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How do we design thin films tailored for specific 
applications?
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Source: nist.gov

Source: energy.gov

Designing tailor-made thin films 
requires an understanding of 

processing-structure-property linkage

Anders Thin Solid Films (2010)

Structure zone diagrams relate 
processing conditions to microstructure

Source: certechinc.com

https://www.nist.gov/blogs/taking-measure/smart-window-sustainable-development-scientists-story
https://www.energy.gov/eere/solar/perovskite-solar-cells
https://www.certechinc.com/product/boron-carbide-b4c-thin-film-wear-resistant-coating/


Microstructure formation in PVD-grown alloy thin films3

Free energy of system

Evolution equations

Phase field model simulates microstructure evolution for various deposition conditions

Deposition rate = 0.075 Deposition rate = 0.5 Deposition rate = 1.25 Deposition rate = 1.25 A65B35

Lateral concentration 
modulation (LCM)

Random concentration 
modulation (RCM)

Vertical concentration 
modulation (VCM)

Nanoprecipitate concentration 
modulation (NPCM)

Stewart et al. Acta Materialia (2020)

Derby et al. Thin Solid Films (2018)



Factors governing microstructure evolution4

Deposition rate = 0.075

Deposition rate = 0.5

Initial deposition

Initial deposition

Spinodal 
decomposition 

laterally (complete)

Spinodal 
decomposition 

laterally (incomplete)

Next deposition

Next deposition

Spinodal 
decomposition 

laterally (complete)

Spinodal 
decomposition 

laterally and vertically

Low deposition rates / high diffusion times give LCM structures

High deposition rates / low diffusion times give VCM structures



How do we design PVD-grown thin film microstructures?5

Current SZDs only consider protocols that are constant in time

We use a genetic algorithm to discover time-dependent protocols that result in desired microstructure

What processing conditions to use to obtain desired film microstructure?



Protocol Analysis

Coupling genetic algorithms to alloy deposition6
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Re-creating constant deposition structure zone diagram7

 Low deposition/high diffusion rates lead to lateral concentration modulations

 High deposition/low diffusion rates lead to vertical concentration modulations

 Structure zone diagram agrees with previous phase field models and experiments

Lu, Yong et al. Physical review letters (2012)



Understanding the choices of the genetic algorithm8

 GA favors low amplitudes to generate LCM structures and high amplitudes for VCM structures

 Range of deposition rates can be used to get hierarchical structures

 Genetic algorithm learns deposition-diffusion trade offs

LCM

Hierarchical

VCM

LCM

VCM

Hierarchical



But…9

“Online learning” is expensive… we want an “offline” counterpart



Replacing GA-PVD with RL-PVD10

Phase field → generative model (VAE) saves computational time

Genetic algorithm → reinforcement learning explores a broader set of protocols



RL-PVD framework11

Time evolution in 
latent space

Predicted 
microstructure 

after Δt

Current state of 
the film

Process 
conditions for 

the next Δt 

Reinforcement learning

Variational autoencoderMicrostructure representations



Solving simpler problems first…12

Develop a VAE to generate spinodal decomposition microstructures

�Encoder Decoder

GenerationReconstruction

VAE 
reconstruction

Ground 
truth



Microstructure encodings?13

Time evolution in 
latent space

Predicted 
microstructure 

after Δt

Current state of 
the film

Process 
conditions for 

the next Δt 

Reinforcement learning

Variational autoencoderMicrostructure representations



Comparing low-dimensional embeddings14

Represent multi-scale features: Latent dimensions represent features across multiple length/time scales

Low-dimensionality: Small number of latent dimensions accurately represents the microstructure

Smooth time-evolution: Latent dimensions show smooth evolution with time as microstructure evolves 
(similar microstructures should have similar embeddings)

Methods Datasets (2D)

Spinodal 
decomposition

PVD thin films Dendrite growth Grain growth

Principal Component Analysis (PCA)

Karhunen Loeve Expansion (KLE)

Autoencoders

Diffusion maps



Autoencoders for the spinodal decomposition dataset15

Time evolution

Autoencoders show good general reconstruction for spinodal decomposition data

Ground truth

Autoencoder 
reconstruction



Autoencoders for the PVD dataset16

Time evolution

Autoencoders show good reconstruction for PVD data

Ground truth

Autoencoder 
reconstruction



Reconstruction summary17



Time evolution in latent space18

PCA latent dimension evolution with time

Simulation 1

Simulation 3

Simulation 2

 Is the evolution smooth?
 Is the evolution linear/non-linear?

 Do all microstructure evolutions have similar latent space evolutions?
 Do similar processing conditions have similar latent space evolutions?



Time evolution in latent space19

PCA latent dimension evolution with time

Simulation 1

Simulation 3

Simulation 2

 Non-Smooth/non-linear evolution with time
 Similar processing conditions do not have similar latent space evolutions

Simulation 1

Simulation 3

Simulation 2

All derivatives 
change sign 

between two points
smoothness 

condition

PCA



Time evolution in latent space20

PCA latent dimension evolution with time Autoencoder latent dimension evolution with time

 Non-Smooth/non-linear evolution with time
 Similar processing conditions do not have 

similar latent space evolutions

 Smooth/non-linear evolution with time
 Similar processing conditions do not have 

similar latent space evolutions

Simulation 1

Simulation 3

Simulation 2

Simulation 1

Simulation 3

Simulation 2



Summary21

 Genetic algorithm guided PVD protocols suggest alternatives to 
human-intuition based deposition protocols

 Generative models to generate phase field microstructures show a 
promising start

 Dimensionality reduction methods show good reconstruction, latent 
dimension representations vary in trajectory smoothness and linearity

GA

Target

GATarget
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How do we design thin films tailored for specific 
applications?
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Source: nist.gov

Source: energy.gov

Designing tailor-made thin films 
requires an understanding of 

processing-structure-property linkage

Anders Thin Solid Films (2010)

Structure zone diagrams relate 
processing conditions to microstructure

Source: certechinc.com

https://www.nist.gov/blogs/taking-measure/smart-window-sustainable-development-scientists-story
https://www.energy.gov/eere/solar/perovskite-solar-cells
https://www.certechinc.com/product/boron-carbide-b4c-thin-film-wear-resistant-coating/


How do we design thin films tailored for specific 
applications?
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Source: nist.gov

Shao et al. NPG Asia 
Materials (2018)

Source: energy.gov

Designing tailor-made thin films 
requires an understanding of 

processing-structure-property linkage

Source: certechinc.com

https://www.nist.gov/blogs/taking-measure/smart-window-sustainable-development-scientists-story
https://www.energy.gov/eere/solar/perovskite-solar-cells
https://www.certechinc.com/product/boron-carbide-b4c-thin-film-wear-resistant-coating/


Protocol Analysis

Coupling genetic algorithms to alloy deposition25
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Microstructure formation in metallic alloy thin films26

What processing conditions to use to obtain desired film microstructure?

Layer by layer deposition

Self-assembly via spinodal 
decomposition

���� �������

�����������

Spinodal decomposition results in spontaneous concentration modulations

PVD experiments

Phase field simulations

Substrate

Source: wikipedia 

https://en.wikipedia.org/wiki/Spinodal_decomposition


How do we design PVD-grown thin film microstructures?27

Current SZDs only consider protocols that are constant in time

We use a genetic algorithm to discover time-dependent protocols that result in desired microstructure

What processing conditions to use to obtain desired film microstructure?



High dimensional structure zone diagrams28

Costine et al. Journal of Applied Physics (2020)

Banko et al. Communications Materials (2020)

ML methods can give high dimensional SZDs

Monolayer

Not monolayer

Generative Adversarial Network based SZD



Structure-property-processing relationships in thin films29

Source: nist.gov

Shao et al. NPG Asia 
Materials (2018)

Source: energy.gov

Thin film structure decides properties

Source: renata.com

https://www.nist.gov/blogs/taking-measure/smart-window-sustainable-development-scientists-story
https://www.energy.gov/eere/solar/perovskite-solar-cells
https://www.renata.com/industrial-products/thin-film-cells-primary/


Phase field simulations of alloy deposition30

Free energy of system

Evolution equation

Surface mobility dominates microstructure

Evolution equation with source term

Vapor evolution equation

Phase field model simulates microstructure evolution for various deposition conditions



Microstructures using constant deposition conditions31

Deposition rate = 0.075

Deposition rate = 0.5

Deposition rate = 1.25

Competition between 
deposition and diffusion 

gives different 
microstructure regimes Deposition rate = 1.25

A65B35

Lateral concentration 
modulation (LCM)

Random concentration 
modulation (RCM)

Vertical concentration 
modulation (VCM)

Nanoprecipitate 
concentration modulation 

(NPCM)



Discovering time-dependent protocols32

Hierarchical microstructure (HCM)

Vertical concentration modulation (VCM)

 Genetic algorithm discovers pulse protocol that results in target structure

 Time taken to achieve microstructure similar or lower than target protocol

Target GA

Target GA

GA LCM
Target LCM

Target VCM

GA VCM

Target HCM

GA HCM
Target

GA

Target

GA

GA



VAE for the PVD dataset33

VAE 
reconstruction

Ground truth
Generation

Time evolution

VAE 
reconstruction

Work needed on both 
reconstruction and 

generation



Experiments with the training protocol34

Experimenting with 
various training 
protocols to reduce loss



Understanding the choices of the genetic algorithm35

 GA favors low amplitudes to generate LCM structures and high amplitudes for VCM structures

 Range of deposition rates can be used to get hierarchical structures

 Genetic algorithm learns deposition-diffusion trade offs

LCM

Hierarchical

VCM

LCM

VCM

Hierarchical



Solving simpler problems first…36

Optimize input optical profiles to steer incoherent light

X-coordinate

Intensity Grating order

Specific input optical profiles result in steering of light 

Input optical profile Output beam steering



Generating new input profiles37

�Encoder Decoder

X-coordinate

Intensity Grating order

X-coordinate

Intensity Grating order

Training data
Input: 1D profile – 3840 pixels
Output: 1D profile – 3840 pixels (same as input)
Loss: Reconstruction error (MSE) + KL divergence error (enforce latent space distribution)

Generation (use)
Input: ‘z’ sampled from learnt distribution
Output: 1D profile



Generating new input profiles38
Training set

VAE generates a variety of input 
profiles



Finding optimal profiles using VAEs and active learning39

(1) VAE trained to database of input profiles

(2) Trained VAE coupled to active learning scheme

(3) Active learning optimizes latent dimension such 
that figure of merit is achieved

(4) Training data and data explored by active learning 
coupled to an equation learner to learn underlying 
physics



Finding optimal profiles using VAEs and active learning40

Active learning rediscovers grating order 
of 80 to have maximum beam steering Active learning finds multiple profiles beyond 

human intuition with varying beam steering angles


