon) — light travels in straight lines
3. Mathematical physics:

H = \/ Ag is quantization of kinetic energy/free motion Z gy (a:)pipj = \p]g
(2]
’¢0> — |5gg> is a localized wavepacket with momentum in all
directions

Can we exploit this observation to extract geodesic distances and
information about geometry from quantum dynamics on datae




5 ‘ First ingredient: the graph Laplacian

« Some of the most successful methods for manifold learning rely graph Laplacians
constructed from data
« Diffusion maps, Laplacian eigenmaps, Local linear embedding, ...

Graph/point cloud . )
Data .embedding . Normalized graph Laplacian
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Adjacency matrix for symmetric weighted graph
€ is a key “scale” parameter
Typically, e >0 as N - o
Methods hinge on key convergence result éggr:)on & Lafon, Appl. Comp. Harm. Anall., 21, 5
N —o0 Hein, Audibert, von Luxburg, J. Mach. Learn. Res.,
Lye —— L.=A,+4 O(e) 8, 1325 (2007)

“Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps.,” Coifman et al. Proc. Natl. Acad. Sci., 102, 7426 (2005)
“Laplacian Eigenmayps for Dimensionality Reduction and Data Representation,” Belkin, Niyogi, Neural Computation, 15, 1373 (2003)



» | Quantum dynamics on data

Normalized graph " ——— N — 00
Laplacian Recall: LN,e E— ['e — Ag =+ O(E)

Build unitary propagator (NxN matrix)  U(t) = e "V ENe

Example: Build data-driven propagator with N = 2500 samples from the circle
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o | Quantum dynamics on data
Normalized graph — ——
Laplacian P Recall: LN,e —>N_>OO [/e — Ag ‘|‘@ -g;gé?e?;ror ferms are fhe
Build unitary propagator (NxN matrix)  U(t) = e "V ENe

Example: Build data-driven propagator with N = 2500 samples from the circle
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« | Resolution limits of data-driven quantization

* The problem is the finite resolution of the manifold given by finite N, and
quantified by e.

« We are asking for too much to resolve delta function propagation when € > 0.

« Roughly:  U(t) = e *VInet  “resolves” position space af scale e
“resolves” momentum up fo bandwidth 1/\/5

< .
—itr /A
Approximates the action of the operator € ¢ g

 |In contrast, initial states like |0.) are infinitely localized and have unbounded
momentum.

« SO we need away to coarsen the dynamics .. iy -




2 | Coherent states to the rescue

« Coherent states are
* The "most classical” of guantum states

« Minimum uncertainty in phase space, maximum localization in phase space

« Can define coherent states on a general manifold. In position bosis}:j

wCo (X) — <X|wC0> —

1
(wh)1

| x—xq2

Combescure & Robert. Coherent States and Applications in Mathematical Physics. Springer Netherlands, 2012. I
Gazeau, Coherent States in Quantum Physics. Wiley-VCH, 2009.
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« Localized to vh in space and momentum bandwidth scales as Y

« We can conftrol coarse-ness of phase space resolution using h. Match to data

resolution:

h>+e =

h

1
€2te, > 1

“Classical limit”  h — 0

is the large data limit N — oo




s 1 Coherent states to the rescue

« Can approximate coherent state using the data. A coherent state centered
at data point v, has elements

“%ﬁo)} x o (i—v0)Tpo ,— 12i5p0lc . 1<i<N. 5°) e CN
« |nifial momentum, p,, approximated using a vector from v, to nearest point, or
0
using local principal component analysis (LPCA)

Example: Build data-driven propagator with N = 2500 samples from the circle
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« | Discrete quantum-classical correspondence

“Manifold learning via quantum dynamics.” A. Kumar & M. Sarovar. arXiv:2112.11161 (2021)

By approximating the correct quantum operators and quantum states from the data, and setting
h appropraitely, we show that it is possible 1o approximate geodesics on the data manifold.

Expected
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s | Discrete quantum-classical correspondence

“Manifold learning via quantum dynamics.” A. Kumar & M. Sarovar. arXiv:2112.11161 (2021)

By approximating the correct quantum operators and quantum states from the data, and setting
h appropraitely, we show that it is possible 1o approximate geodesics on the data manifold.

Expected

\ position at fime t
for data-driven

. Rigorous convergence theory. propagated

. First approach to recover geodesic information quantum state
from point clouds with quantitative guarantees.

. The data-driven quantization and dynamics are  pve bounded error in
all through matrix-vector operations on the data. [sic distance

quantization A dg (ft, X O (I)t) < h
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‘ Applications to real-world data

Clustering, anomaly detection from
data of COVID-19 social distancing
behavior across geographic regions
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Clustering of NBA players based on
performance
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NOTES:
1. Manifold hypothesis not necessary for utility
2. Some of these datasets are small (e.g., N=126)

. Kumar & M. Sarovar. arXiv:2112.11161 (2021)
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19 ‘ Markov methods for manifold learning
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“Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps.,” Coifman et al. Proc. Natl. Acad. Sci., 102, 7426 (2005)
“Laplacian Eigenmayps for Dimensionality Reduction and Data Representation,” Belkin, Niyogi, Neural Computation, 15, 1373 (2003)



20 ‘ Example: sphere

N=3000 points, uniformly sampled on unit sphere
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21 ‘ Example: torus

N=12000 points, uniformly sampled on 2-torus
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Using geodesic distances for practical tasks

We have shown that quantum propagation allows for extraction of geodesic distances between
data points (under the manifold hypothesis). How is this usefule

Geodesic distances (or in the absence of a manifold, quantum walk distances) define a similarity
metric between data points.

We can embed the data in a graph based on this similarity metric. This graph reflects the
geometry of the dataset, and delivers new coordinates for the data => visualization, clustering,
classification, ...
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23 ‘ Embeddings of sphere and torus

N=12000 points

8000 points

N=



« | Example: COVID-19 mobility data

Social Distancing Metric dataset from SafeGraph Inc.
https://docs.safegraph.com/docs/social-distancing-metrics

« Dataset collects user location information (from cellphone GPS data) over the course of the initial
3 months of the COVID-19 pandemic (Feb 23, 2020 — June 19, 2020: 117 days).

« Aggregated at the census block group (CBG) level.
« Understanding patterns in mobility behavior can help tune public health policy.

« We compute a “stay-at-home” fraction which represents the fraction of devices that stayed at
their home location on a day.

« We concentrate on the data for Georgia (GA), which has 5509 CBGs.
 Dataset: 5509 x 117
Apply manifold learning through geodesics and
embed in 3 dimensions (reduction from 117

dimensions) and then perform clustering using K-
means.




25 ‘ Example: COVID-19 mobility data
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26 ‘ Example: COVID-19 mobility data
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c.f. Levin et al., “Cell Phone Mobility Data and Manifold Learning.” https://doi.org/10.1101/2020.10.31.20223776

We achieve better quality
clustering with QML, and are
able to identify outliers, even
| ' | | with an embedding info

03/01 04/01 05/01 06/01 fewer dimenSiOnS

Figure 2: Laplacian eigenmaps, clustering done after embedding
in 14 dimensions
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7 | Example: Global COVID-19 mobility data

Google COVID-19 Community Mobility Reports
https://www.google.com/covid1?/mobility/

Dataset collects user mobility information (% change in mobility from baseline) over 6 categories for
132 countries and regions within these countries.

Timeframe: ~1 year (Feb 15, 2020 - Jan 24, 2021)
Baseline: Jan 3 — Feb 6, 2020
Categories: Retail and recreation, grocery and pharmacy, parks, fransit stations, workplaces.

e * g b Retail and Recreation

After pre-processing: WMWW ]

2222222

For each country, 345*5=1725 columns (features) ‘ R —
that represent a time series of mobility changes ol \MMMW

across 5 categories. e e

2222222
ransif

Apply manifold learning through geodesics and B
embed in 3 dimensions (reduction from 1725 | ‘ ‘ ‘
dimensions)
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Signal processing interpretation

Propagate a coherent state Propagate a position
and look at the result in the eigenstate and look at the
position basis result in a coherent state basis

(0| Ut |05 |2 (5 | U |6,

‘ <¢g‘f> |2 is actually a Gabor spectrogram of f (also a Husimi-Q function)

Gabor fransform is a short-time Fourier fransform, defined by integration against Gabor
wavelets that are delocalized in time and frequency

t f) ‘\/_f_ —Jﬂ(f—t)ze—jiZﬂme(T)dT

A coherent state is a Gabor wavelet (this fime defined over coordinate and momentum, or
phase, space)

By choosing h we are choosing the (phase space) scale at which to resolve the signal Ut\5x>



s | Sighal processing interpretation

Example: N = 2500 samples from the circle
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» | Geodesic interpolation

Example of points sampled on a plane, what is shortest path between two points?

« Nofice how coherent state propagates smoothly between known/sampled data
points

« Coherent state charts a straight line (shortest) path, while other "shortest-path”
algorithms (e.g., Dijkstra’s algorithm) using the same data define longer paths.

« Qur technigue allows one to interpolate and extrapolate from the sampled data in @
way that is consistent with the data geometry.



