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Mechanisms of iron aluminide surface passivation 
against D, D2, and D2O exposure

 TPBARs include an iron aluminide (Fe-Al) coating on 316 stainless steel cladding, serving 
as a tritium permeation barrier.

 Surface is exposed to T2 and T2O at elevated temperatures.
 Goal of this work is to decipher surface phenomena that may play a role in hydrogen 

chemisorption and uptake.

Key science questions:
• Is adsorption of atomic D different from 

molecular D on Fe-Al surfaces?
• What is the nature of the surface composition 

and oxide thickness on technical Fe-Al 
surfaces?

• How do water molecules adsorb and 
dissociate on the surface? What effect does 
this have on H chemisorption? surface
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Overview of Experimental Approach

Surface chemistry & 
bonding information

Analysis depth: 5 nm

Surface composition & 
imaging

Analysis depth: 5 nm

Hydrogen coverage

Analysis depth: 1 ML

We use a combination of techniques to understand the H behavior on surfaces
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New instrument for XPS / low energy ion beam 
analysis

Intended for studies of hydrogen interactions with 
surfaces

Optimized for:
• X-ray photoelectron spectroscopy

• Local chemical environment
• Ion scattering / direct recoil spectroscopy 

• Detection of H isotopes
• In-situ annealing of samples up to 1900 °C in UHV

Instrumentation:
• 135 mm radius hemispherical analyzer
• Two ion sources to be added in Fall 2022 for ion 

scattering and depth profiling studies
• Precision manipulator for structural studies

LEIS / XPS instrument at SNL-Livermore
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SEM imaging of Fe-Al coatings

50 µm 5 µm

• We cut apart a Fe-Al specimen provided by PNNL using a diamond saw
• Sample imaged using scanning Auger for baseline analysis of surface composition / structure
• Coated surface has highly textured morphology. Coverage was continuous aside from some small gaps 

created by mechanical abrasion during handling / surface preparation
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AES analysis

• Coating is enriched with Al, 
consistent with findings of prior 
work. The aluminum appears 
heavily covered by O.

• As received composition:
• 48 % O
• 43 % Al
•   4 % C
•   3 % Fe

• Almost no signs of Fe, except in 
regions that had been scratched 
(removing part of the coating)

• Other species absent, with the 
exception of typical contaminants 
(including C and Na)

coated region

substrate
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AES depth profiling results

 Depth profiling attempted using 2 keV Ar+ ion 
with 1 µA current

 After continuous sputtering over 30 min., only 
a modest change in composition observed

 Slight shift in O KLL peak after 3 min. 
sputtering consistent with removal of 
chemisorbed O layer covering oxide beneath

Evolution of O KLL peaks as a function of 
sputter depth profiling.
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AES depth profiling results

 Depth profiling attempted using 2 keV Ar+ ion 
with 1 µA current

 After continuous sputtering over 30 min., only 
a modest change in composition observed

 Slight shift in O KLL peak after 3 min. 
sputtering consistent with removal of 
chemisorbed O layer covering oxide beneath

 A similar evolution of the AL KLL peaks to 
higher energy is observed, suggesting outer 
layer of metallic Al covered with O.

Evolution of Al KLL peaks as a function 
of sputter depth profiling.
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AES depth profiling results

 Depth profiling attempted using 2 keV Ar+ ion 
with 1 µA current

 After continuous sputtering over 30 min., only 
a modest change in composition observed

 Slight shift in O KLL peak after 3 min. 
sputtering consistent with removal of 
chemisorbed O layer covering oxide beneath

 A similar evolution of the AL KLL peaks to 
higher energy is observed, suggesting outer 
layer of metallic Al covered with O.

 Trace amounts of Fe only apparent after 30 
min. of sputtering, suggesting it is buried well 
beneath the surface Minimal evidence of Fe during sputtering
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Appearance of Fe-Al coating before and after 
sputtering

10 µm10 µm

as received 30 min. 
sputter

• We observed minimal changes to surface morphology after sputtering for 30 min. The observed surface 
morphology may be largely due to oxide growth.
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XPS analysis

 Initial survey scan revealed similar 
information as the AES analysis, with the 
surface primarily covered with Al and O. 

 No evidence of Fe at the surface was 
observed. XPS samples to a depth of ~5 
nm.

 Specimens were inserted into a high 
temperature annealing stage and were 
heated to 300 °C for different durations up 
to 12 hours. Samples were transferred in-
vacuum to an analysis chamber.

 Detailed scans of the regions containing Al, 
Fe, O and C photoelectron peaks were 
acquired afterward.

XPS survey spectrum of Fe-Al technical surface
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XPS analysis indicates that heating to 300 °C for long durations 
does not drastically alter composition

Observations

• Al present within the surface as 
predominantly Al2O3 oxide phase

• Annealing at 300 °C does not drastically 
alter the peak intensities, suggesting that 
the overall surface composition remains 
roughly the same, even after long 
duration heating.

• No Fe present at the surface, even after 
12 hr annealing cycle.

Why is only Al present at the surface?
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Potential mechanisms underlying segregation of 
Al to Fe surfaces

Surface tensions of the elements as liquids
A. Zangwill, Physics at Surfaces (Cambridge Press, 1988), p 11.

Fe

courtesy of Robert Bastasz
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Detection of hydrogen on surface presents considerable 
challenges for many conventional surface techniques

STM

LEED / WF

AES
XPS TPD

HREELS

Technical challenges:
• Detection impossible with AES, fitting possible with XPS
• Detectable signal may be overwhelmed by substrate 

(LEED, STM, HREELS)
• Ambiguous/difficult to interpret. (TDS)

//upload.wikimedia.org/wikipedia/en/c/c4/Si100Reconstructed.png
//upload.wikimedia.org/wikipedia/commons/8/82/HREELS_Spectrometer.svg
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Low energy ion scattering can be used to answer 
questions about the behavior of chemisorbed H
• Low energy ions: < 3 keV He+, Ne+

• Oblique incidence: 70° < α < 85°
• Detection in far-forward direction

• Scattering angle θ < 45°
• Atomic H / D dosing

Above: Angle-resolved ion energy spectrometer
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Ion scattering analysis of Al specimen during dosing 
with atomic and molecular hydrogen & deuterium

• A polycrystalline Al specimen was 
prepared by sputter cleaning with 3 keV 
Ne+ at oblique incidence, followed by 
cycles of annealing to 500 °C.

• Residual hydrogen is detected at room 
temperature, even when not dosing the 
surface.

• Some hydrogen is dissociated by the 
filaments in our vacuum chamber. When 
these are deactivated, the hydrogen 
disappears.
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Ion scattering analysis of Al specimen during dosing 
with atomic and molecular hydrogen

• A polycrystalline Al specimen was 
prepared by sputter cleaning with 3 keV 
Ne+ at oblique incidence, followed by 
cycles of annealing to 500 °C.

• Residual hydrogen is detected at room 
temperature, even when not dosing the 
surface.

• Some hydrogen is dissociated by the 
filaments in our vacuum chamber. When 
these are deactivated, the hydrogen 
disappears.

• Dosing with molecular H2(g) produces no 
effect on the H(R) signal. Atomic H readily 
sticks to the surface.
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Previous work demonstrates how hydrogen permeates 
into iron

18

• Prior work by Wampler [J. Appl. 
Phys. 65 (1989) 4040.] illustrates 
that H uptake by clean Fe surfaces 
is diffusion limited. However, 
contamination with < 0.5 ML O can 
cause uptake to be surface limited.

• < 1 ML dosing with O can reduce 
recombination by several orders of 
magnitude.

• Freshly exposed areas of Fe 
underneath a Fe-Al coating could 
dominate hydrogen permeation into 
the material.

D uptake rate and recombination coefficients for Fe 
surfaces
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Concluding remarks

Summary:
 Auger and XPS spectroscopy reveal that the Fe-Al technical surfaces, as prepared, consist 

primarily of Al2O3.
 Sputter depth profiling was performed:
 Outer-most layer may include metallic Al with a chemisorbed layer of O.
 Below this, the Auger spectra appears consistent with Al2O3. The surface has a rough morphology, with 

surface features on the order of ~10 µm.
 Only trace amounts of Fe revealed after 30 min. of sputtering, indicating that it is deeply buried beneath the 

Al2O3 layer at the surface.

 Long-duration heating does not alter the surface composition appreciably.
 Ion scattering reveals that molecular H does not chemisorb on sputter-cleaned Al surfaces, 

whereas atomic hydrogen does chemisorb with high initial sticking coefficient.
 Any hydrogen permeation through the Fe-Al coating may dominated by regions of the surface 

where the coating has been compromised (mechanical abrasions, etc.)
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Possible follow-on work: Pt-tube dosers for 
cleaner exposure of the surface to atomic D

Images courtesy 
of B. Koel 
(Princeton / 
PPPL)

Pt tube doser
• Conventional technique involves using a Bertel

-type doser, which relies on an electron-beam 
heated W capillary. These systems have been 
shown to be effective at providing a large flux 
of atomic H, but can contaminate the surface.

• New design, developed at Princeton / PPPL, 
uses a resistively heated Pt tube.

• The heated Pt is more reactive than the W, 
and allows it to be operated at a lower 
temperature

• This results in lower desorption of impurities
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Fabrication of D2O dosing system

• Basic design based on prior work by 
Konrad Thuermer (SNL)

• Small quartz thimble is filled with water, 
attached a leak valve. 

• Water is frozen with LN2, remaining gas is 
pumped away through gas manifold and 
valves.

• Several purge / pump cycles repeated, then 
valve above water is closed.

• Water vapor then admitted through leak 
valve into analysis chamber (can potentially 
be directed toward the sample using a 
capillary).


