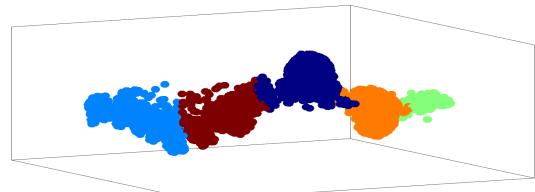
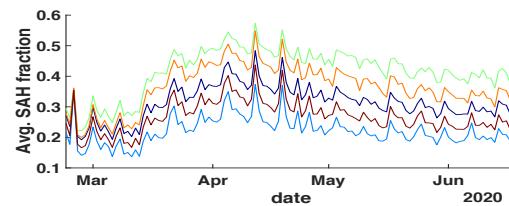
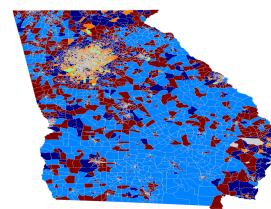
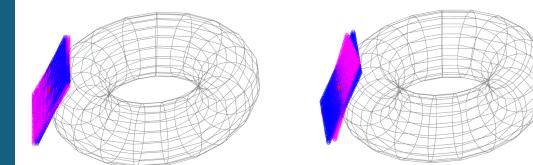
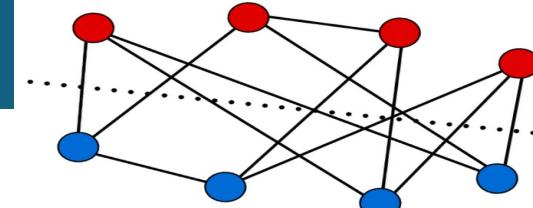


Sandia
National
Laboratories

Geometric data analysis through quantum dynamics



Mohan Sarovar

Sandia National Laboratories, Livermore, CA

SIAM Mathematics of Data Science
September 2022

Manifold learning and its applications

- Manifold learning, or resolving **geometric structure of data** enables many tasks:
 - Visualization
 - Representation of data in reduced order coordinates
 - Classification, anomaly detection, image segmentation, autonomous driving, augmented reality, ...

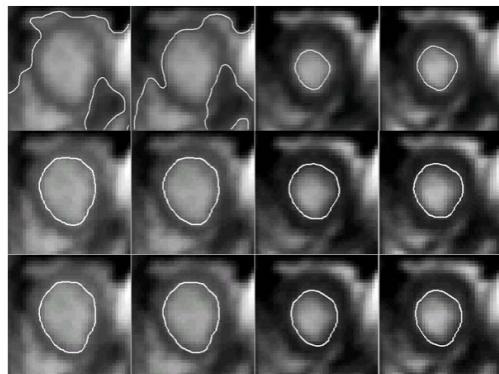
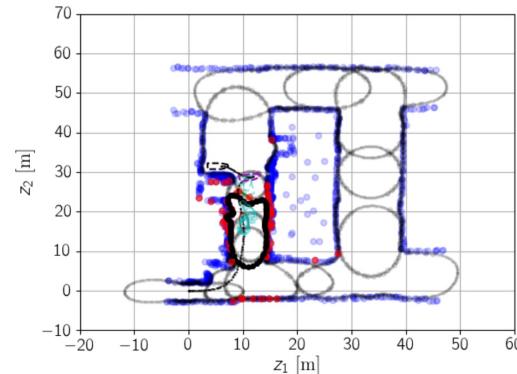
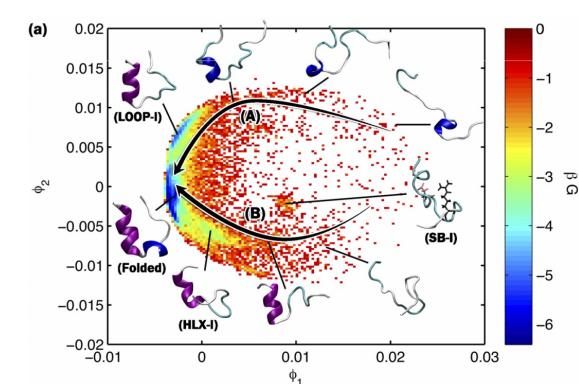


Image segmentation for medical imaging
 Qilong Zhang, et al., 2006 IEEE Comp. Soc. Conf. on Computer Vision and Pattern Recognition (CVPR'06), p. 1092.



Obstacle avoidance in autonomous driving
 Diwale et al., <https://infoscience.epfl.ch/record/265381?ln=en>



Identification of protein folding pathways from molecular dynamics simulations
 Kim et al., J. Chem. Phys. 142, 085101 (2015)

Manifold learning and its applications

- Manifold learning, or resolving **geometric structure of data** enables many tasks:
 - Visualization
 - Representation of data in reduced order coordinates
 - Classification, anomaly detection, image segmentation, autonomous driving, augmented reality, ...
- **The manifold hypothesis:** “high dimensional data tend to lie in the vicinity of a low dimensional manifold”.
 - e.g., images, randomly generated image of $N \times N$ pixels will almost surely not correspond to a real world scene.
 - e.g., data generated by a dynamical system will follow some equation of motion

Continuum quantum dynamics on manifolds & geodesic flow

Consider: $\hat{H} = \sqrt{\Delta_g}$ ← Laplace-Beltrami operator for manifold $|\psi_0\rangle = |\delta_x\rangle$

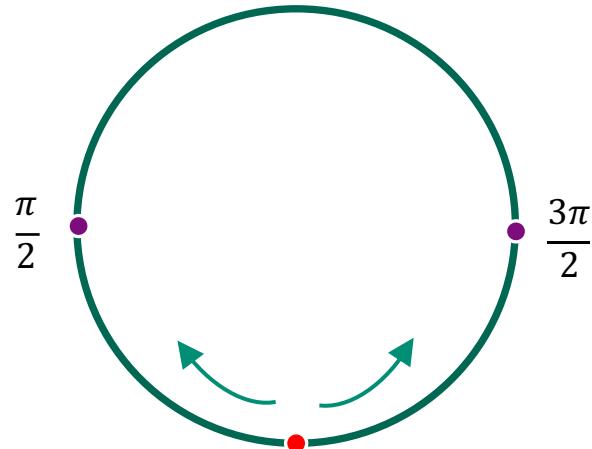
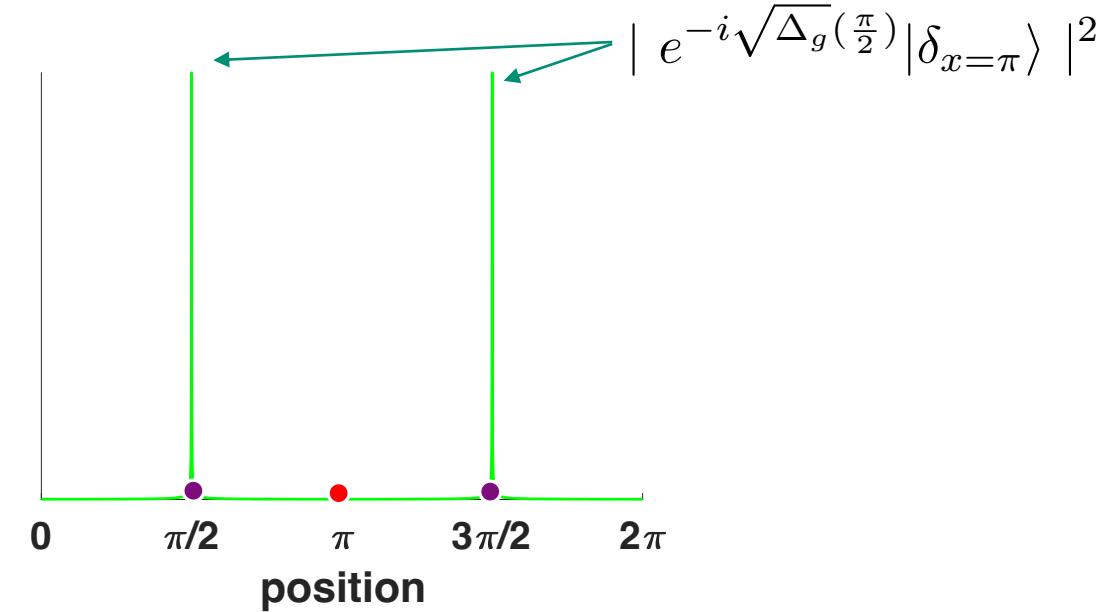
$|\psi_t\rangle = e^{it\sqrt{\Delta_g}} |\delta_x\rangle$ is a state that has singular support along **geodesics** in all directions

Continuum quantum dynamics on manifolds & geodesic flow

Consider: $\hat{H} = \sqrt{\Delta_g}$ ← Laplace-Beltrami operator for manifold $|\psi_0\rangle = |\delta_x\rangle$

$|\psi_t\rangle = e^{it\sqrt{\Delta_g}}|\delta_x\rangle$ is a state that has singular support along **geodesics** in all directions

Example: circle

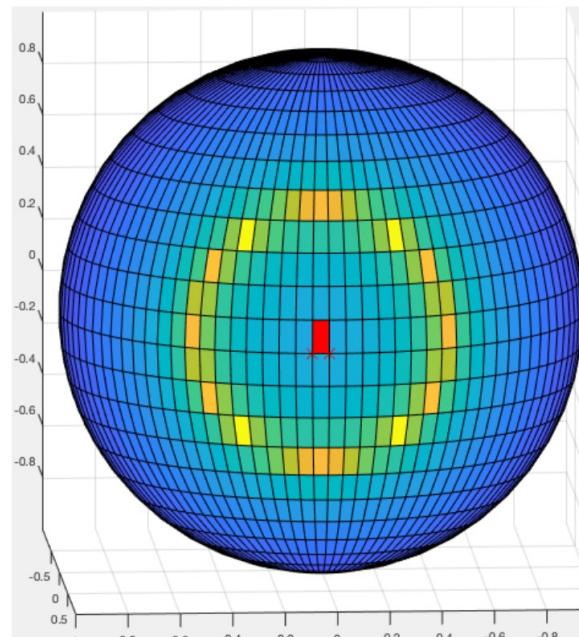


Continuum quantum dynamics on manifolds & geodesic flow

Consider: $\hat{H} = \sqrt{\Delta_g}$ ← Laplace-Beltrami operator for manifold $|\psi_0\rangle = |\delta_x\rangle$

$|\psi_t\rangle = e^{it\sqrt{\Delta_g}} |\delta_x\rangle$ is a state that has singular support along **geodesics** in all directions

Example: sphere



Continuum quantum dynamics on manifolds & geodesic flow

Consider: $\hat{H} = \sqrt{\Delta_g}$ ← Laplace-Beltrami operator for manifold $|\psi_0\rangle = |\delta_x\rangle$

$|\psi_t\rangle = e^{it\sqrt{\Delta_g}} |\delta_x\rangle$ is a state that has singular support along **geodesics** in all directions

This statement can be understood in various ways

1. **Math:** Microlocal analysis – wavefront set associated to hyperbolic dynamics
2. **Physics:** Free motion of localized particle (photon) – light travels in straight lines
3. **Mathematical physics:**

$\hat{H} = \sqrt{\Delta_g}$ is quantization of kinetic energy/free motion

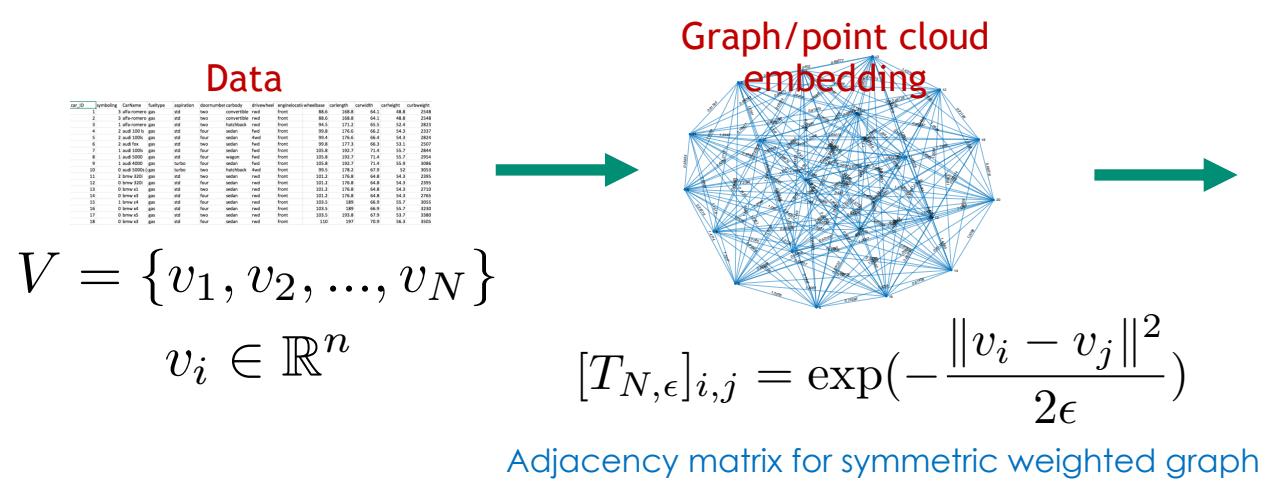
$$\sqrt{\sum_{i,j} g^{ij}(x) p_i p_j} = |\mathbf{p}|_g$$

$|\psi_0\rangle = |\delta_x\rangle$ is a localized wavepacket with momentum in all directions

Can we exploit this observation to extract geodesic distances and information about geometry from quantum dynamics **on data?**

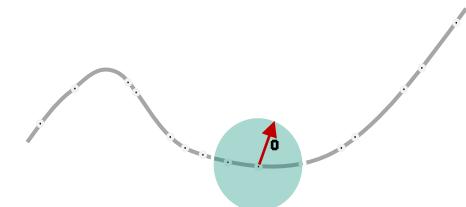
First ingredient: the graph Laplacian

- Some of the most successful methods for manifold learning rely graph Laplacians constructed from data
 - Diffusion maps, Laplacian eigenmaps, Local linear embedding, ...



Normalized graph Laplacian

$$L_{N,\epsilon} = \frac{4}{\epsilon} \left(I_N - D_{N,\epsilon}^{-1} \Sigma_{N,\epsilon}^{-1} T_{N,\epsilon} \Sigma_{N,\epsilon}^{-1} \right)$$



ϵ is a key “scale” parameter
Typically, $\epsilon \rightarrow 0$ as $N \rightarrow \infty$

Methods hinge on key convergence result

$$L_{N,\epsilon} \xrightarrow{N \rightarrow \infty} \mathcal{L}_\epsilon = \Delta_g + \mathcal{O}(\epsilon)$$

Coifman & Lafon, Appl. Comp. Harm. Anal., **21**, 5 (2006)
Hein, Audibert, von Luxburg, J. Mach. Learn. Res., **8**, 1325 (2007)

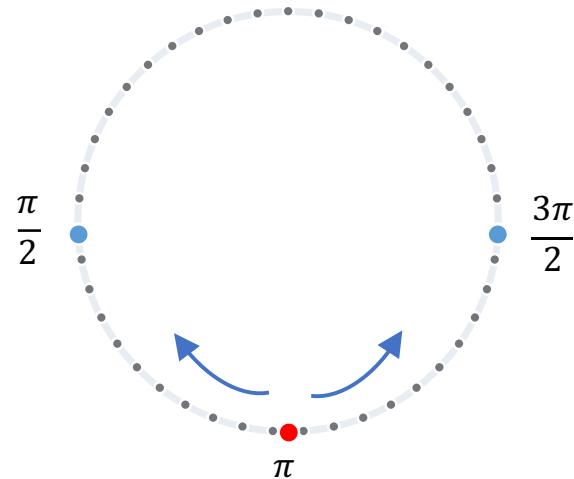
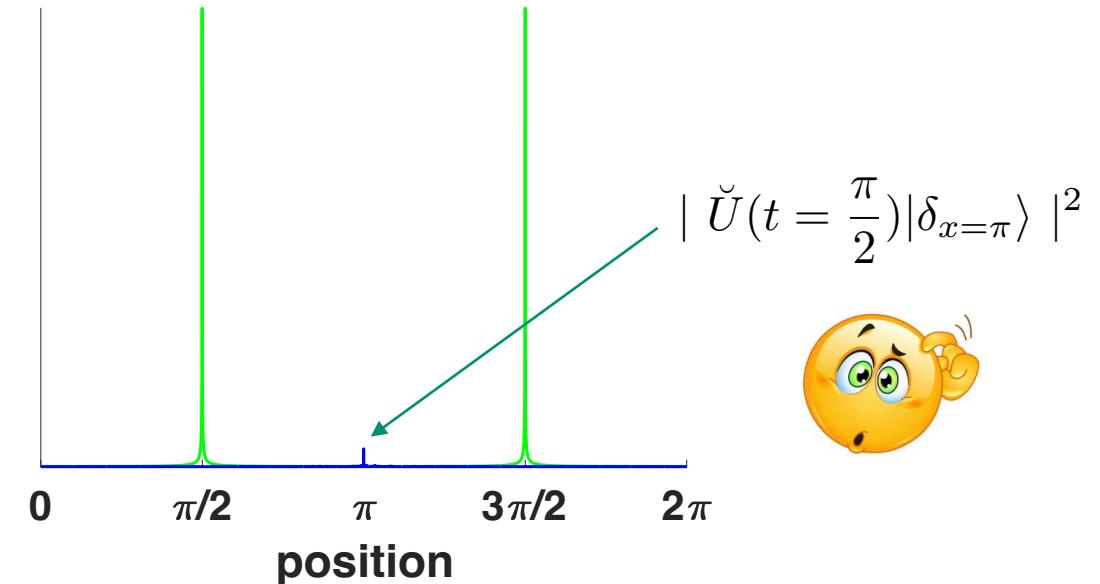
Quantum dynamics on data

Normalized graph
Laplacian

Recall: $L_{N,\epsilon} \xrightarrow{N \rightarrow \infty} \mathcal{L}_\epsilon = \Delta_g + \mathcal{O}(\epsilon)$

Build unitary propagator (NxN matrix) $\check{U}(t) = e^{-i\sqrt{L_{N,\epsilon}}t}$

Example: Build data-driven propagator with $N = 2500$ samples from the circle



Quantum dynamics on data

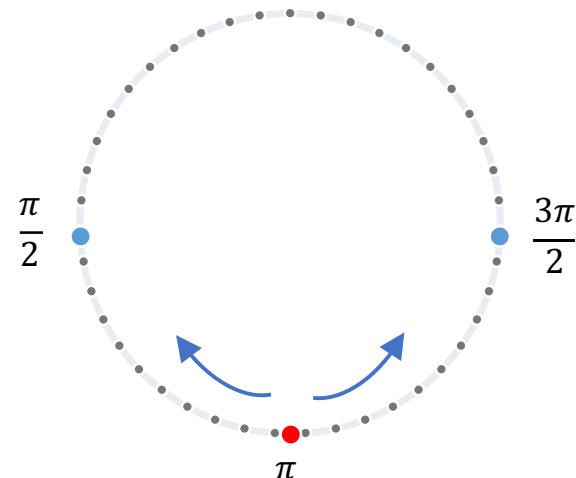
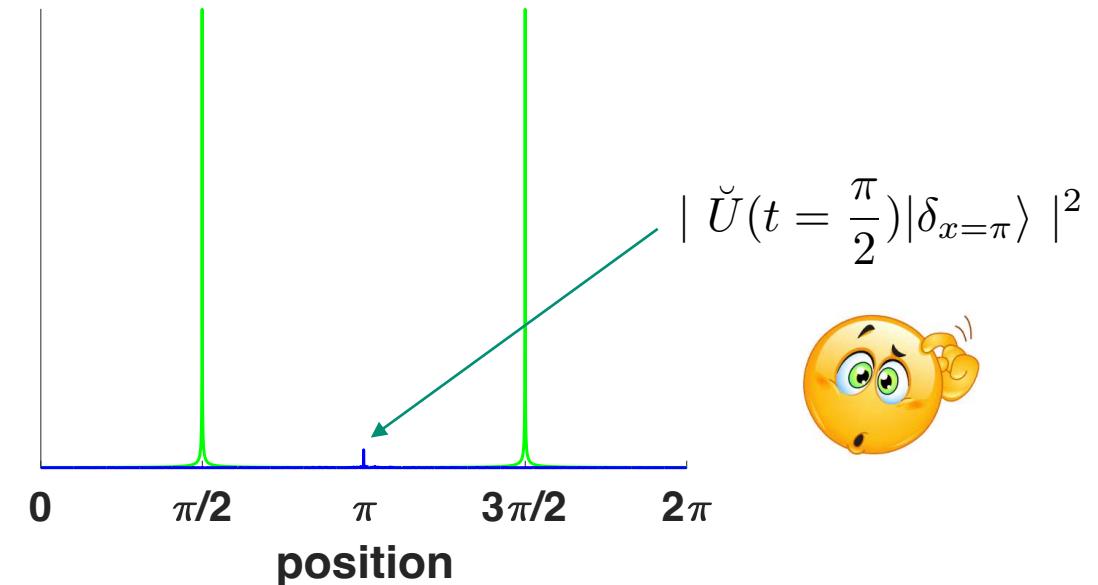
Normalized graph
Laplacian

Recall: $L_{N,\epsilon} \xrightarrow{N \rightarrow \infty} \mathcal{L}_\epsilon = \Delta_g + \mathcal{O}(\epsilon)$

These error terms are the
problem.

Build unitary propagator (NxN matrix) $\check{U}(t) = e^{-i\sqrt{L_{N,\epsilon}}t}$

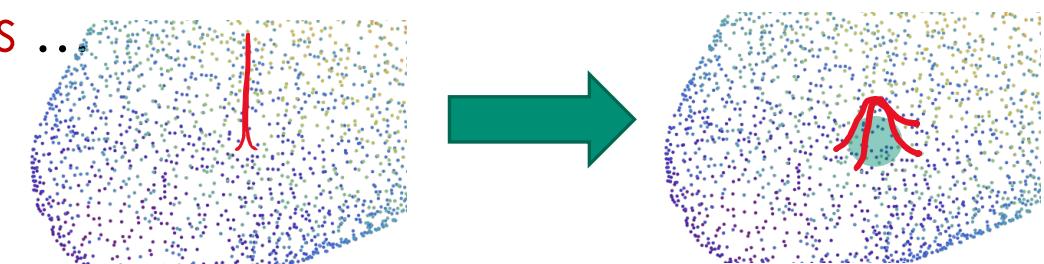
Example: Build data-driven propagator with $N = 2500$ samples from the circle



Resolution limits of data-driven quantization

- The problem is the finite resolution of the manifold given by finite N , and quantified by ϵ .
- We are asking for too much to resolve delta function propagation when $\epsilon > 0$.
- Roughly: $\check{U}(t) = e^{-i\sqrt{L_{N,\epsilon}}t}$ “resolves” position space at scale $\sqrt{\epsilon}$
 “resolves” momentum up to bandwidth $1/\sqrt{\epsilon}$

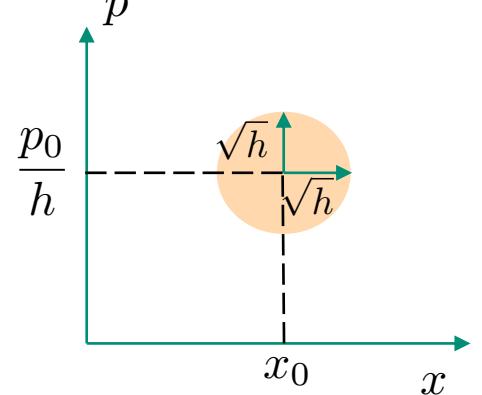
\downarrow
 Approximates the action of the operator $e^{-it\sqrt{\Delta_g}}$
- In contrast, initial states like $|\delta_x\rangle$ are infinitely localized and have unbounded momentum.
- So we need a way to **coarsen the dynamics** ...



Coherent states to the rescue

- Coherent states are
 - The “most classical” of quantum states
 - Minimum uncertainty in phase space, maximum localization in phase space
- Can define coherent states on a general manifold. In position basis:

$$\psi_{\zeta_0}(\mathbf{x}) = \langle \mathbf{x} | \psi_{\zeta_0} \rangle = \frac{1}{(\pi h)^{\frac{N}{2}}} e^{\frac{i}{\hbar} \langle \mathbf{x} - \mathbf{x}_0, \mathbf{p}_0 \rangle} e^{-\frac{\|\mathbf{x} - \mathbf{x}_0\|^2}{2\hbar}} \quad \zeta_0 = (\mathbf{x}_0, \mathbf{p}_0) \in T^* \mathcal{M}$$



Combesure & Robert, *Coherent States and Applications in Mathematical Physics*. Springer Netherlands, 2012.
 Gazeau, *Coherent States in Quantum Physics*. Wiley-VCH, 2009.

- Localized to $\sqrt{\hbar}$ in space and momentum bandwidth scales as $1/\hbar$
- We can control coarse-ness of phase space resolution using \hbar . **Match to data resolution:**

$$h > \sqrt{\epsilon} \quad \Rightarrow \quad h = \epsilon^{\frac{1}{2+\alpha}}, \alpha > 1$$

“Classical limit” $h \rightarrow 0$
 is the large data limit $N \rightarrow \infty$

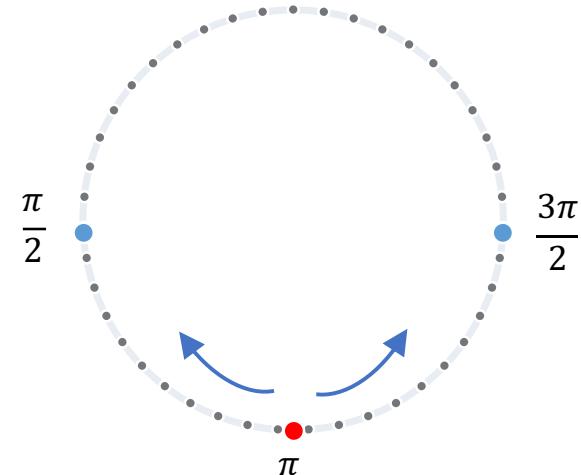
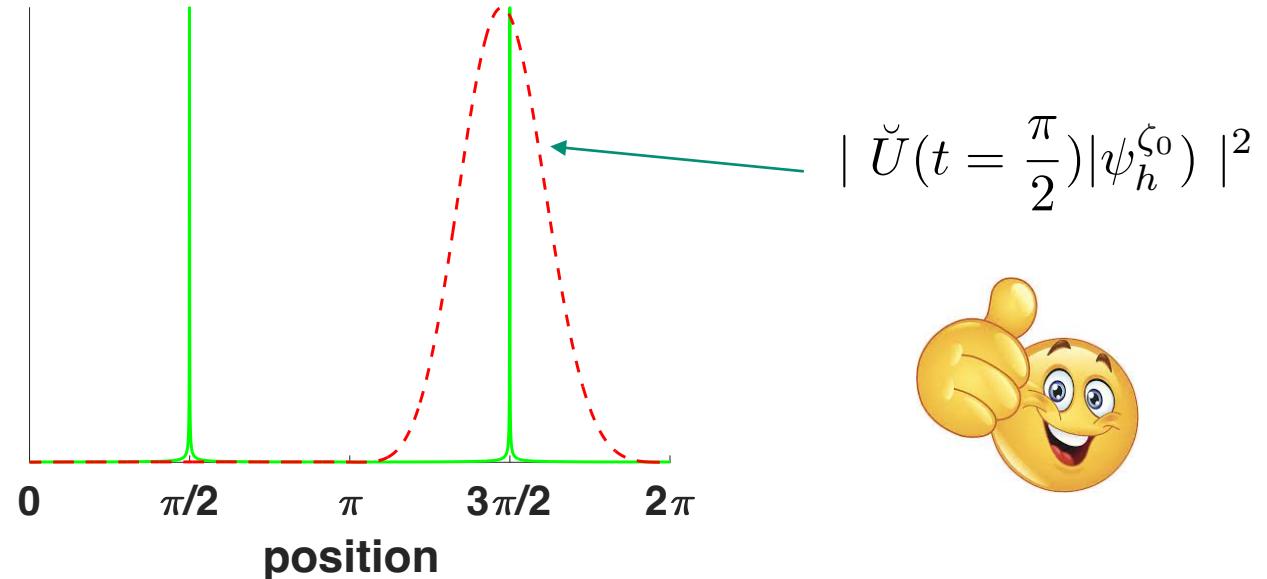
Coherent states to the rescue

- Can approximate coherent state using the data. A coherent state centered at data point v_0 has elements

$$\left[|\psi_h^{\zeta_0}\rangle \right]_i \propto e^{\frac{i}{\hbar}(v_i - v_0)^T p_0} e^{-\frac{\|v_i - v_0\|^2}{2\hbar}}, \quad 1 \leq i \leq N. \quad |\psi_h^{\zeta_0}\rangle \in \mathbb{C}^N$$

- Initial momentum, p_0 , approximated using a vector from v_0 to nearest point, or using local principal component analysis (LPCA)

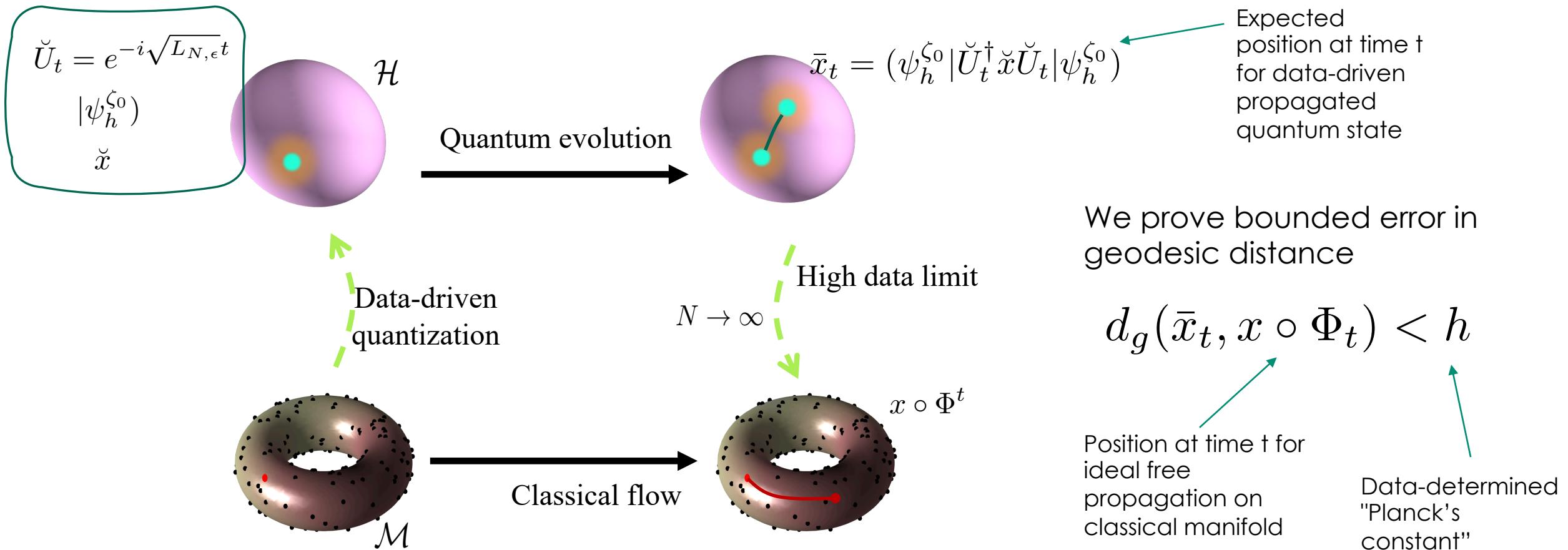
Example: Build data-driven propagator with $N = 2500$ samples from the circle



Discrete quantum-classical correspondence

“Manifold learning via quantum dynamics.” A. Kumar & M. Sarovar, arXiv:2112.11161 (2021)

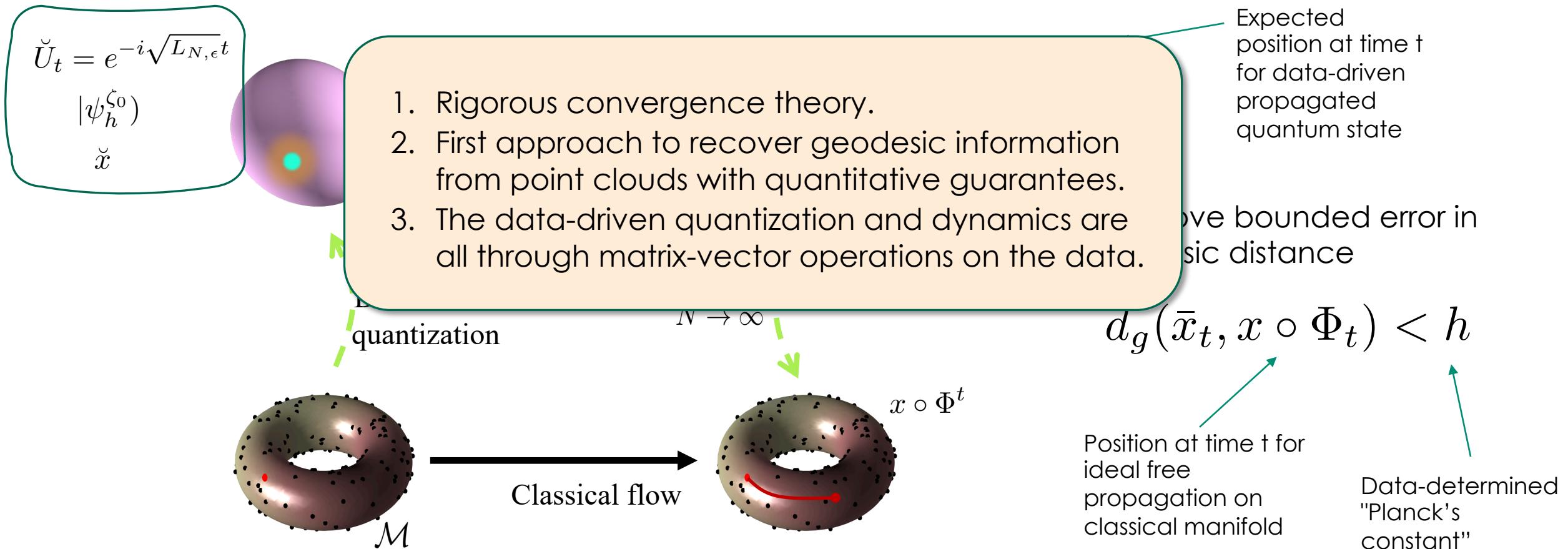
By approximating the correct quantum operators and quantum states from the data, and setting h appropriately, we show that it is possible to approximate **geodesics on the data manifold**.



Discrete quantum-classical correspondence

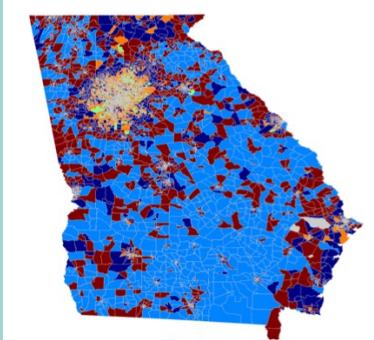
“Manifold learning via quantum dynamics.” A. Kumar & M. Sarovar. arXiv:2112.11161 (2021)

By approximating the correct quantum operators and quantum states from the data, and setting \hbar appropriately, we show that it is possible to approximate **geodesics on the data manifold**.

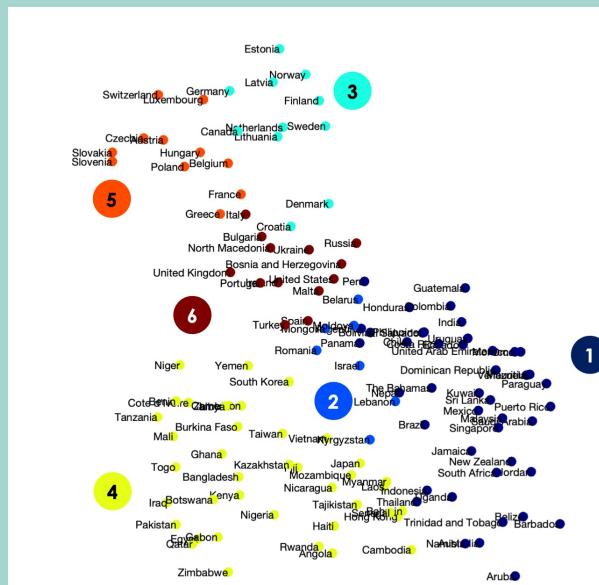


Applications to real-world data

Clustering, anomaly detection from data of COVID-19 social distancing behavior across geographic regions

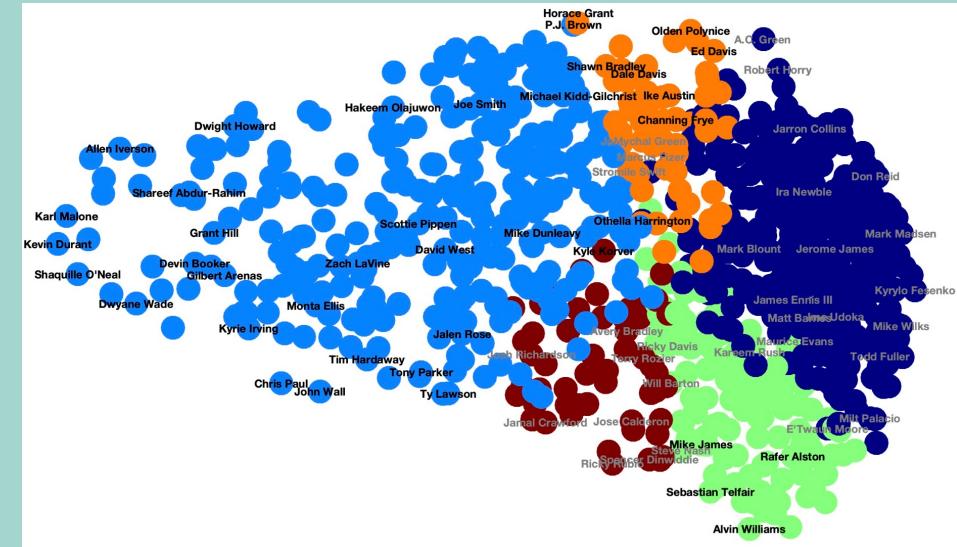


SafeGraph
dataset for state
of GA



Google dataset
for worldwide
mobility patterns

Clustering of NBA players based on performance



NOTES:

1. Manifold hypothesis not necessary for utility
2. Some of these datasets are small (e.g., N=126)

Acknowledgements

Akshat Kumar

Clarkson University &
Instituto de Telecomunicações, Portugal

QUANTUM SYSTEMS ACCELERATOR

Catalyzing the Quantum Ecosystem

For more details see:

Manifold learning via quantum dynamics

Akshat Kumar^{1,2, a)} and Mohan Sarovar^{3, b)}

¹⁾ Department of Mathematics, Clarkson University, Potsdam, NY 13699 USA

²⁾ Instituto de Telecomunicações, Lisbon, Portugal

³⁾ Sandia National Laboratories, Livermore, California 94550, USA

arXiv:2112.11161

Backup slides

Markov methods for manifold learning

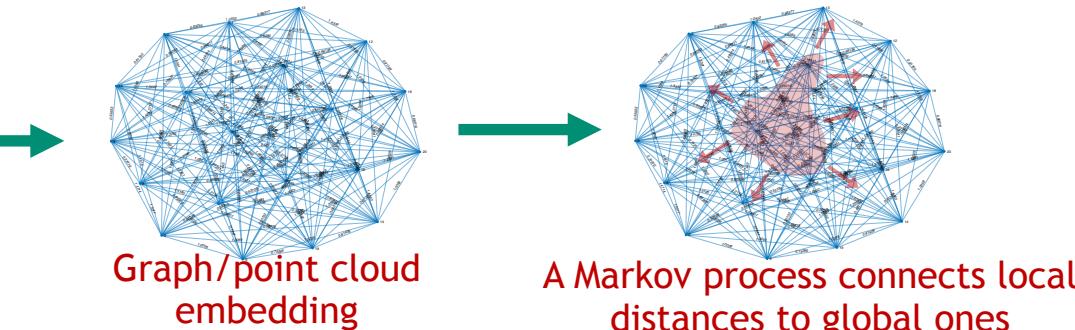
car_ID	symbology	CarName	fueltype	aspiration	doornumber	carbody	drivewheel	enginelocation	wheelbase	carlength	carwidth	carheight	curbweight
1	3	alfa-romero	gas	std	two	convertible	rw	front	88.6	108.8	54.1	48.8	2548
2	3	alfa-romero	gas	std	two	convertible	rw	front	88.6	108.8	54.1	48.8	2548
3	3	alfa-romero	gas	std	two	convertible	rw	front	93.8	121.2	54.1	52.0	2533
4	2	audi-100	gas	std	four	sedan	rw	front	99.8	176.6	66.2	54.3	2337
5	2	audi-100	gas	std	four	sedan	rw	front	99.4	176.6	66.4	54.3	2824
6	2	audi-100	gas	std	four	sedan	rw	front	99.8	177.3	65.3	52.0	2307
7	1	audi-100	gas	std	four	sedan	rw	front	105.8	192.7	71.4	55.7	2844
8	1	audi-100	gas	std	four	sedan	rw	front	105.8	192.7	71.4	55.7	2797
9	2	audi-100	gas	std	four	sedan	rw	front	105.8	192.7	71.4	55.9	3086
10	0	audi-5000	gas	turbo	two	hatchback	rw	front	99.5	178.2	67.9	52	3053
11	2	bmw-320i	gas	std	four	sedan	rw	front	101.2	176.8	64.8	54.3	2393
12	0	bmw-320i	gas	std	four	sedan	rw	front	101.2	176.8	64.8	54.3	2710
13	0	bmw-x1	gas	std	two	sedan	rw	front	101.2	176.8	64.8	54.3	2710
14	0	bmw-x1	gas	std	two	sedan	rw	front	101.2	176.8	64.8	54.3	2792
15	1	bmw-x4	gas	std	four	sedan	rw	front	103.5	189	66.9	55.7	3053
16	0	bmw-x4	gas	std	four	sedan	rw	front	103.5	189	66.9	55.7	3230
17	0	bmw-x5	gas	std	two	sedan	rw	front	103.5	193.8	67.9	58	3382
18	0	bmw-x5	gas	std	two	sedan	rw	front	110	197	70.9	56.3	3095

Data

$$V = \{v_1, v_2, \dots, v_N\} \quad v_i \in \mathbb{R}^n$$

Adjacency matrix for symmetric weighted graph

Normalized graph Laplacian

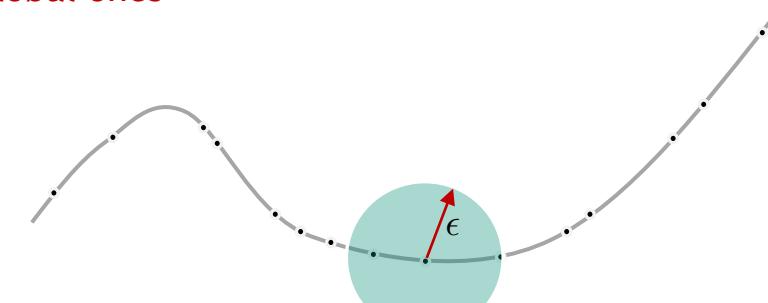


$$[T_{N,\epsilon}]_{i,j} = \exp\left(-\frac{\|v_i - v_j\|^2}{2\epsilon}\right)$$

$$L_{N,\epsilon} = \frac{4}{\epsilon} \left(I_N - D_{N,\epsilon}^{-1} \Sigma_{N,\epsilon}^{-1} T_{N,\epsilon} \Sigma_{N,\epsilon}^{-1} \right)$$

ϵ is a key “scale” parameter

Typically, $\epsilon \rightarrow 0$ as $N \rightarrow \infty$



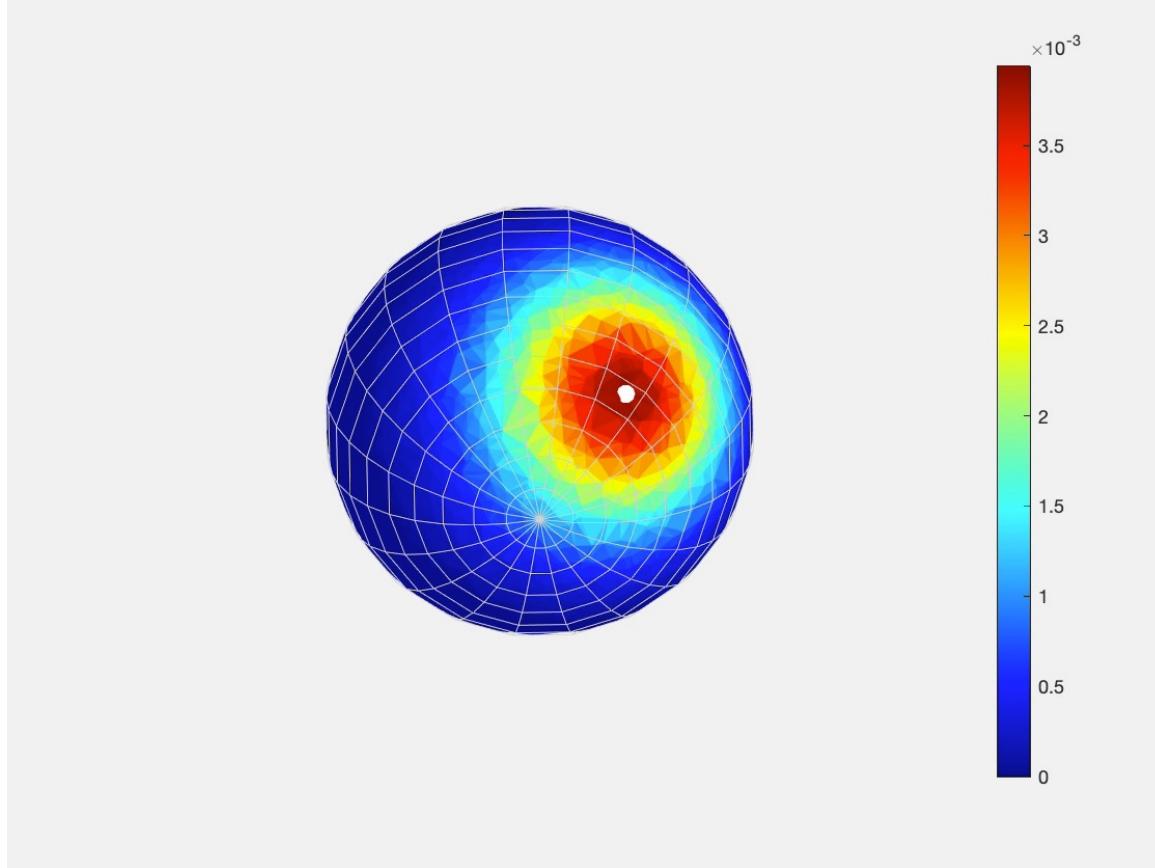
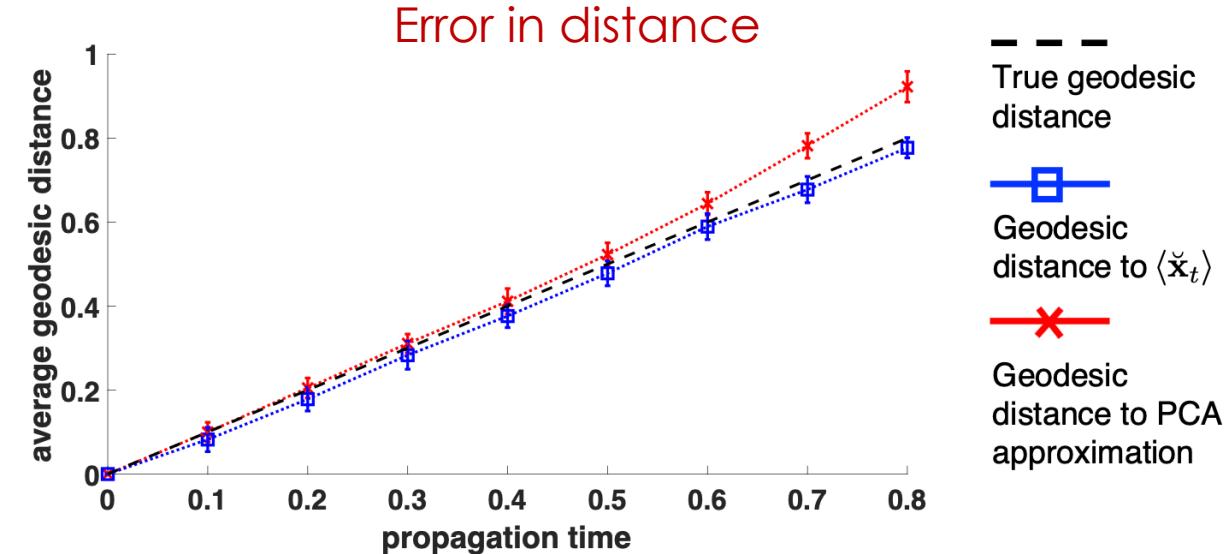
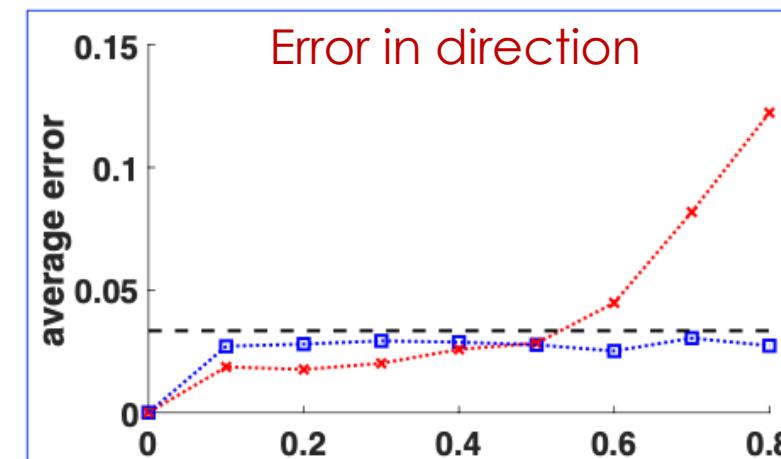
Normalizations

$$\Sigma_{N,\epsilon} = \text{diag} \left(\sum_{j=1}^N [T_{N,\epsilon}]_{i,j} \right)$$

$$D_{N,\epsilon} = \text{diag} \left(\sum_{j=1}^N [\Sigma_{N,\epsilon}^{-1} T_{N,\epsilon} \Sigma_{N,\epsilon}^{-1}]_{i,j} \right)$$

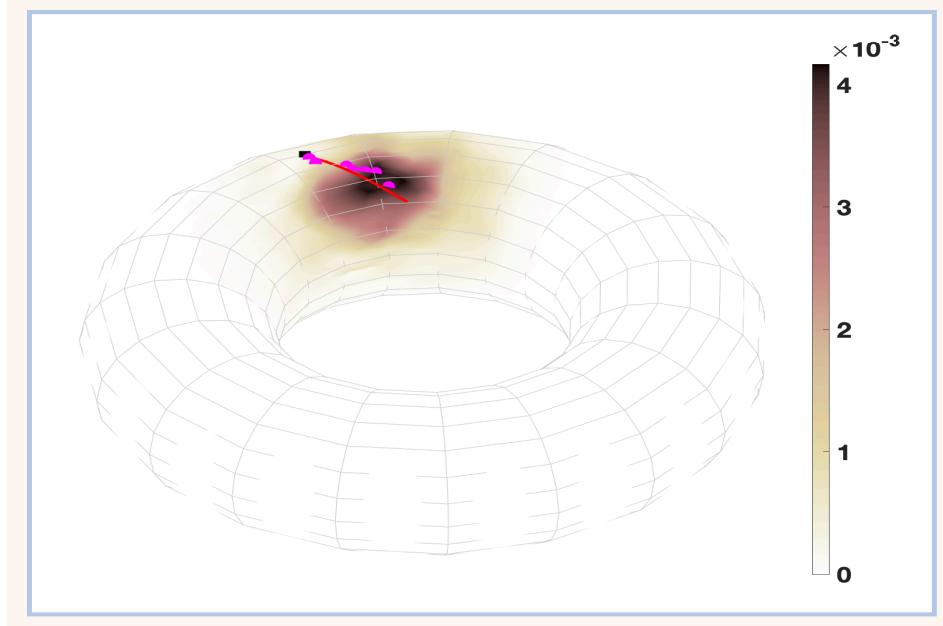
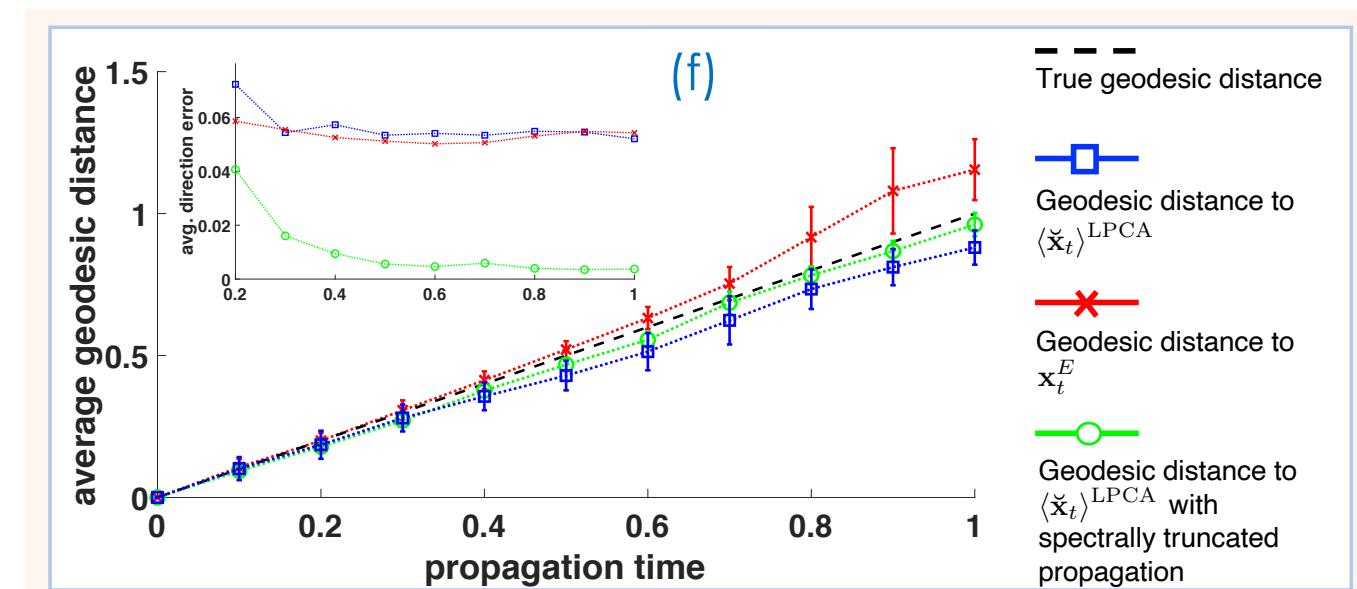
Example: sphere

$N=3000$ points, uniformly sampled on unit sphere



Example: torus

N=12000 points, uniformly sampled on 2-torus

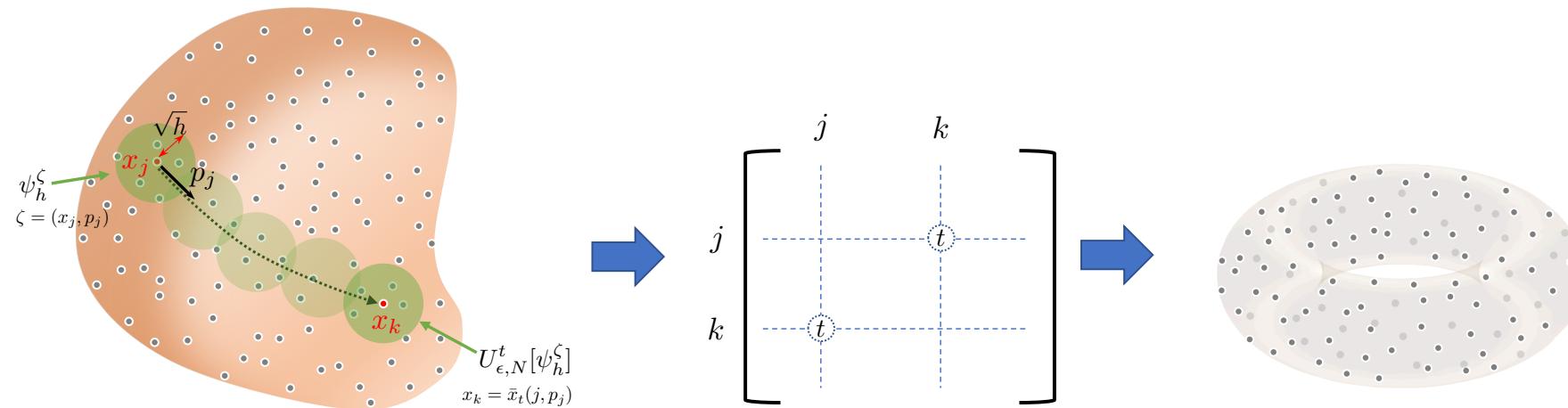


Using geodesic distances for practical tasks

We have shown that quantum propagation allows for extraction of geodesic distances between data points (under the manifold hypothesis). How is this useful?

Geodesic distances (or in the absence of a manifold, *quantum walk distances*) define a similarity metric between data points.

We can embed the data in a graph based on this similarity metric. This graph reflects the geometry of the dataset, and delivers new coordinates for the data => visualization, clustering, classification, ...

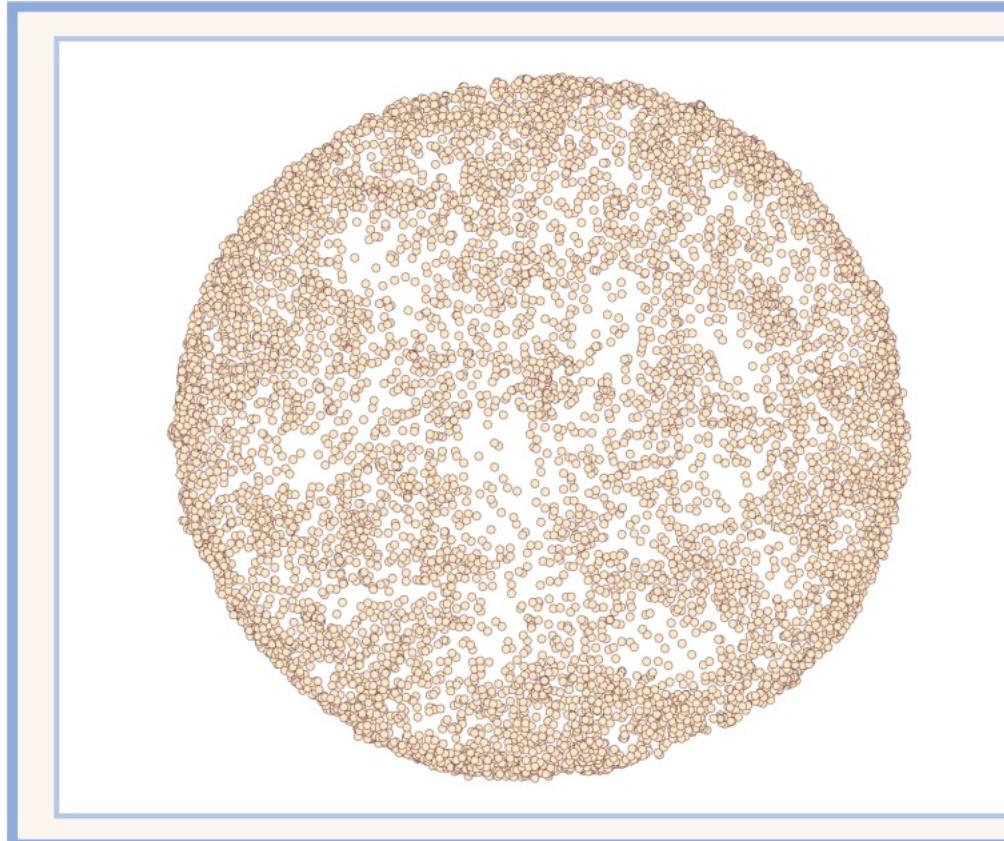


Cross-section of dataset of size N in \mathbb{R}^n

\mathcal{G} ($N \times N$ matrix)

Graph embedding of dataset in \mathbb{R}^3 based on weighted adjacency matrix \mathcal{G}

Embeddings of sphere and torus



$N=8000$ points

$N=12000$ points

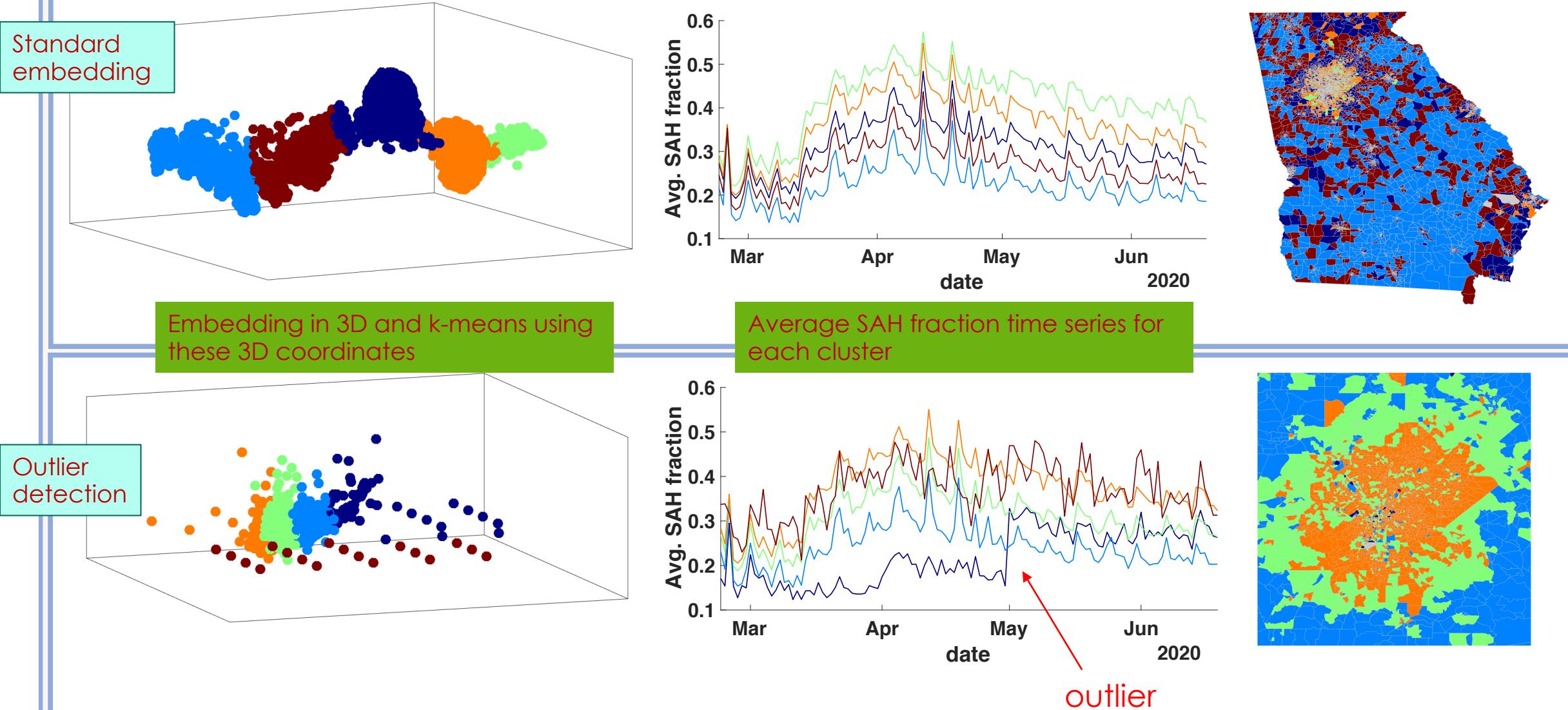
Example: COVID-19 mobility data

Social Distancing Metric dataset from SafeGraph Inc.
<https://docs.safegraph.com/docs/social-distancing-metrics>

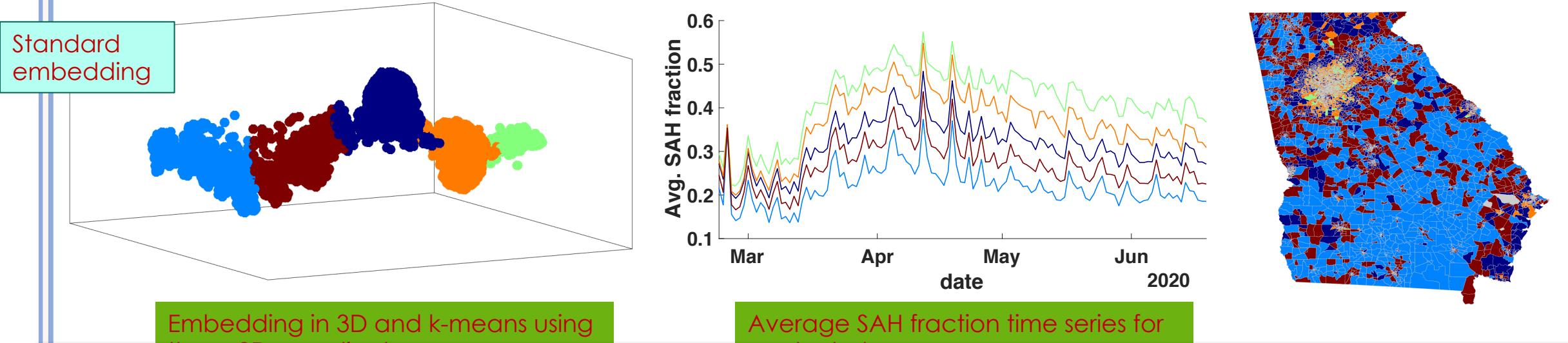
- Dataset collects user location information (from cellphone GPS data) over the course of the initial 3 months of the COVID-19 pandemic (Feb 23, 2020 – June 19, 2020: 117 days).
- Aggregated at the census block group (CBG) level.
- Understanding patterns in mobility behavior can help tune public health policy.
- We compute a “stay-at-home” fraction which represents the fraction of devices that stayed at their home location on a day.
- We concentrate on the data for Georgia (GA), which has 5509 CBGs.
- Dataset: 5509 x 117

Apply manifold learning through geodesics and embed in 3 dimensions (**reduction from 117 dimensions**) and then perform clustering using K-means.

Example: COVID-19 mobility data



Example: COVID-19 mobility data



c.f. Levin et al., "Cell Phone Mobility Data and Manifold Learning." <https://doi.org/10.1101/2020.10.31.20223776>

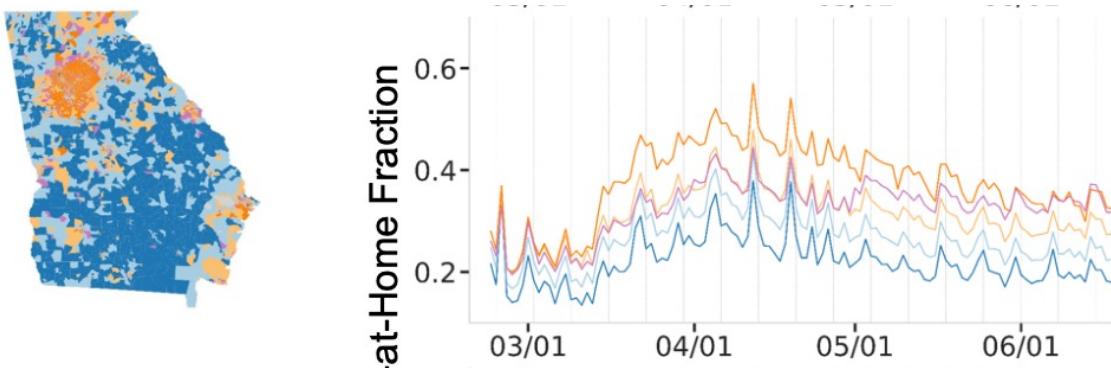


Figure 2: Laplacian eigenmaps, clustering done after embedding in **14 dimensions**

We achieve **better quality clustering** with QML, and are able to **identify outliers**, even with an embedding into **fewer dimensions**

Example: Global COVID-19 mobility data

Google COVID-19 Community Mobility Reports
<https://www.google.com/covid19/mobility/>

Dataset collects user mobility information (% change in mobility from baseline) over 6 categories for 132 countries and regions within these countries.

Timeframe: ~1 year (Feb 15, 2020 – Jan 24, 2021)

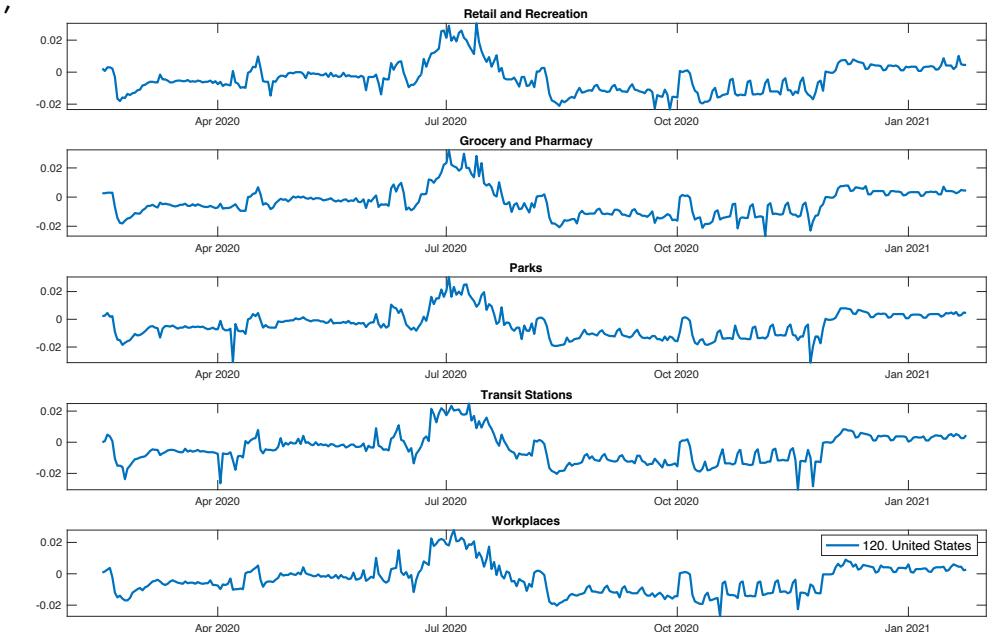
Baseline: Jan 3 – Feb 6, 2020

Categories: Retail and recreation, grocery and pharmacy, parks, transit stations, workplaces.

After pre-processing:

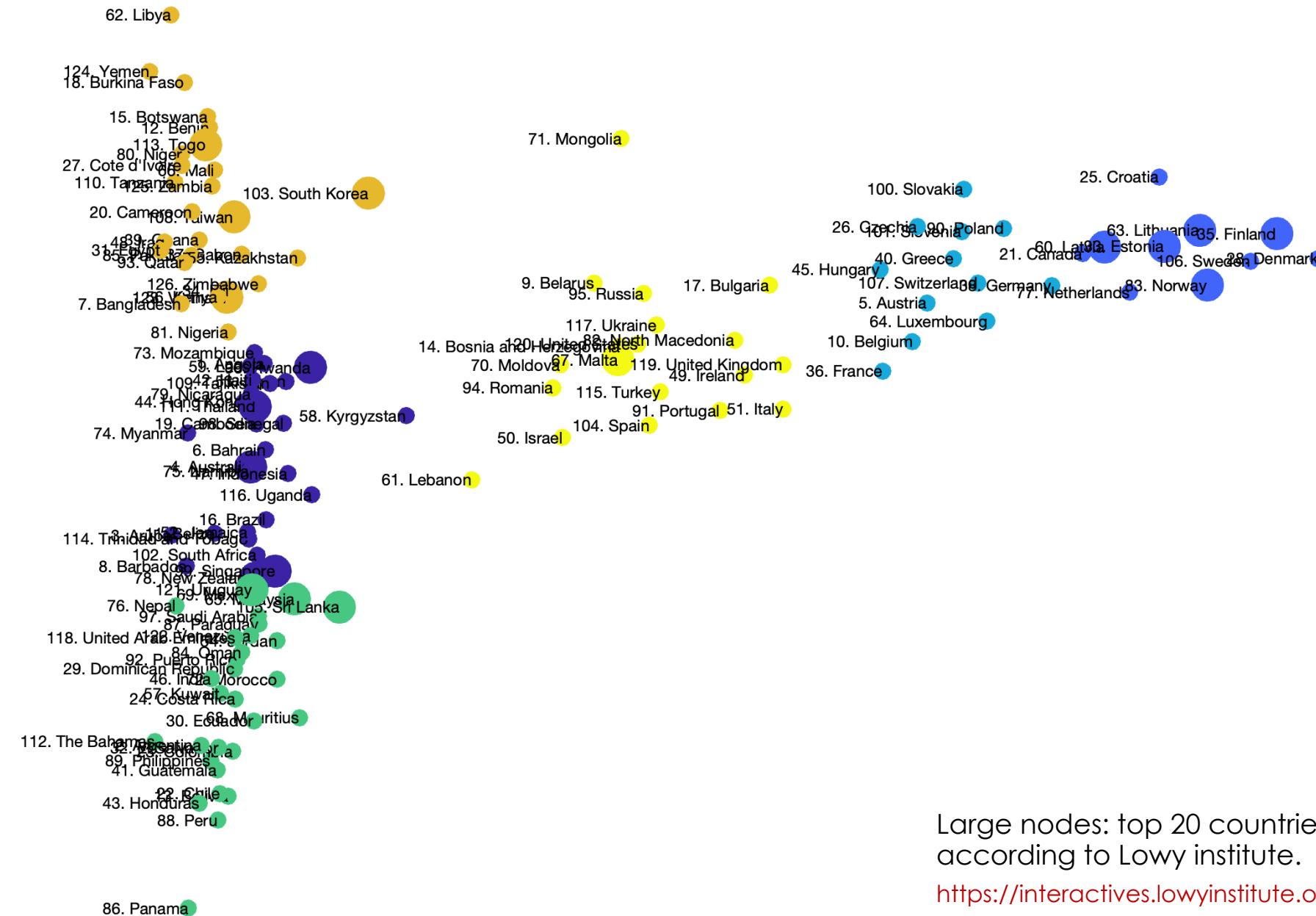
For each country, **345*5=1725 columns (features)** that represent a time series of mobility changes across 5 categories.

e.g.,

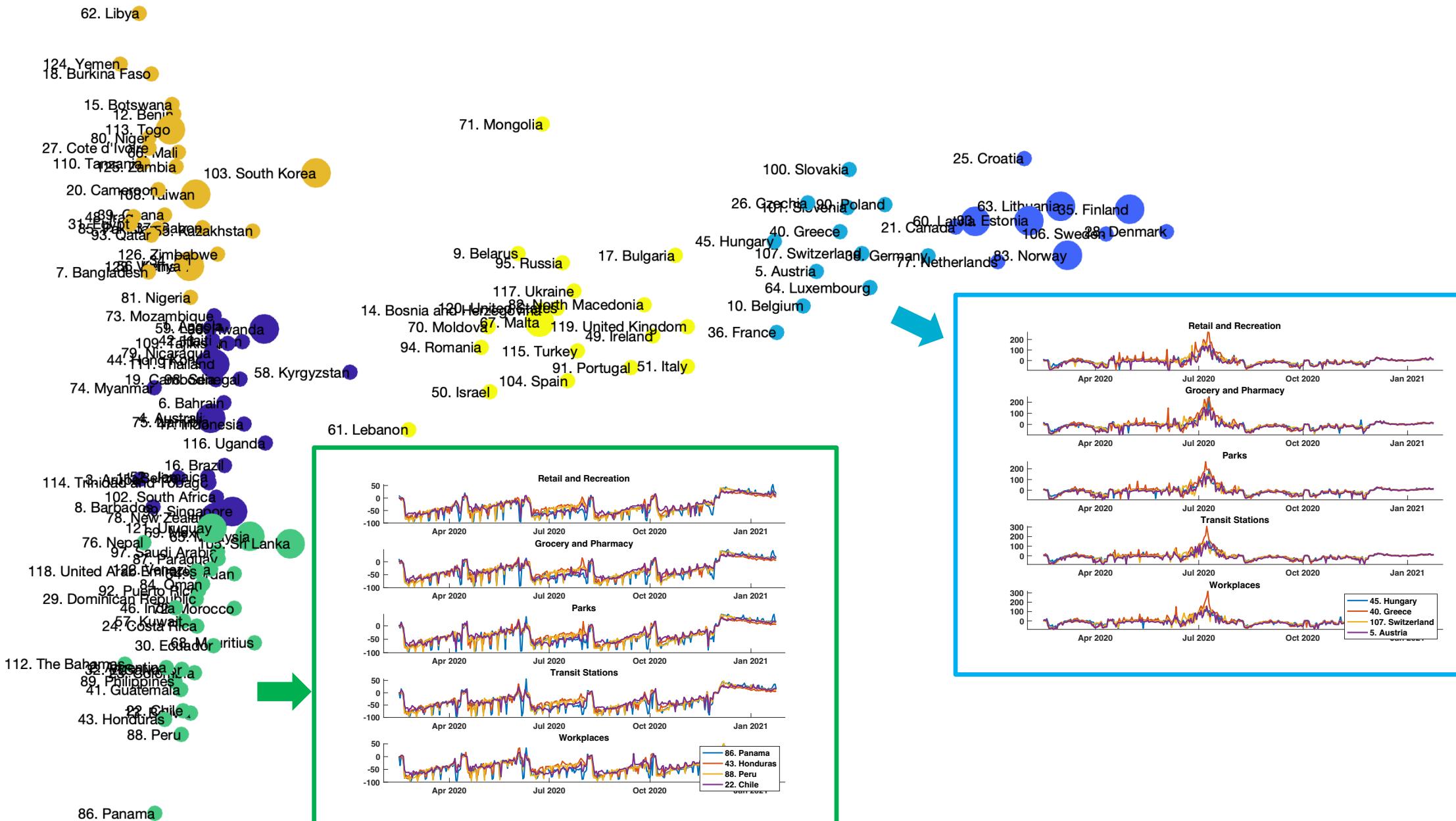


Apply manifold learning through geodesics and embed in 3 dimensions (**reduction from 1725 dimensions**)

Example: Global COVID-19 mobility data



Example: Global COVID-19 mobility data



Signal processing interpretation

Propagate a coherent state and look at the result in the position basis

$$|\langle \delta_x | U^t | \psi_h^\zeta \rangle|^2$$

Propagate a position eigenstate and look at the result in a coherent state basis

$$|\langle \psi_h^\zeta | U^t | \delta_x \rangle|^2$$

$|\langle \psi_h^\zeta | f \rangle|^2$ is actually a **Gabor spectrogram** of f (also a Husimi-Q function)

Gabor transform is a short-time Fourier transform, defined by integration against Gabor wavelets that are delocalized in time and frequency

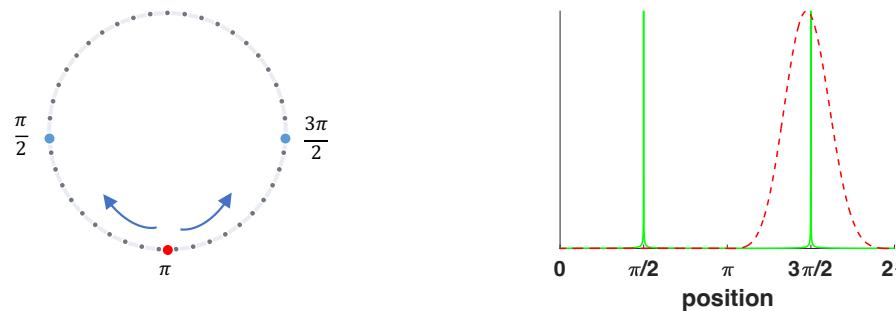
$$G_x(t, f) = \sqrt[4]{\sigma} \int_{-\infty}^{\infty} e^{-\sigma\pi(\tau-t)^2} e^{-j2\pi f\tau} x(\tau) d\tau$$

A coherent state is a Gabor wavelet (this time defined over coordinate and momentum, or phase, space)

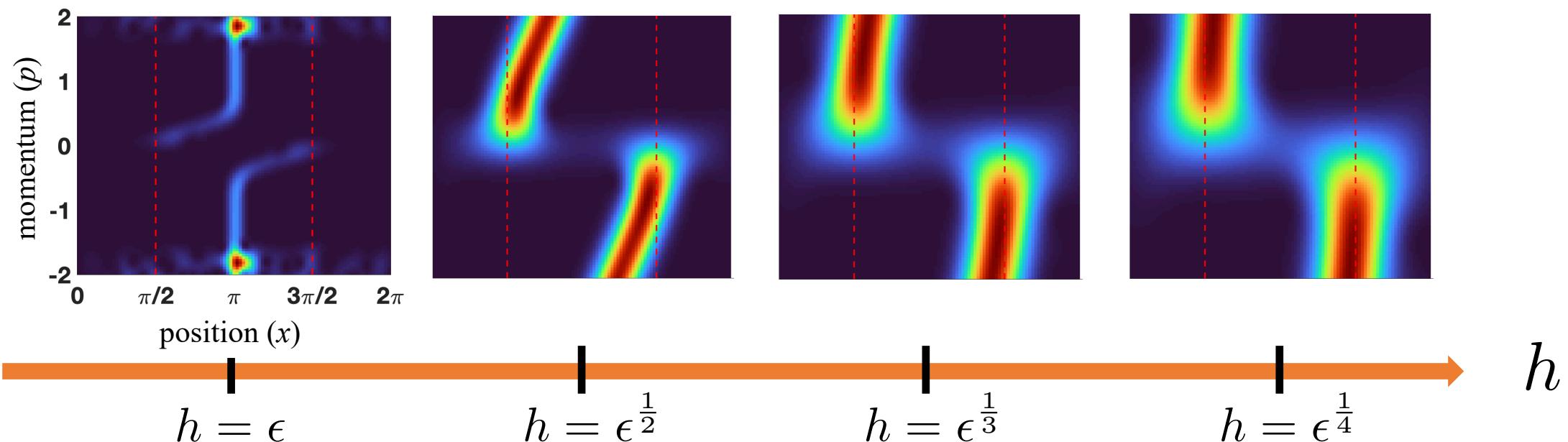
By choosing h we are choosing the (phase space) scale at which to resolve the signal $U^t |\delta_x \rangle$

Signal processing interpretation

Example: $N = 2500$ samples from the circle

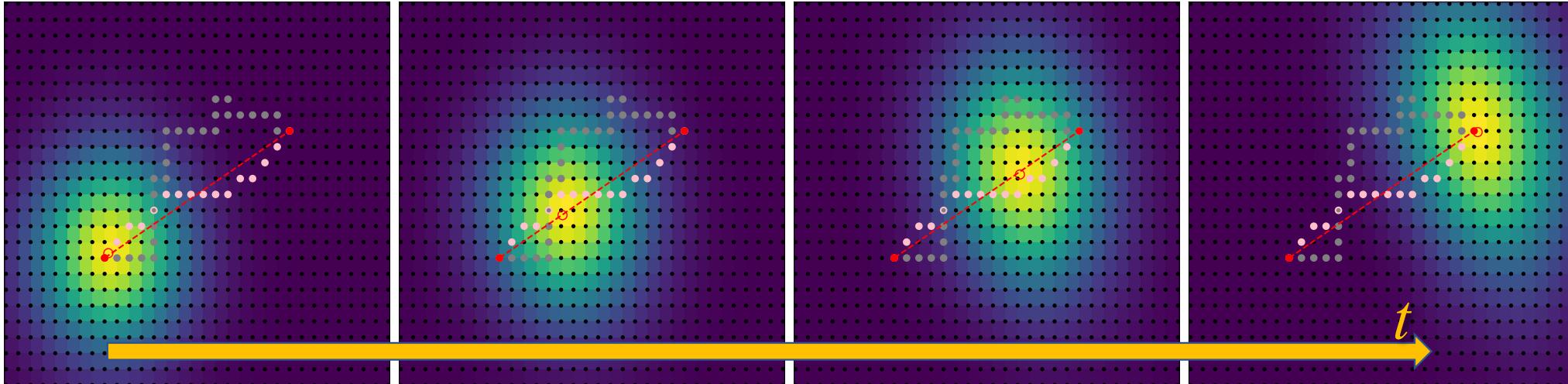


Gabor spectrogram at varying resolution h



Geodesic interpolation

Example of points sampled on a plane, what is shortest path between two points?



- Notice how coherent state propagates smoothly between known/sampled data points
- Coherent state charts a straight line (shortest) path, while other "shortest-path" algorithms (e.g., Dijkstra's algorithm) using the same data define longer paths.
- Our technique allows one to interpolate and extrapolate from the sampled data in a way that is consistent with the data geometry.