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Designing tailor-made thin films
requires an understanding of
processing-structure-property linkage

Structure zone diagrams relate
processing conditions to microstructure
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3 ‘ Microstructure formation in PVD-grown alloy thin films
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‘ Phase field model simulates microstructure evolution for various deposition conditions ‘




4 ‘ Factors governing microstructure evolution

Deposition rate = 0.075

‘ Low deposition rates / high diffusion times give LCM structures ‘

Initial deposition

Spinodal
decomposition
laterally (complete)

Spinodal
decomposition
laterally (complete)

Next deposition

‘ High deposition rates / low diffusion times give VCM structures ‘

Initial deposition

Spinodal
decomposition
laterally (incomplete)

Spinodal
decomposition
laterally and vertically

Next deposition



5 ‘ How do we design PVD-grown thin film microstructures?

‘ What processing conditions to use to obtain desired film microstructure? ‘
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6 ‘ Coupling genetic algorithms to alloy deposition
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» Low deposition/high diffusion rates lead to lateral concentration modulations
» High deposition/low diffusion rates lead to vertical concentration modulations

» Structure zone diagram agrees with previous phase field models and experiments



; ‘ Understanding the choices of the genetic algorithm

1.0 '
- I THierarchical 25000
T , LCM
sk $383:0008888
08 5 20000
= 5 <
- -
5 :
e 0.6 3 15000
© :E i
& " . . .
s 0.4 £ 10000 Hierarchical m s & !
&
Dj- T
.
0.2 5000 - . (lLa.(E - VCM
' o~ P L&
o 1 2 3 4 5 6 7 8 9 ' 5 10 15 20 25 30
Generations Average deposition rate (x 107°)

» GA favors low amplitudes to generate LCM structures and high amplitudes for VCM structures
» Range of deposition rates can be used to get hierarchical structures

» Genetic algorithm learns deposition-diffusion trade offs
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9 But...

“Online learning” is expensive... we want an “offline” counterpart



0 I Replacing GA-PVD with RL-PVD

Phase field — generative model (VAE) saves computational time

Genetic algorithm — reinforcement learning explores a broader set of protocols



T ‘ RL-PVD framework

Process Reinforcement learning
conditions for
the next At
Deposition rate, mobility Deposition rate, mobility
Time evolution in
latent space
Encoder —» J\ o> J\ Decoder
> Zt ZetAt
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X3 ...

Current state of Predicted
the film microstructure
after At

Microstructure representations Variational autoencoder



2 1 Solving simpler problems first...

Develop a VAE to generate spinodal decomposition microstructures

Encoder — J\ —> Decoder

Reconstruction

100

VAE 200
reconstruction

Ground 200

truth
300




13 ‘ Microstructure encodings?

Process Reinforcement learning
conditions for
the next At
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14 1 Comparing low-dimensional embeddings

Represent multi-scale features: Latent dimensions represent features across multiple length/time scales

Low-dimensionality: Small number of latent dimensions accurately represents the microstructure [

Smooth time-evolution: Latent dimensions show smooth evolution with time as microstructure evolves |
(similar microstructures should have similar embeddings)

Methods Datasets (2D) |
Principal Component Analysis (PCA) ' £Ace
Karhunen Loeve Expansion (KLE)

Autoencoders

Diffusion maps

Spinodal  PVD thin films Dendrite growth Grain growth
decomposition



15 1 Autoencoders for the spinodal decomposition dataset

Time evolution

Ground truth |

Autoencoder
reconstruction |

Autoencoders show good general reconstruction for spinodal decomposition data‘




Ground truth !

Autoencoder
reconstruction

Time evolution

‘ Autoencoders show good reconstruction for PVD data ‘

16 ‘ Autoencoders for the PVD dataset



17 ‘ Reconstruction summary

Reconstruction error
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s I Time evolution in latent space

PCA latent dimension evolution with time
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> |Is the evolution smooth?
> |Is the evolution linear/non-linear?

» Do all microstructure evolutions have similar latent space evolutions?
» Do similar processing conditions have similar latent space evolutions? !



19 ‘ Time evolution in latent space

PCA latent dimension evolution with time
C(t) = (21(t), z5(t), z3(2)) C'(t) %0 All derivatives
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h Simulation 1 e . PCA
- 40 E Simulation 1 Simulation 2
I 20 E; Iy
°® s £
o’ ;
Simulation2 [ ~2° S Simulation 3
" _40 =
~80 Simulation 3 a3
_60 [
—40 20
~20 , 10
20 -10 0 20 40 60 80 100
40 -20 Time

» Non-Smooth/non-linear evolution with time
» Similar processing conditions do not have similar latent space evolutions



20 I Time evolution in latent space

PCA latent dimension evolution with time Autoencoder latent dimension evolution with time
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» Similar processing conditions do not have
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» Smooth/non-linear evolution with time
» Similar processing conditions do not have
similar latent space evolutions



21 1 Summary

» Genetic algorithm guided PVD protocols suggest alternatives to
human-intuition based deposition protocols

» Generative models to generate phase field microstructures show a
promising start

» Dimensionality reduction methods show good reconstruction, latent

dimension representations vary in trajectory smoothness and linearity
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5 ‘ Coupling genetic algorithms to alloy deposition
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26 ‘ Microstructure formation in metallic alloy thin films

‘ What processing conditions to use to obtain desired film microstructure?
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Source: wikipedia

‘ Phase field simulations ‘

Spinodal decomposition results in spontaneous concentration modulations
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https://en.wikipedia.org/wiki/Spinodal_decomposition

27 ‘ How do we design PVD-grown thin film microstructures?

‘ What processing conditions to use to obtain desired film microstructure? ‘
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We use a genetic algorithm to discover time-dependent protocols that result in desired microstructure‘

Current SZDs only consider protocols that are constant in time
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28 ‘ High dimensional structure zone diagrams
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ML methods can give high dimensional SZDs




29 ‘ Structure-property-processing relationships in thin films
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0 ‘ Phase field simulations of alloy deposition

~ J‘ {f¢ + %“’(v(;,)z + s()(f- +%(v C)z)} da Free energy of system |
c oF : :

= = V. [MC((;;, c) vﬁl Evolution equation i

M (¢, c) = Mbulk 4 pmsurf Surface mobility dominates microstructure I

MPulk = %(2 — )+ )2 [h(c)M* + (1 — h(c))ME“*]

(2 _\?
Msurf —e (a..mrf) [h(C)Mjm‘f + (1 _ h(C))M;urf . Mbuik] |
= V. [M(r,b) V— ¢] +S(n(¢)) Evolution equation with source term
'3_‘: =V.[D, Vp] = V.[p v] — S(n(¢)) Vapor evolution equation

Phase field model simulates microstructure evolution for various deposition conditionsl !




: ‘ Microstructures using constant deposition conditions

Deposition rate = 0.075

L ateral concentration Random concentration
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Competition between
deposition and diffusion
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microstructure regimes
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32 ‘ Discovering time-dependent protocols

Vertical concentration modulation (VCM)
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13 I VAE for the PVD dataset

Time evolution

Generation

Work needed on both
reconstruction and
generation




34 ‘ Experiments with the training protocol
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35 ‘ Understanding the choices of the genetic algorithm
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» GA favors low amplitudes to generate LCM structures and high amplitudes for VCM structures
» Range of deposition rates can be used to get hierarchical structures

» Genetic algorithm learns deposition-diffusion trade offs

I I Em B



36 1 Solving simpler problems first...

Optimize input optical profiles to steer incoherent light
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[ > I
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Input optical profile Output beam steering

Specific input optical profiles result in steering of light




7 I Generating new input profiles

Intensit : i
A y Gratlng order Intemsﬂy Grating order ‘
Encoder —> J\ — Decoder |
B
> >
X-coordinate X-coordinate
Training data |
Input: 1D profile — 3840 pixels

Output: 1D profile — 3840 pixels (same as input)
Loss: Reconstruction error (MSE) + KL divergence error (enforce latent space distribution)

Generation (use)
Input: ‘'z’ sampled from learnt distribution
Qutput: 1D profile



8 ‘ Generating new input profiles

Training set

Example VAE Patterns Generated
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VAE generates a variety of input

Local Slope in the Pump Pattern




1 1 Finding optimal profiles using VAEs and active learning
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(1) VAE trained to database of input profiles
(2) Trained VAE coupled to active learning scheme
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that figure of merit is achieved
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coupled to an equation learner to learn underlying
physics
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« 1 Finding optimal profiles using VAEs and active learning
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