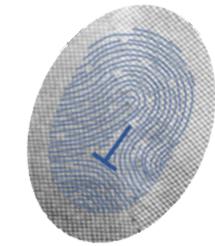
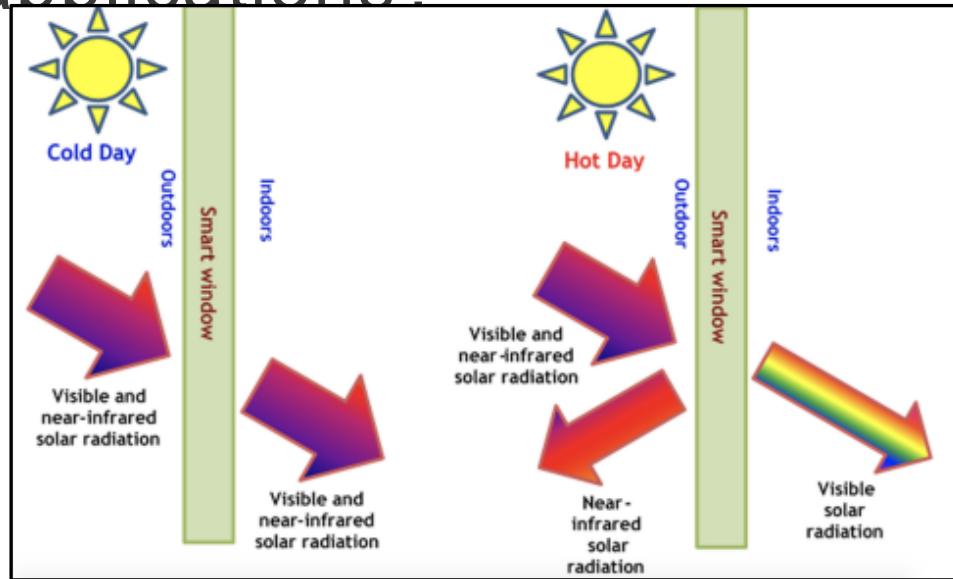


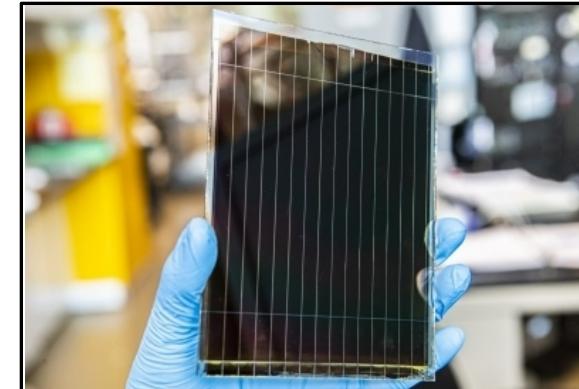
Machine learning methods for designing thin films

Saaketh Desai, Remi Dingreville
Center for Integrated Nanotechnologies
Sandia National Laboratories

How do we design thin films tailored for specific applications?



Source: nist.gov

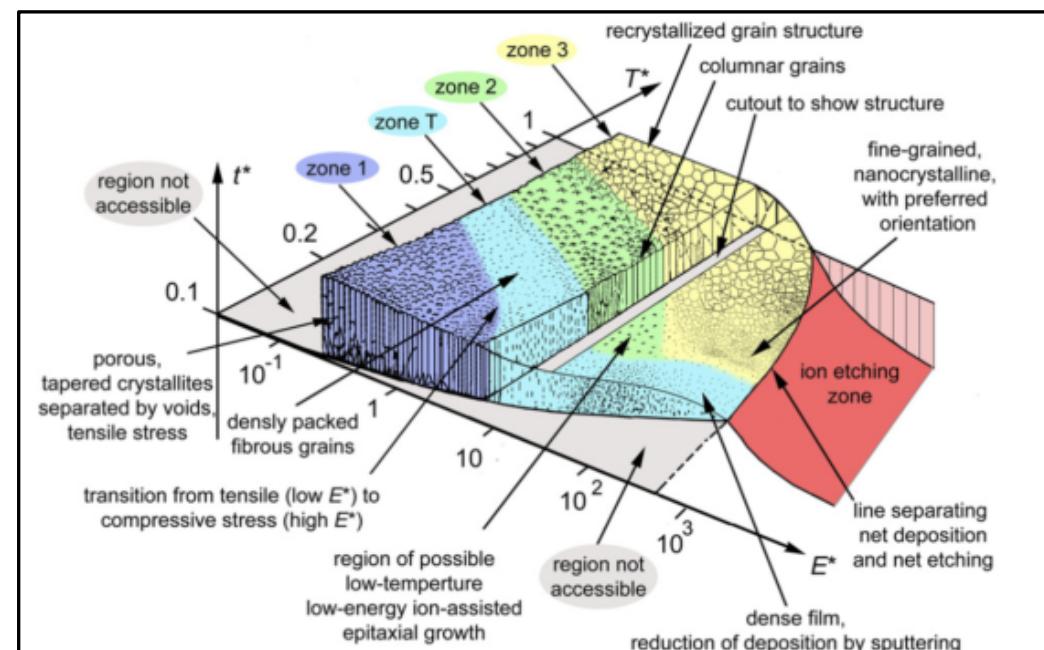


Source: energy.gov

Source: certechinc.com

Designing tailor-made thin films requires an understanding of processing-structure-property linkage

Structure zone diagrams relate processing conditions to microstructure



Microstructure formation in PVD-grown alloy thin films

$$F = \int \left\{ f_\phi + \frac{\kappa_\phi}{2} (\nabla \phi)^2 + s(\phi) \left(f_c + \frac{\kappa_c}{2} (\nabla c)^2 \right) \right\} d\Omega$$

Free energy of system

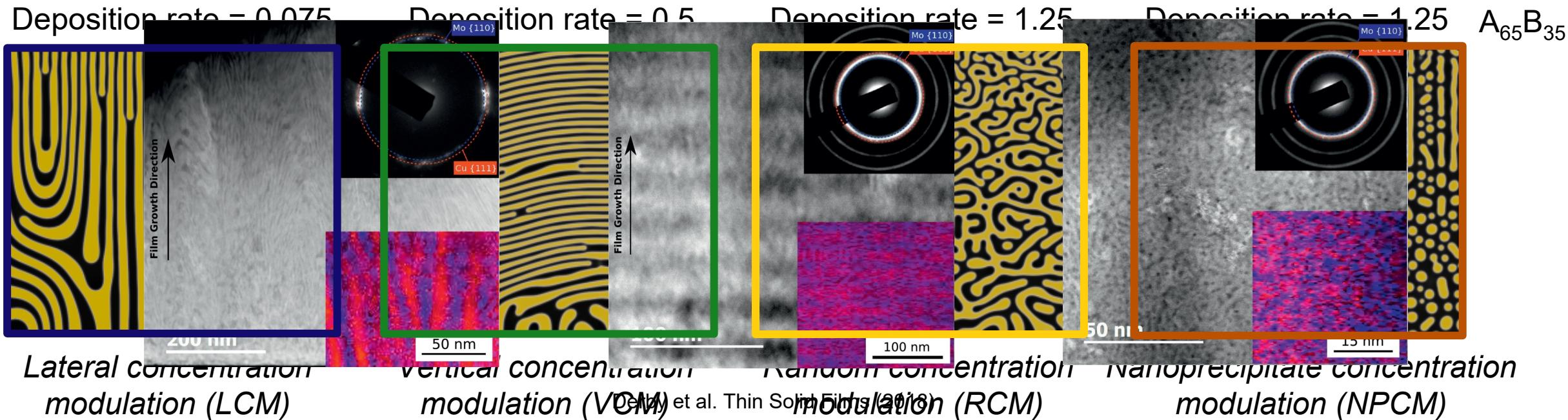
Stewart et al. *Acta Materialia* (2020)

$$\frac{\partial c}{\partial t} = \nabla \cdot \left[\mathbf{M}_c(\phi, c) \nabla \frac{\delta F}{\delta c} \right]$$

$$\frac{\partial \phi}{\partial t} = \nabla \cdot \left[\mathbf{M}(\phi) \nabla \frac{\delta F}{\delta \phi} \right] + S(n(\phi))$$

$$\frac{\partial \rho}{\partial t} = \nabla \cdot [\mathbf{D}_\rho \nabla \rho] - \nabla \cdot [\rho \mathbf{v}] - S(n(\phi))$$

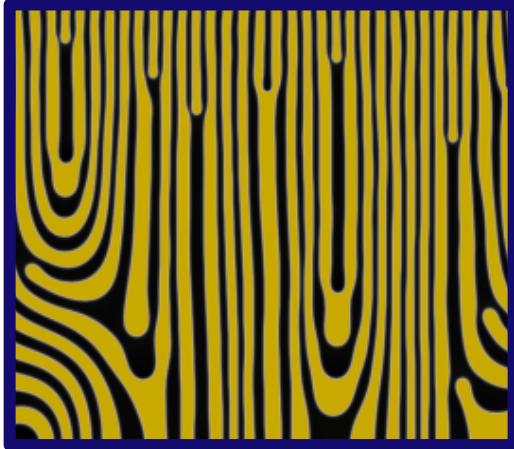
Evolution equations



Phase field model simulates microstructure evolution for various deposition conditions

Factors governing microstructure evolution

Deposition rate = 0.075



Low deposition rates / high diffusion times give LCM structures

Initial deposition

Spinodal decomposition laterally (complete)

Next deposition

Spinodal decomposition laterally (complete)

Deposition rate = 0.5

High deposition rates / low diffusion times give VCM structures

Initial deposition

Spinodal decomposition laterally (incomplete)

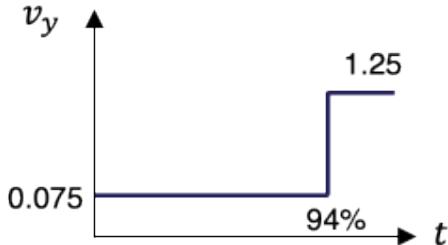
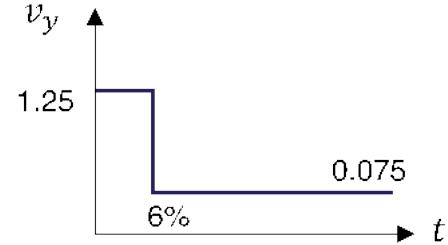
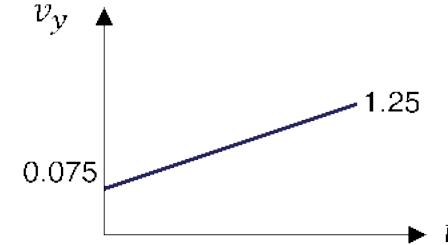
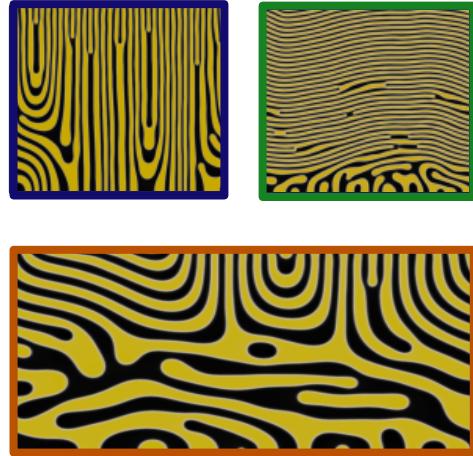
Next deposition

Spinodal decomposition laterally and vertically

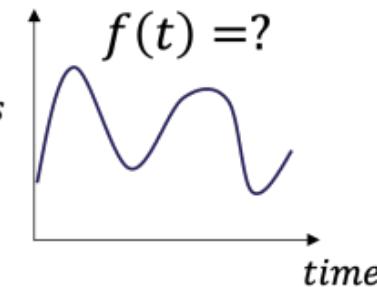
How do we design PVD-grown thin film microstructures?

What processing conditions to use to obtain desired film microstructure?

Current SZDs only consider protocols that are constant in time

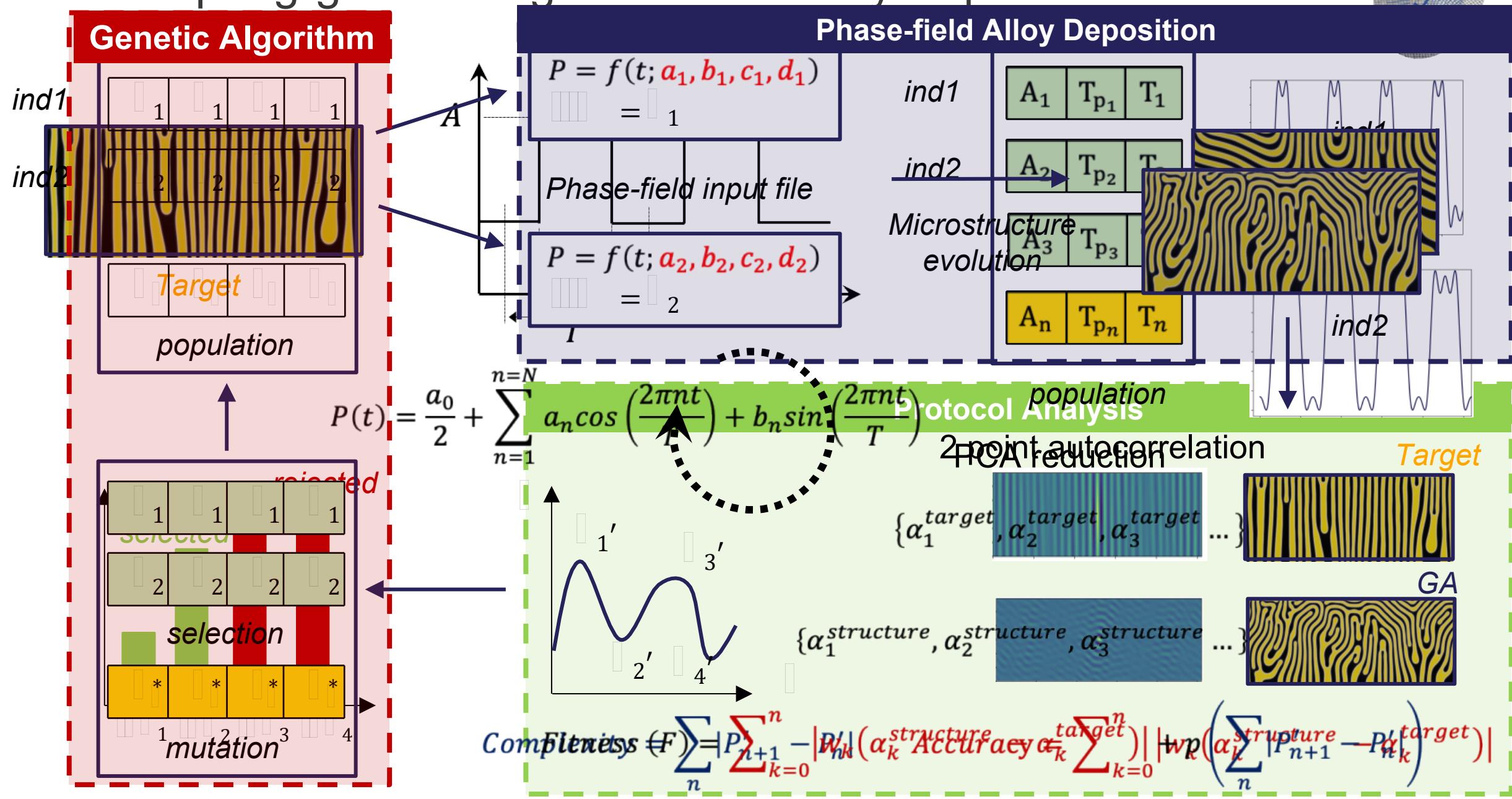


Deposition
parameters

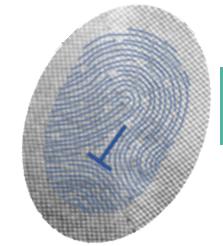
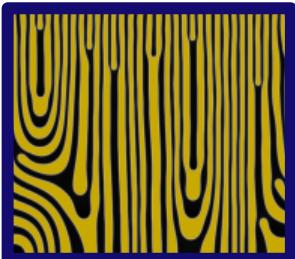
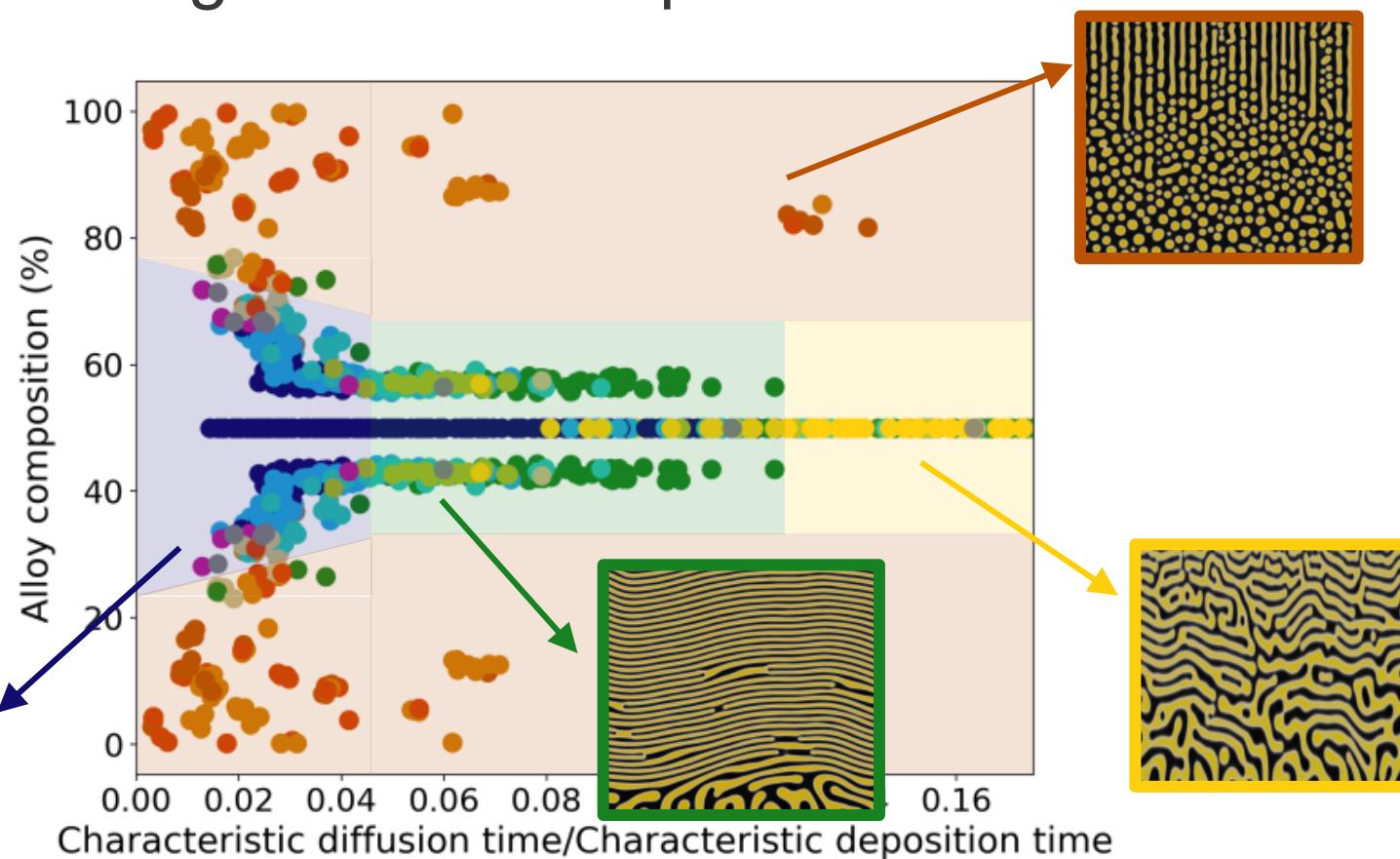
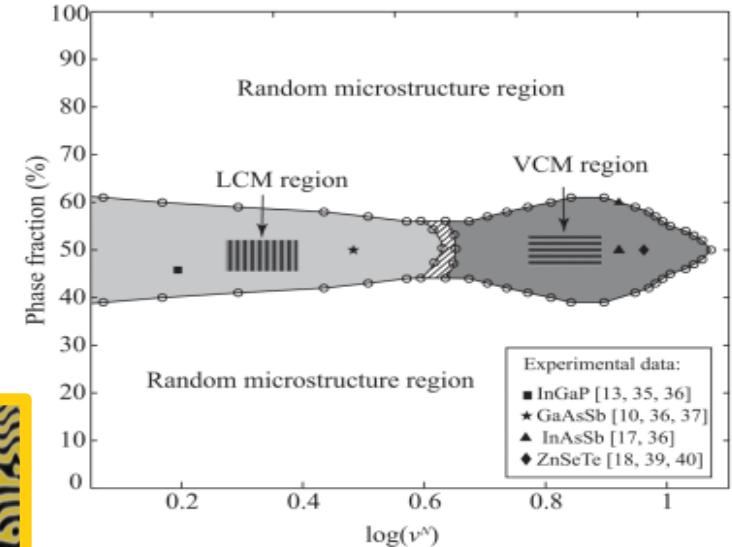


We use a genetic algorithm to discover time-dependent protocols that result in desired microstructure

Coupling genetic algorithms to alloy deposition



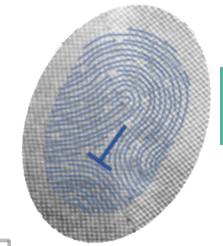
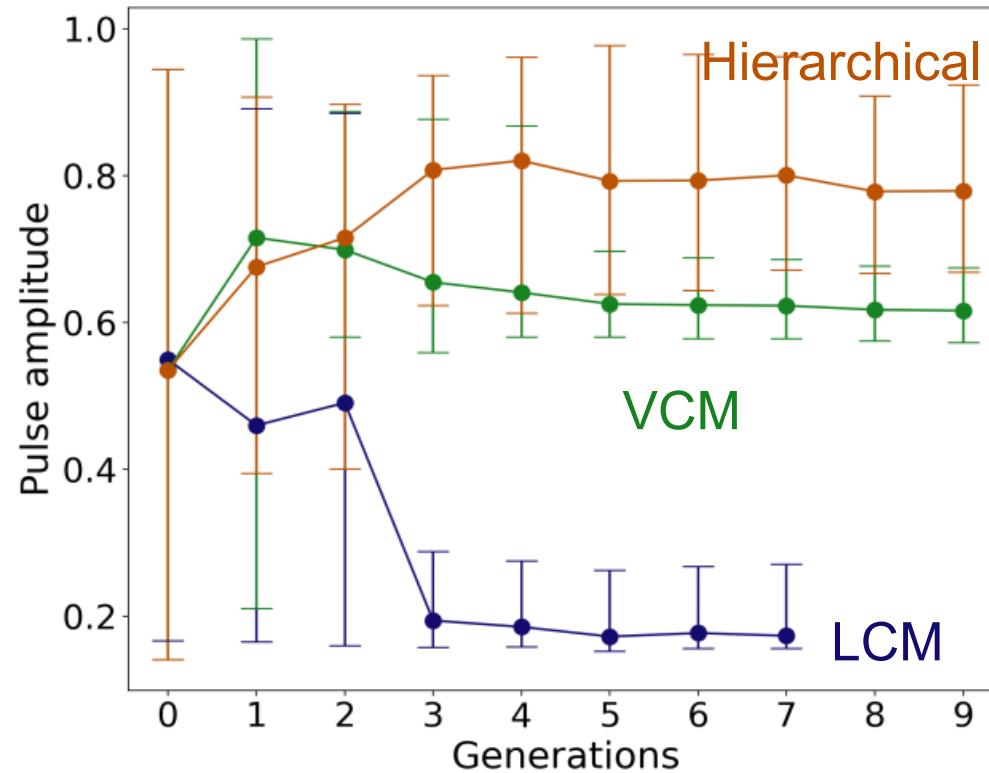
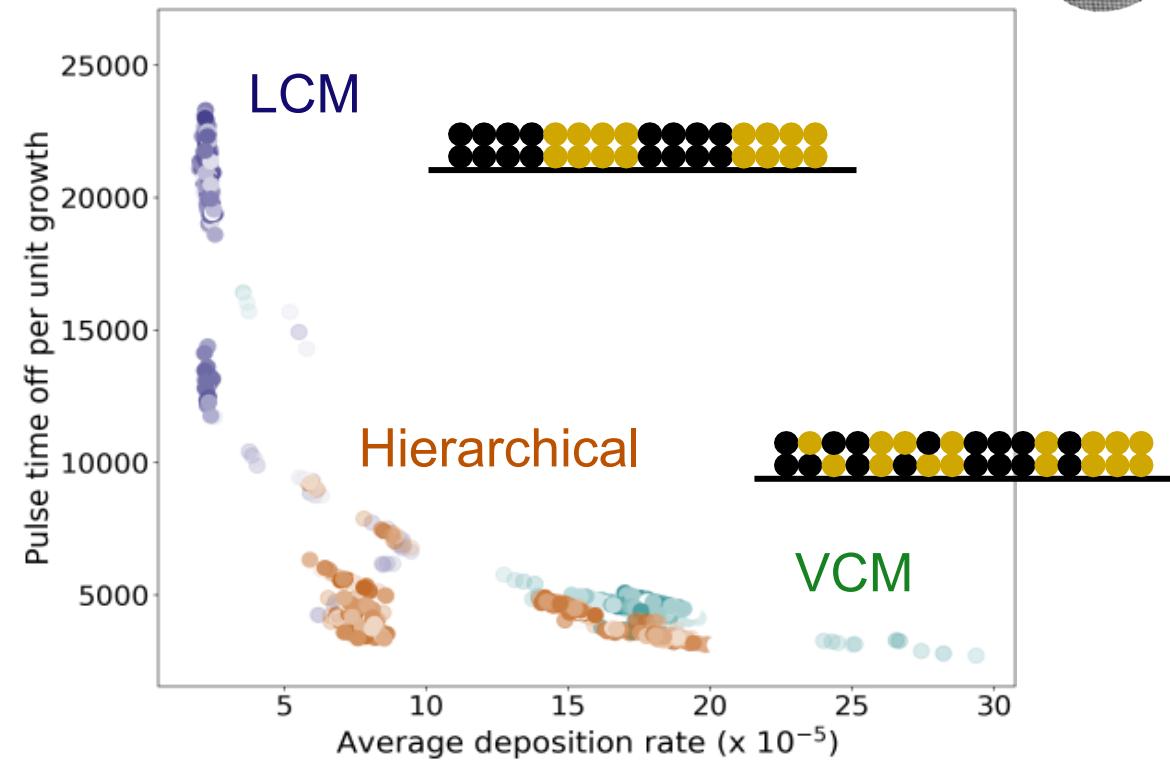
Re-creating constant deposition structure zone diagram



Lu, Yong et al. *Physical review letters* (2012)

- Low deposition/high diffusion rates lead to lateral concentration modulations
- High deposition/low diffusion rates lead to vertical concentration modulations
- Structure zone diagram agrees with previous phase field models and experiments

Understanding the choices of the genetic algorithm



- GA favors low amplitudes to generate LCM structures and high amplitudes for VCM structures
- Range of deposition rates can be used to get hierarchical structures
- Genetic algorithm learns deposition-diffusion trade offs

But...

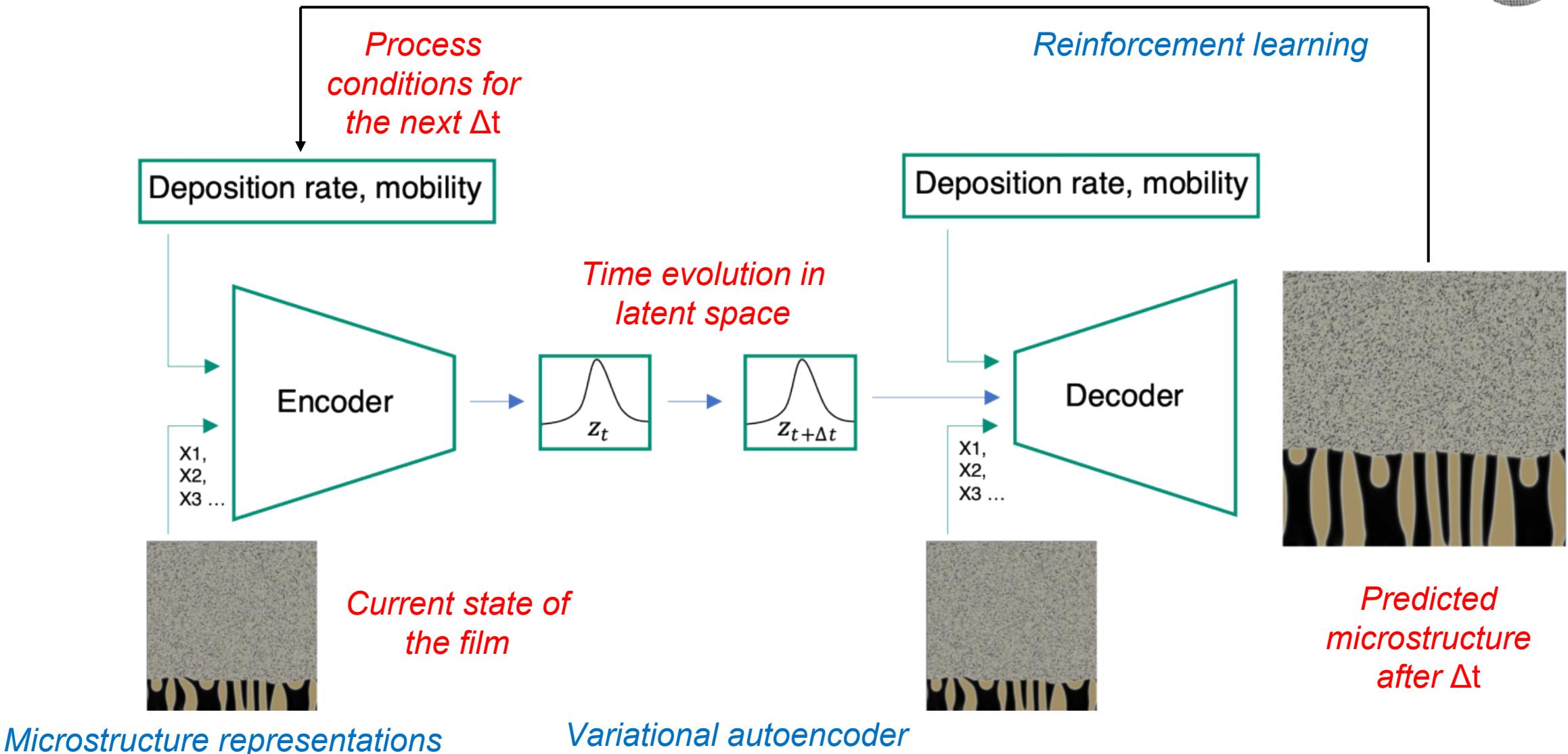
“Online learning” is expensive... we want an “offline” counterpart

Replacing GA-PVD with RL-PVD

Phase field → generative model (VAE) *saves computational time*

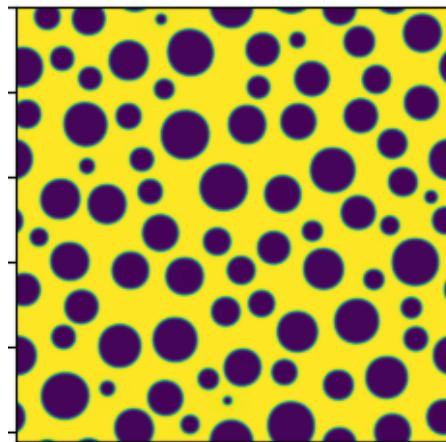
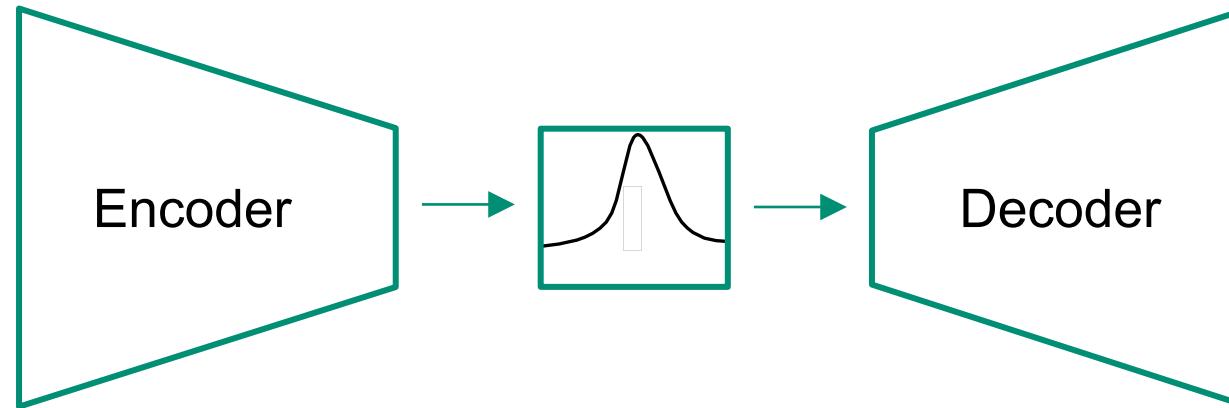
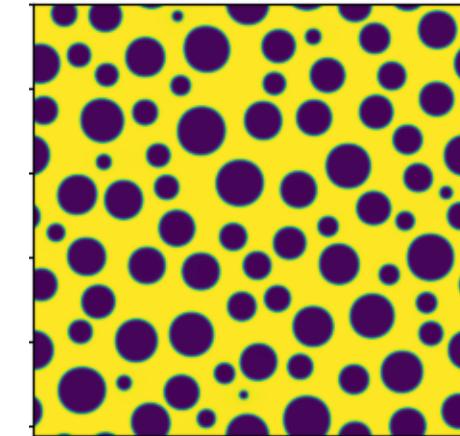
Genetic algorithm → reinforcement learning *explores a broader set of protocols*

RL-PVD framework



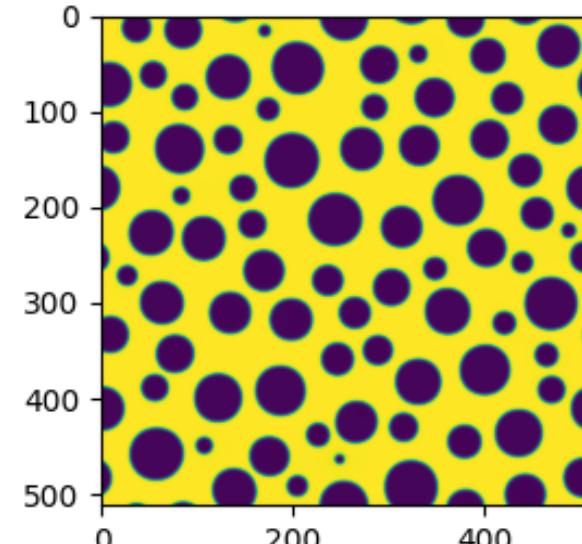
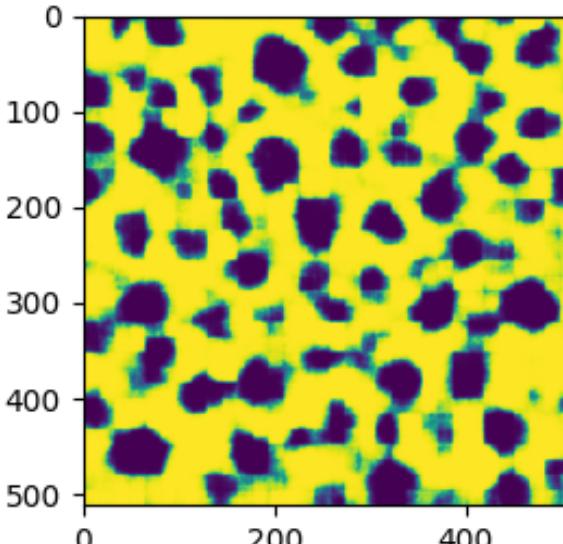
Solving simpler problems first...

Develop a VAE to generate spinodal decomposition microstructures



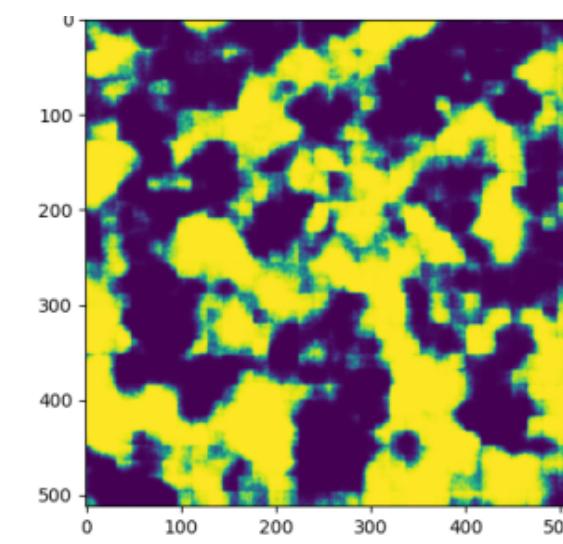
Reconstruction

Ground truth

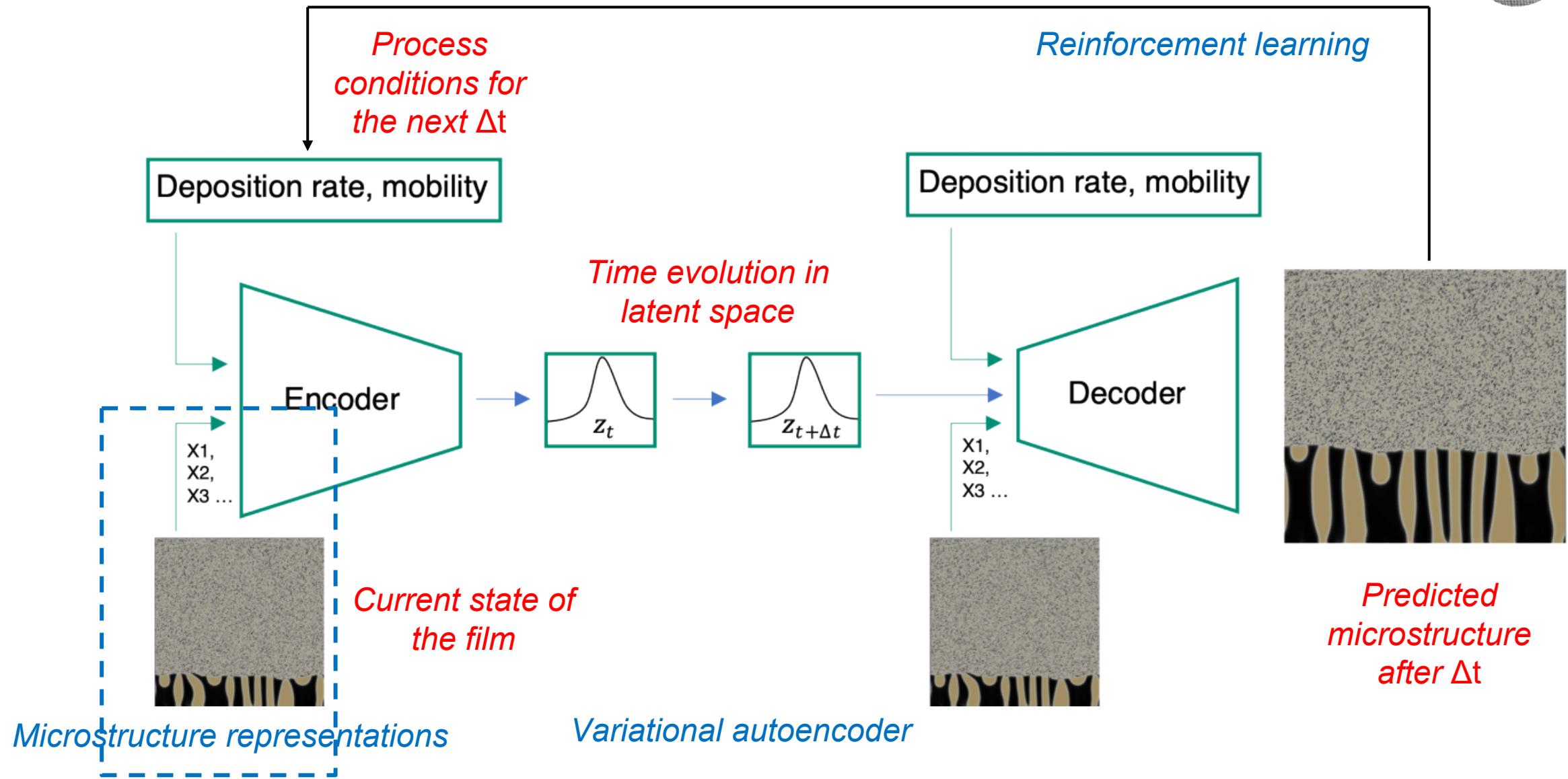


VAE reconstruction

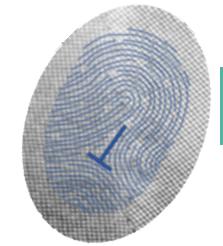
Generation



Microstructure encodings?



Comparing low-dimensional embeddings



Represent multi-scale features: Latent dimensions represent features across multiple length/time scales

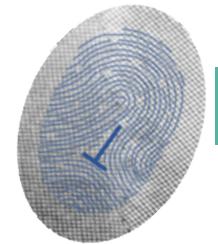
Low-dimensionality: Small number of latent dimensions accurately represents the microstructure

Smooth time-evolution: Latent dimensions show smooth evolution with time as microstructure evolves (similar microstructures should have similar embeddings)

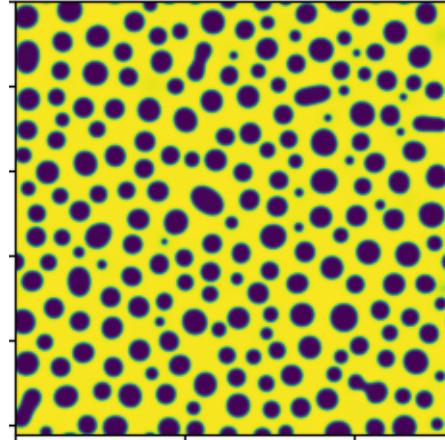
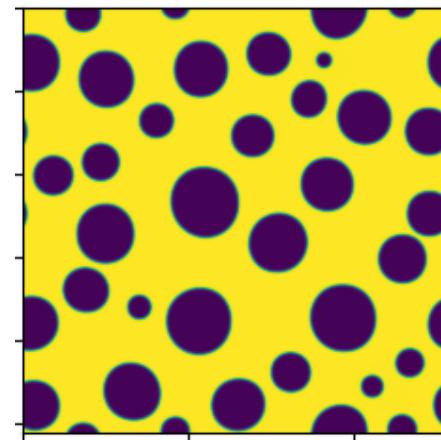
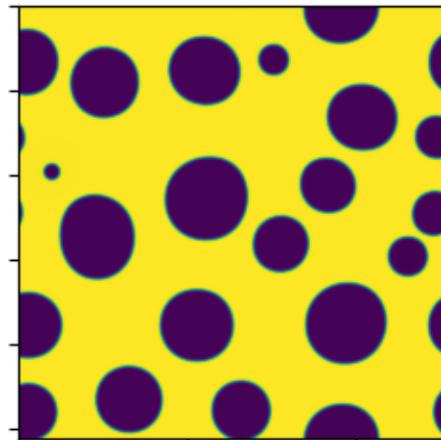
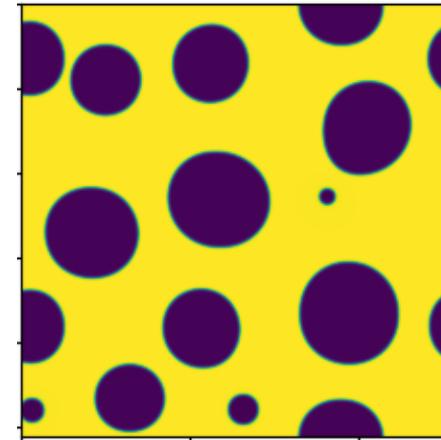
Methods
Principal Component Analysis (PCA)
Karhunen Loeve Expansion (KLE)
Autoencoders
Diffusion maps

Datasets (2D)
Spinodal decomposition
PVD thin films
Dendrite growth
Grain growth

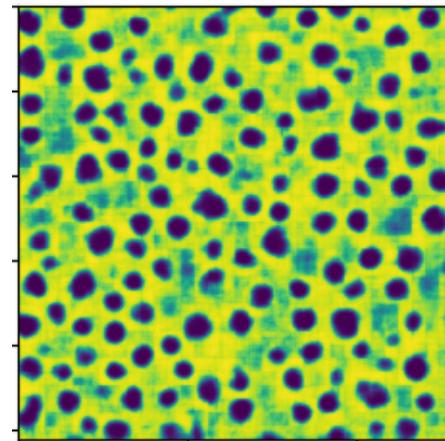
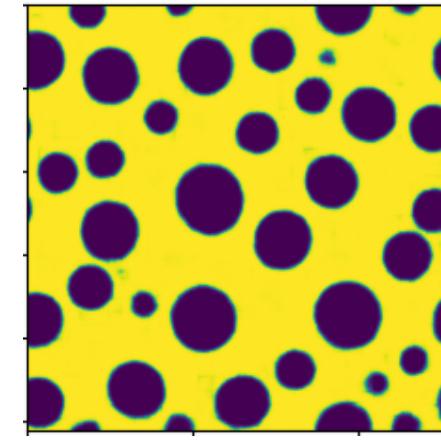
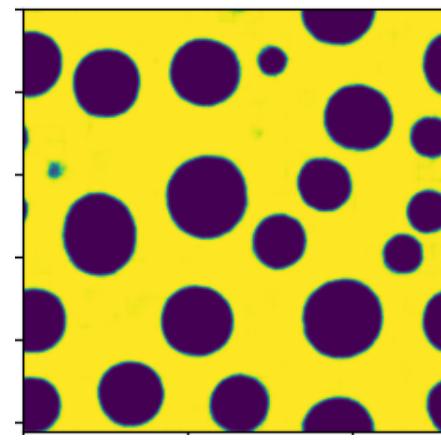
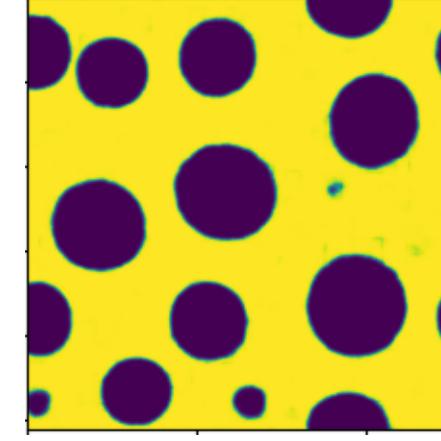
Autoencoders for the spinodal decomposition dataset



Time evolution



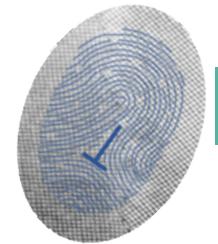
Ground truth



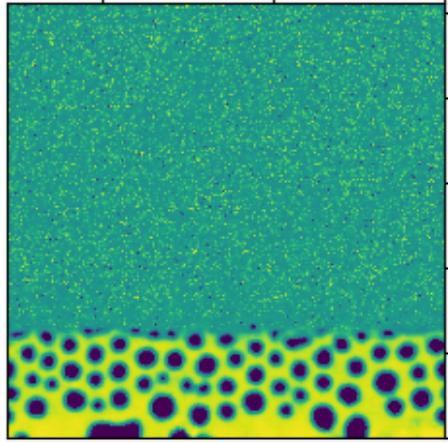
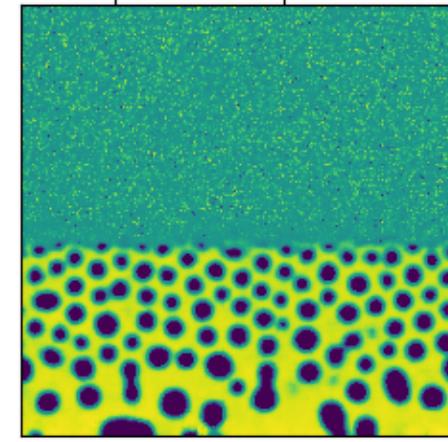
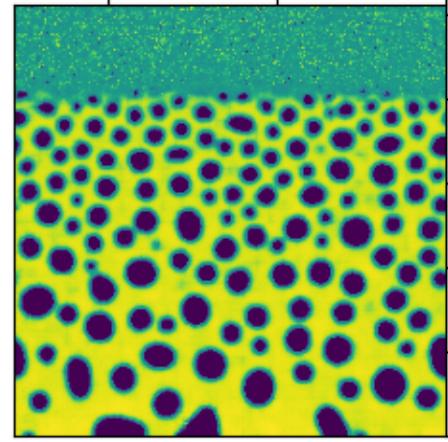
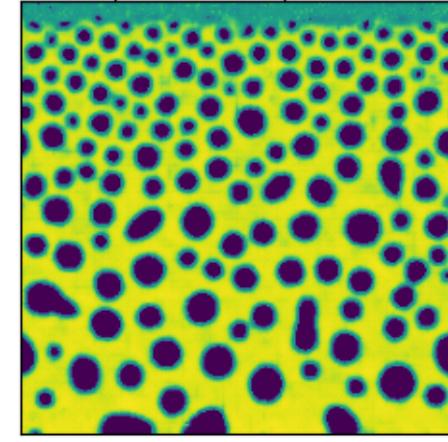
Autoencoder reconstruction

Autoencoders show good general reconstruction for spinodal decomposition data

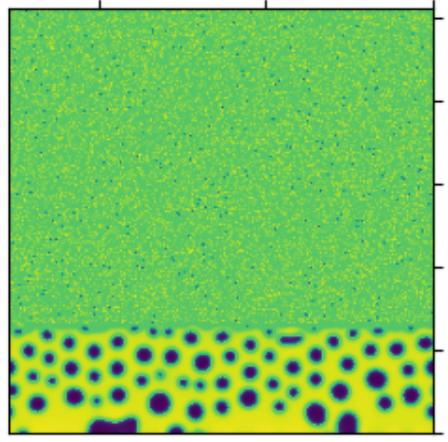
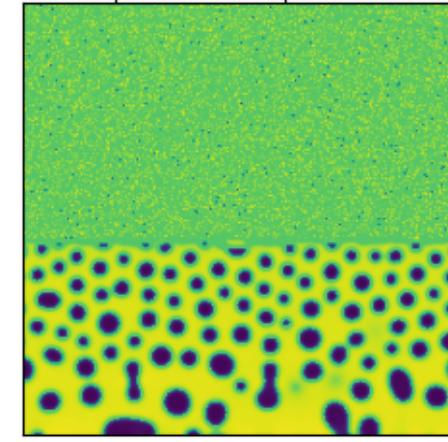
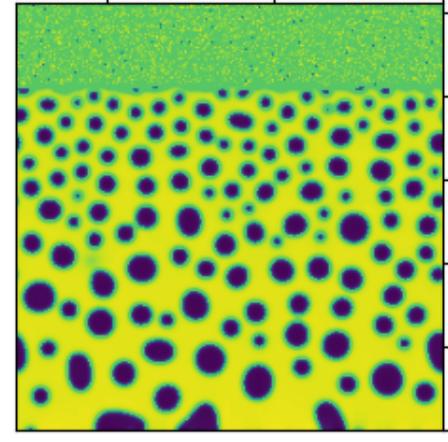
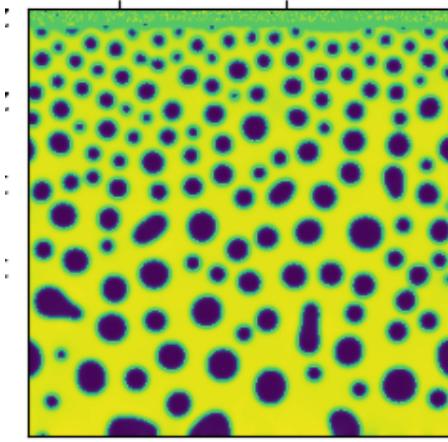
Autoencoders for the PVD dataset



Time evolution



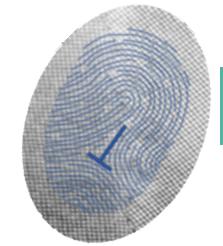
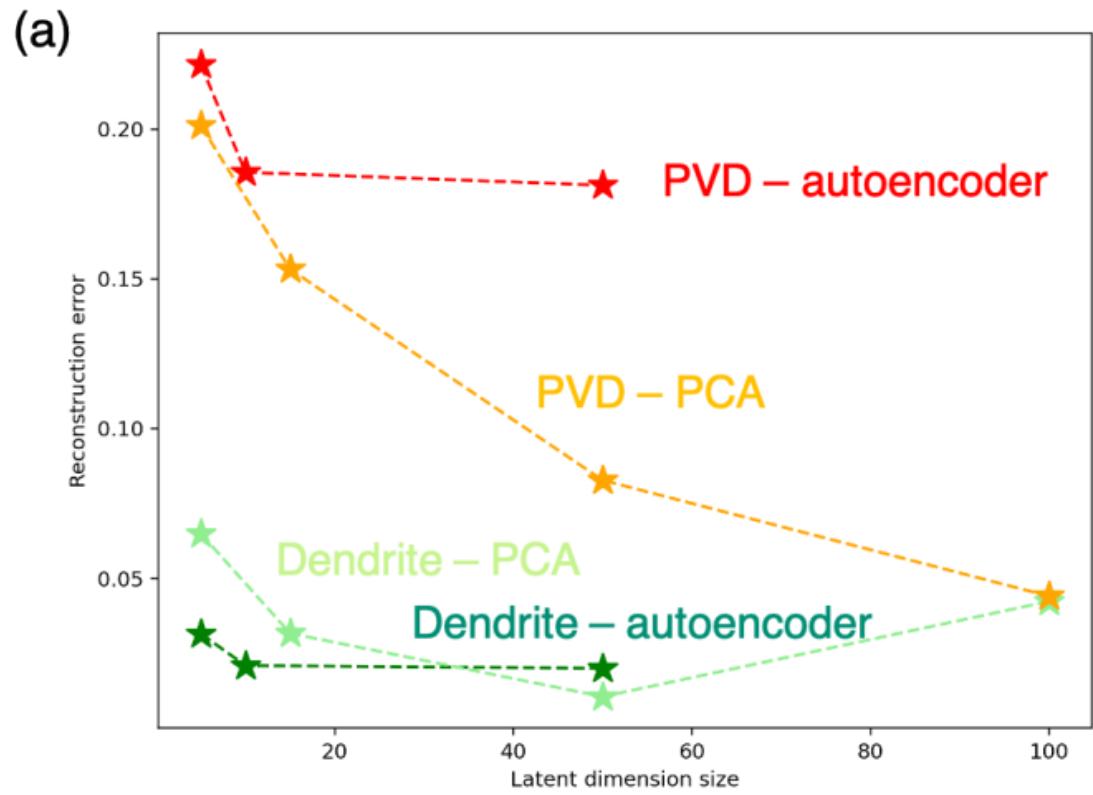
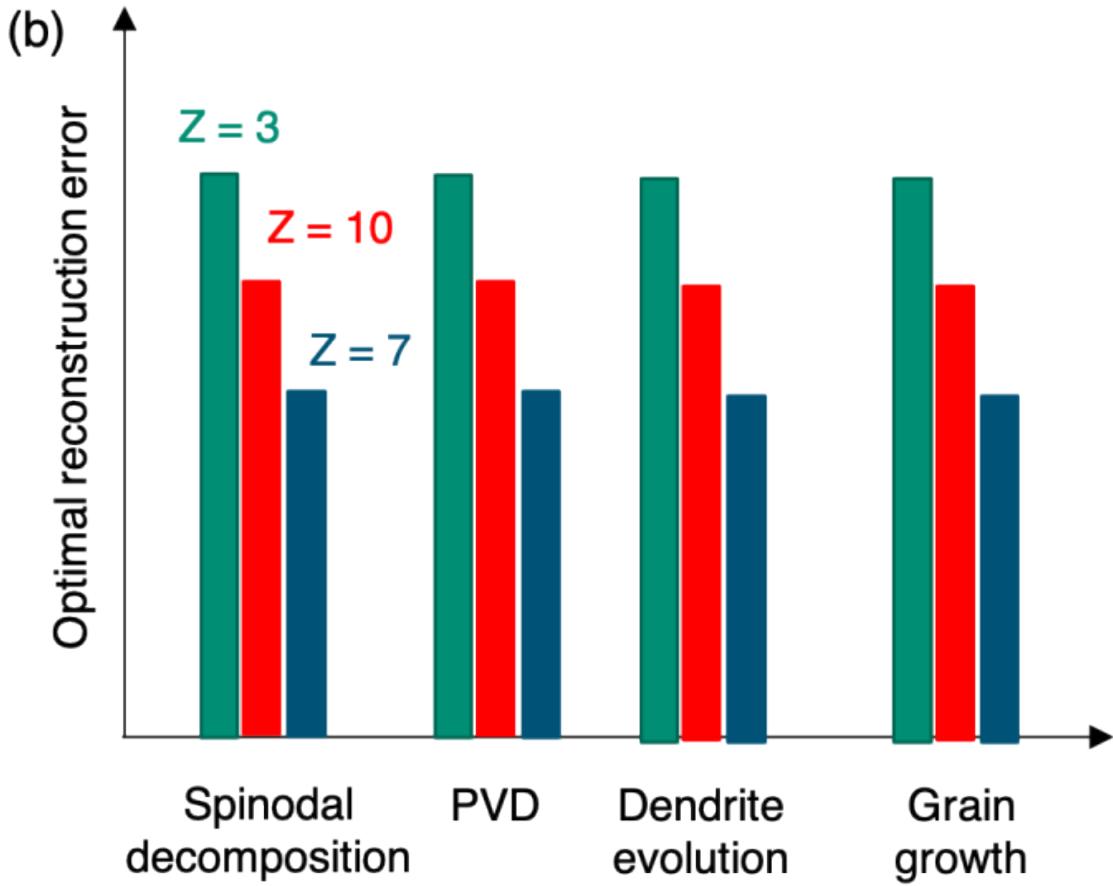
Ground truth



Autoencoder
reconstruction

Autoencoders show good reconstruction for PVD data

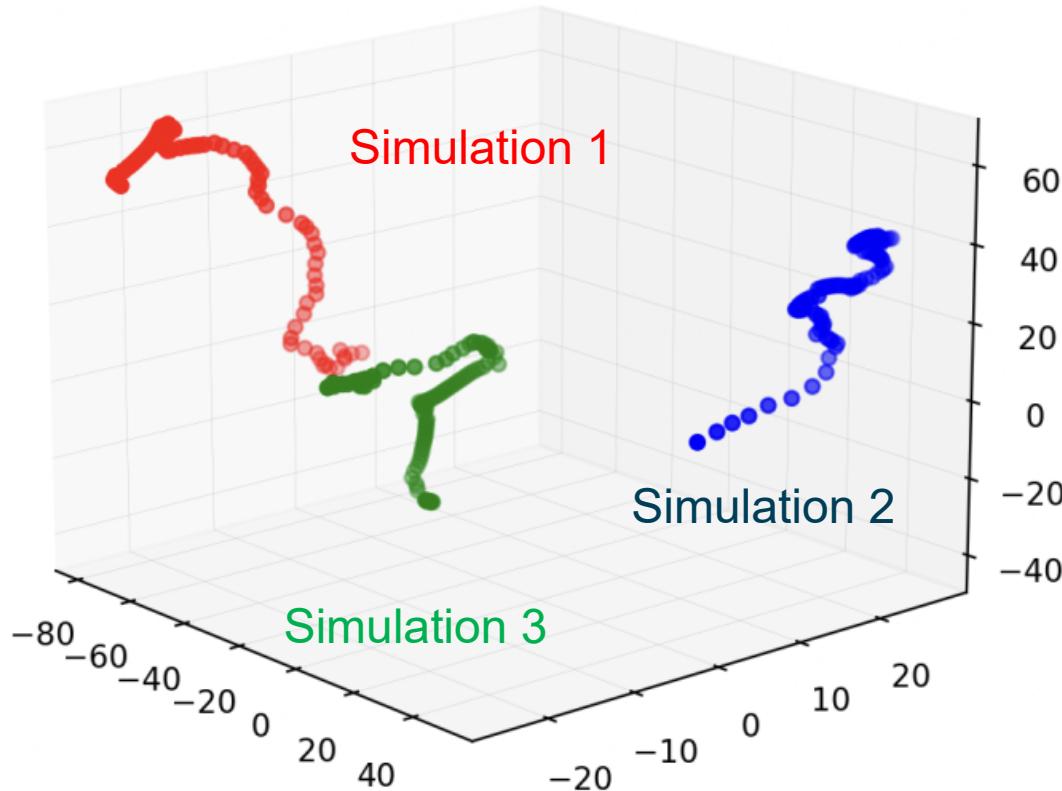
Reconstruction summary



Time evolution in latent space



PCA latent dimension evolution with time



- Is the evolution smooth?
 - Is the evolution linear/non-linear?
- Do all microstructure evolutions have similar latent space evolutions?
 - Do similar processing conditions have similar latent space evolutions?

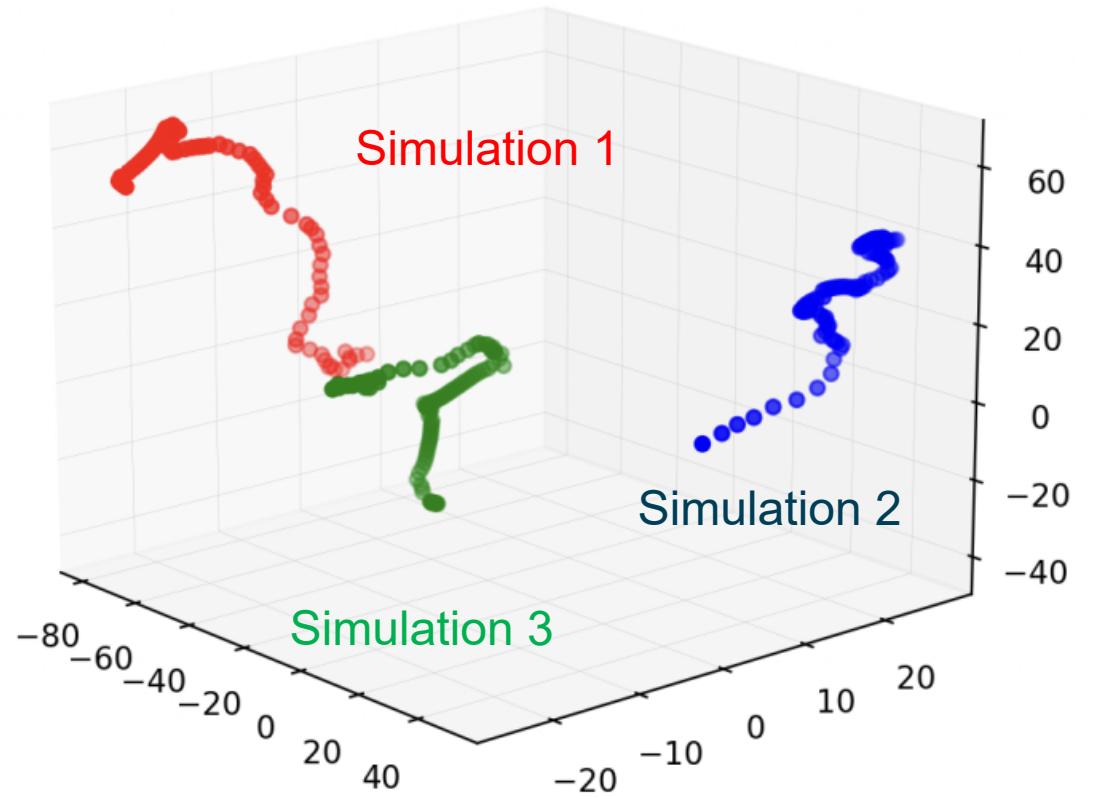
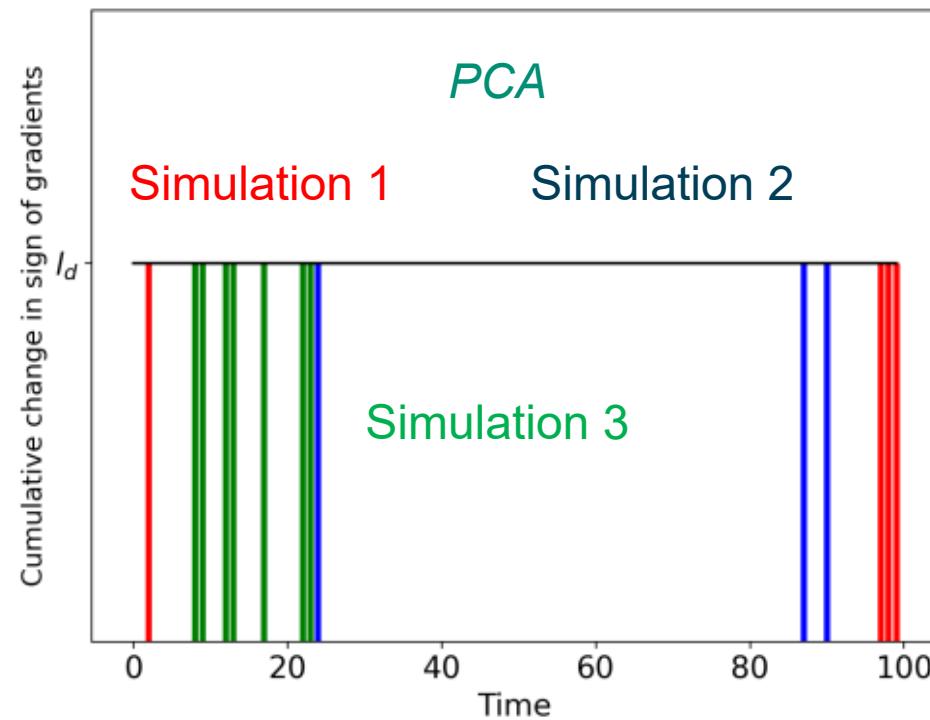
Time evolution in latent space

PCA latent dimension evolution with time

$$C(t) = (z_1(t), z_2(t), z_3(t))$$

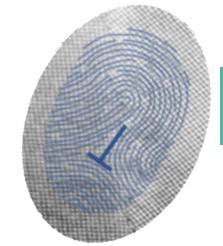
$C'(t) \neq \vec{0}$
smoothness
condition

All derivatives
change sign
between two points

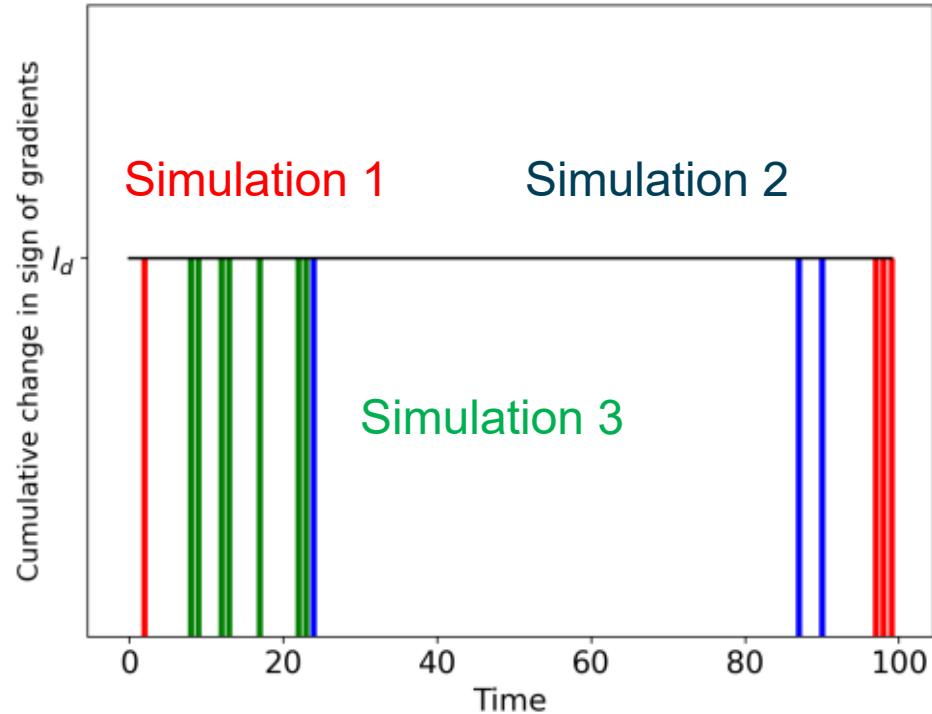


- Non-Smooth/non-linear evolution with time
- Similar processing conditions do not have similar latent space evolutions

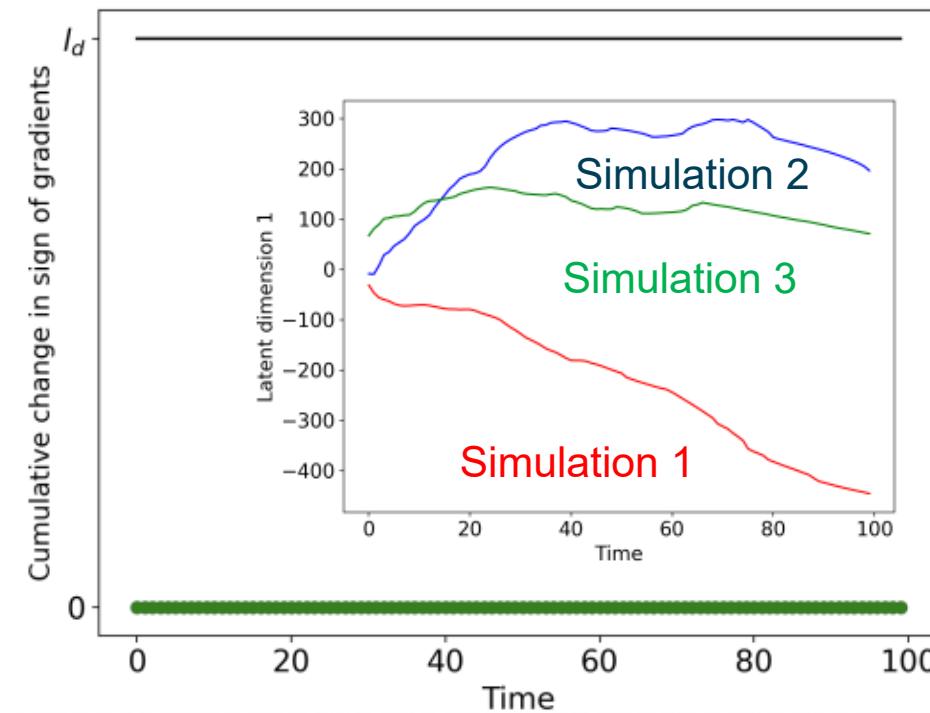
Time evolution in latent space



PCA latent dimension evolution with time



Autoencoder latent dimension evolution with time

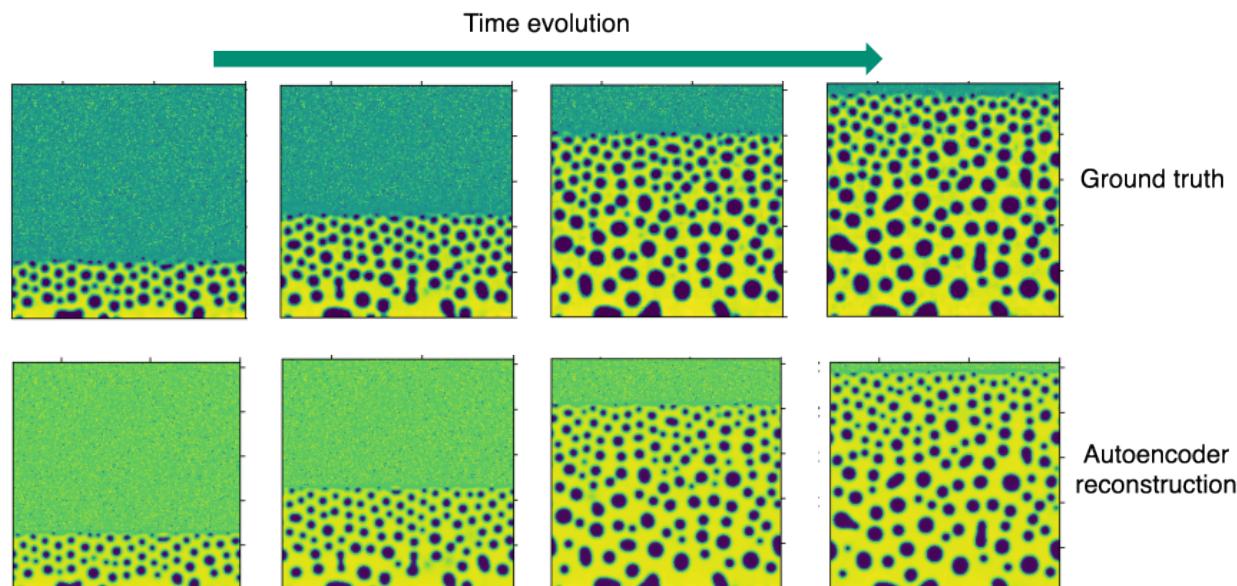
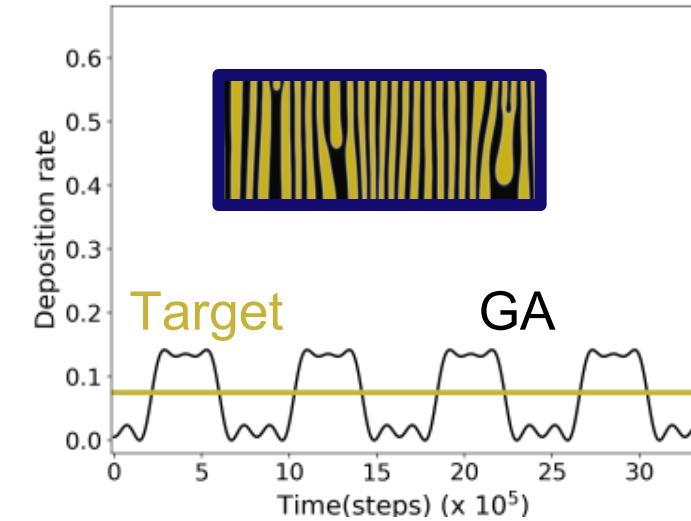
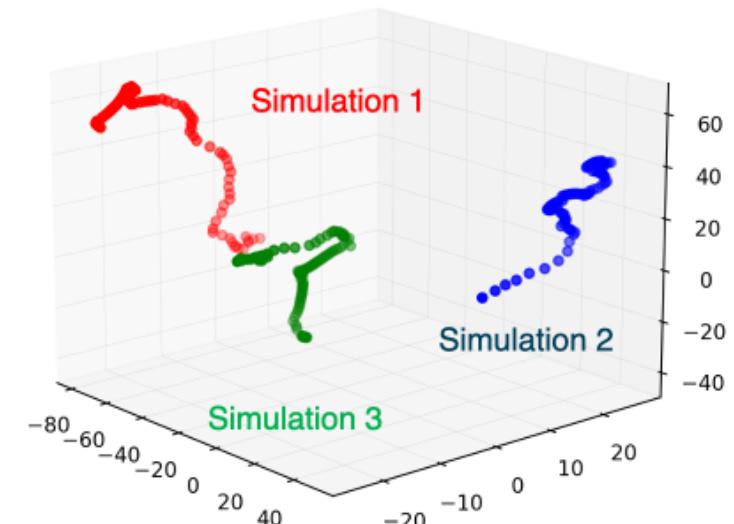


- Non-Smooth/non-linear evolution with time
- Similar processing conditions do not have similar latent space evolutions

- Smooth/non-linear evolution with time
- Similar processing conditions do not have similar latent space evolutions

Summary

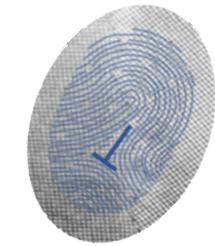
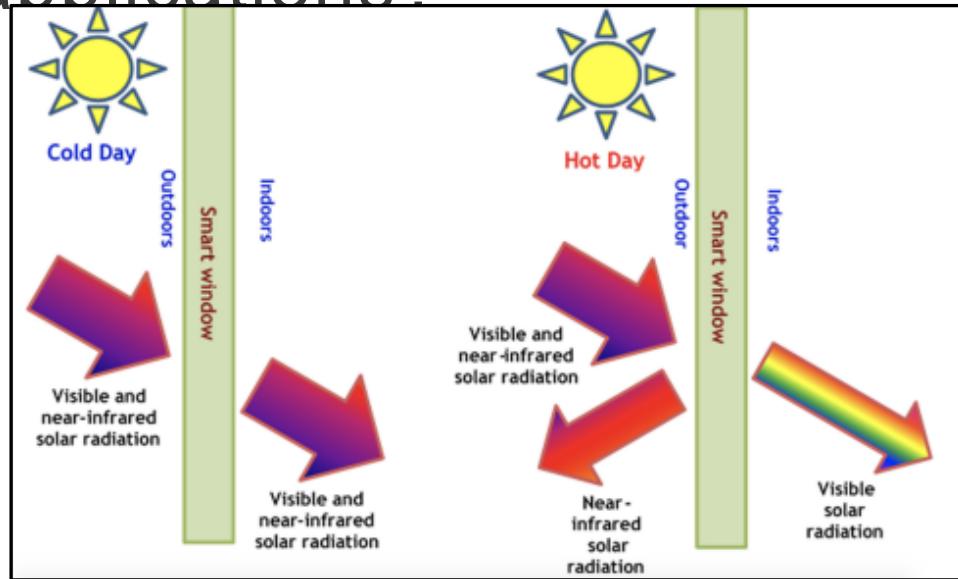
- Genetic algorithm guided PVD protocols suggest alternatives to human-intuition based deposition protocols
- Generative models to generate phase field microstructures show a promising start
- Dimensionality reduction methods show good reconstruction, latent dimension representations vary in trajectory smoothness and linearity



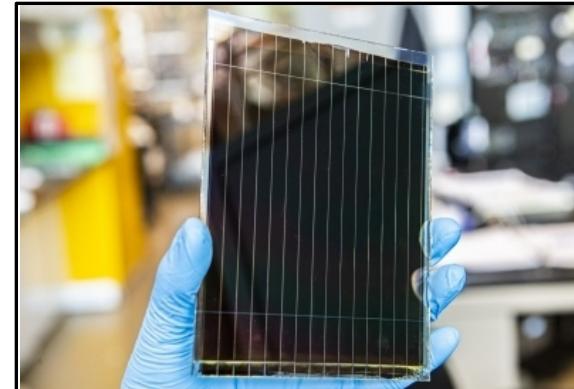
Backup slides

Saaketh Desai, Remi Dingreville
Center for Integrated Nanotechnologies
Sandia National Laboratories

How do we design thin films tailored for specific applications?



Source: nist.gov

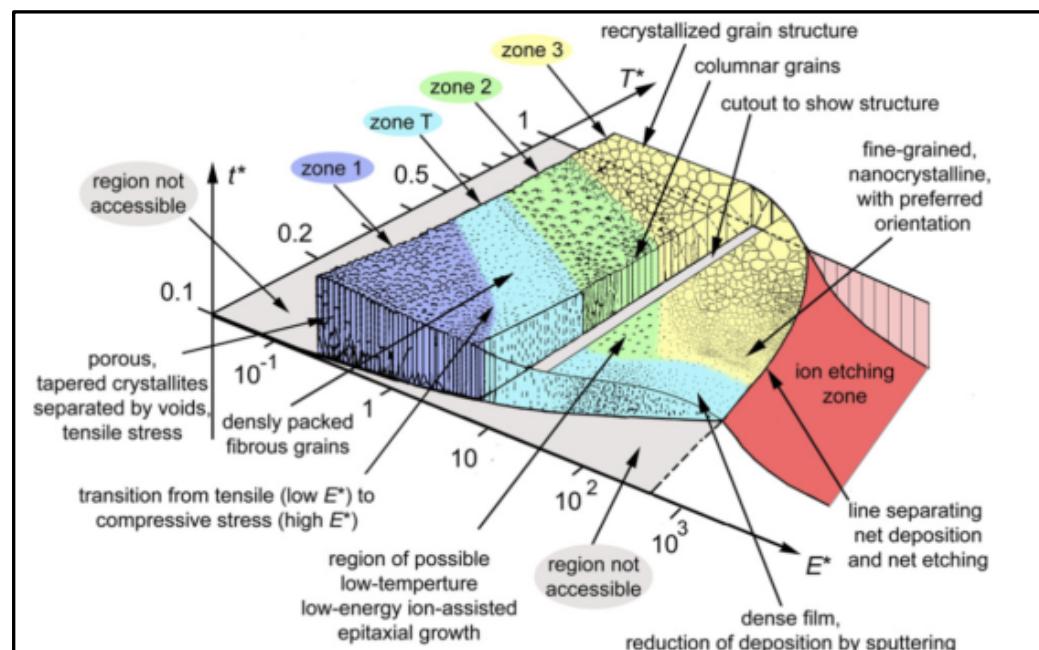


Source: energy.gov

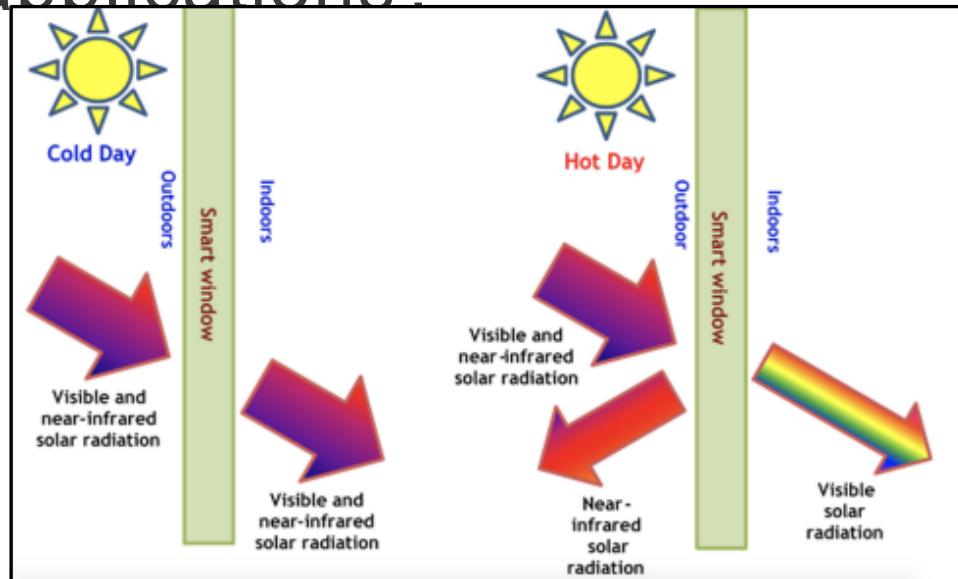
Source: certechinc.com

Designing tailor-made thin films requires an understanding of processing-structure-property linkage

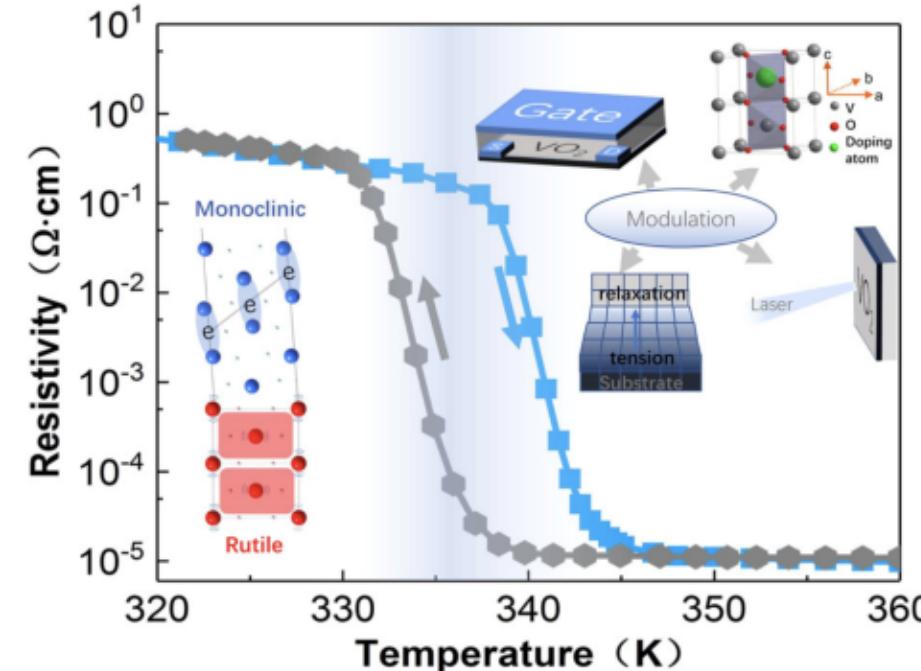
Structure zone diagrams relate processing conditions to microstructure



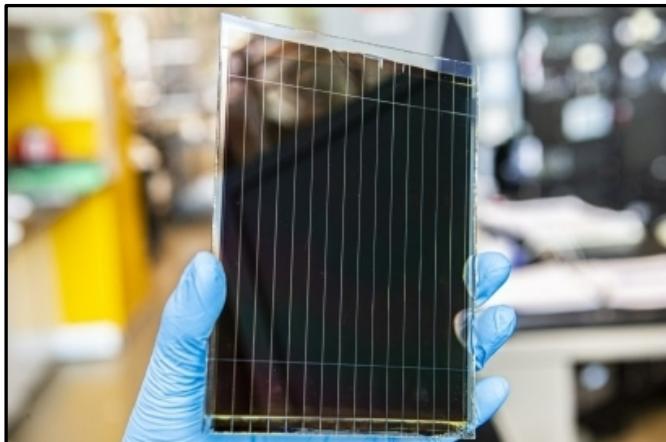
How do we design thin films tailored for specific applications?



Source: nist.gov



Shao et al. *NPG Asia Materials* (2018)

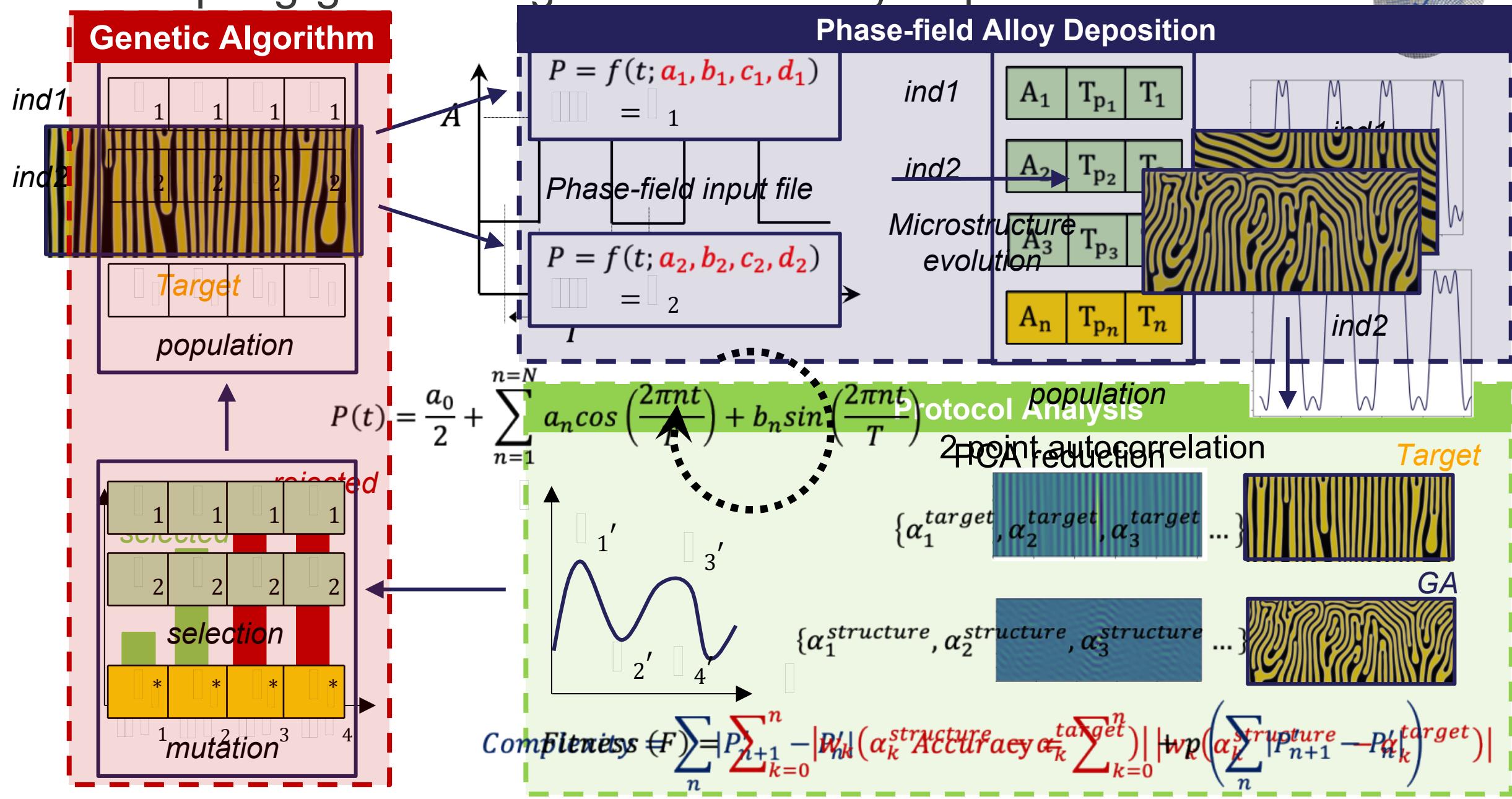


Source: energy.gov

Source: certechinc.com

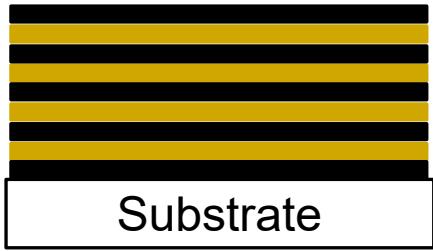
Designing tailor-made thin films requires an understanding of processing-structure-property linkage

Coupling genetic algorithms to alloy deposition



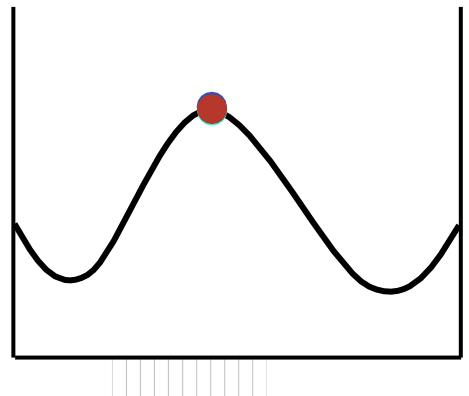
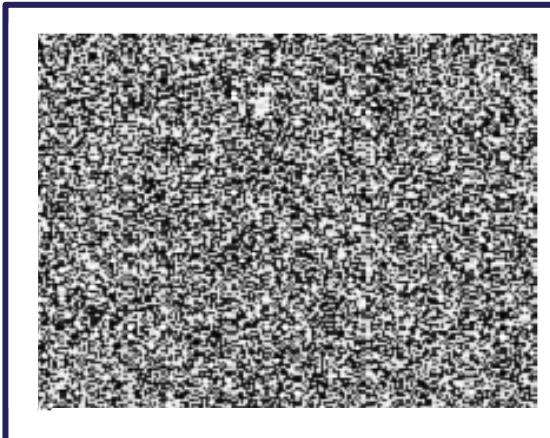
Microstructure formation in metallic alloy thin films

What processing conditions to use to obtain desired film microstructure?



Layer by layer deposition

Self-assembly via spinodal decomposition



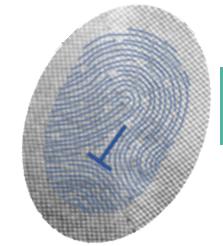
PVD experiments

Phase field simulations

Source: [wikipedia](#)

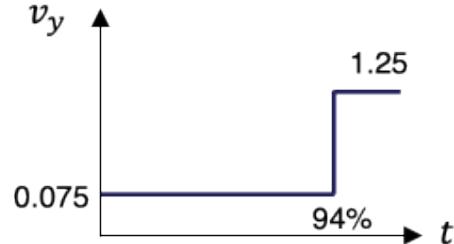
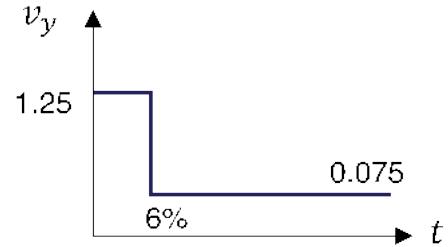
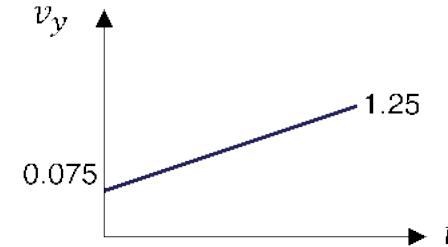
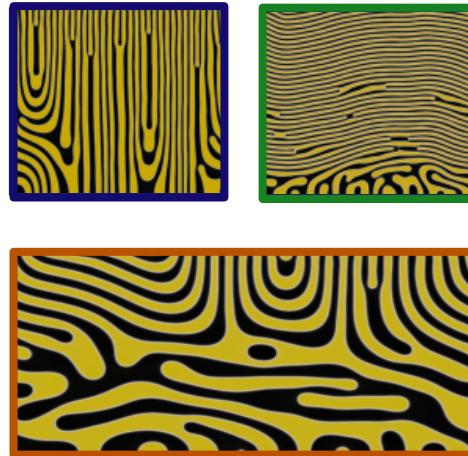
Spinodal decomposition results in spontaneous concentration modulations

How do we design PVD-grown thin film microstructures?

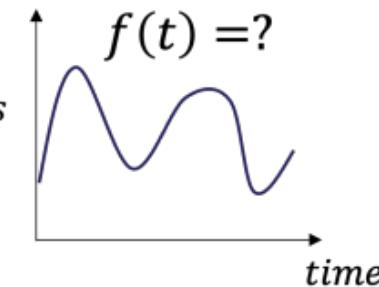


What processing conditions to use to obtain desired film microstructure?

Current SZDs only consider protocols that are constant in time

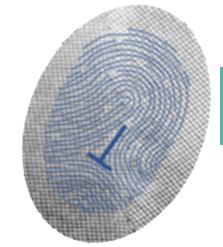


Deposition
parameters



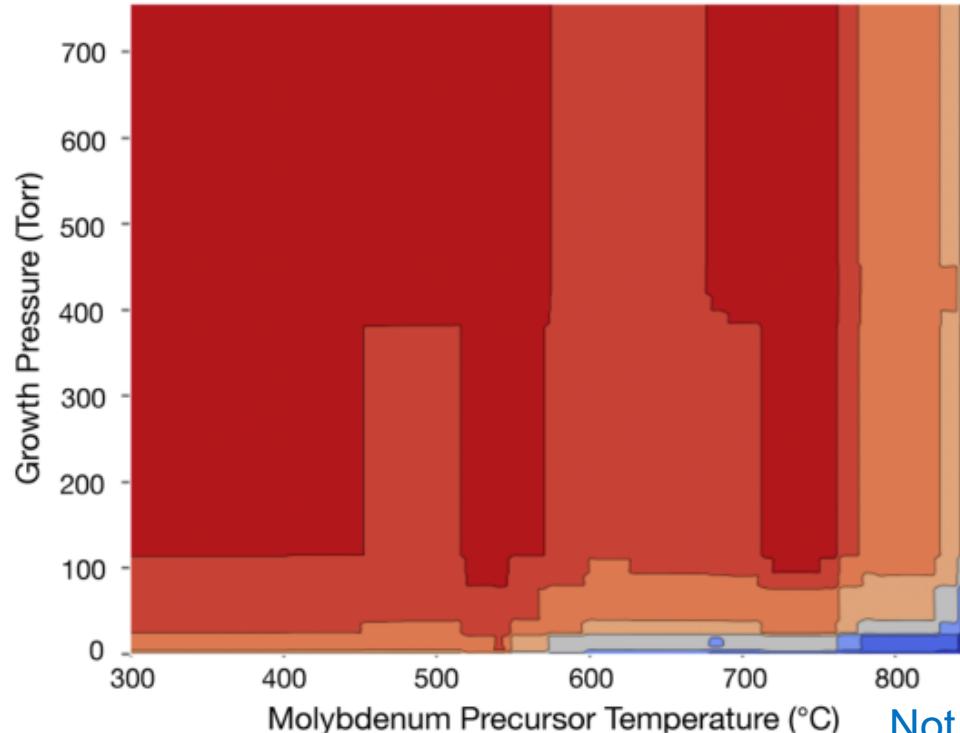
We use a genetic algorithm to discover time-dependent protocols that result in desired microstructure

High dimensional structure zone diagrams



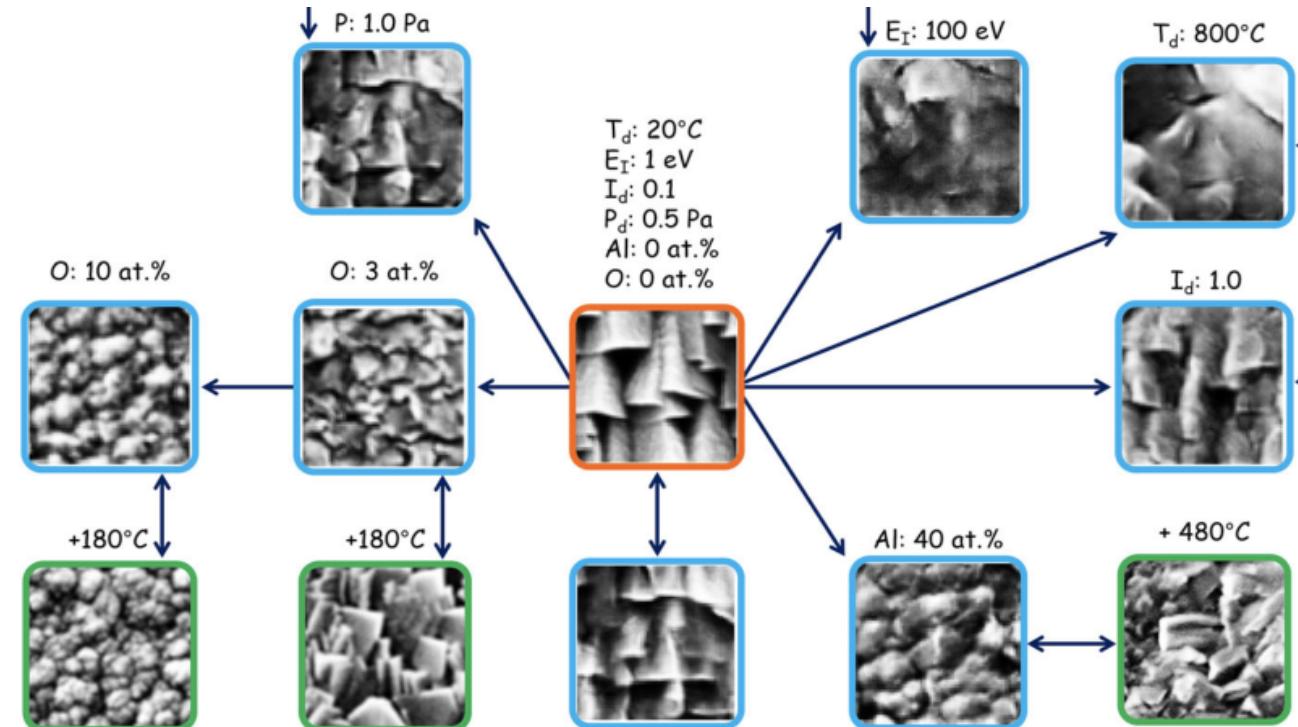
S precursor temperature = 145 °C
 Highest growth temperature = 730 °C
 Growth time = 52 minutes

Monolayer



Not monolayer

Generative Adversarial Network based SZD

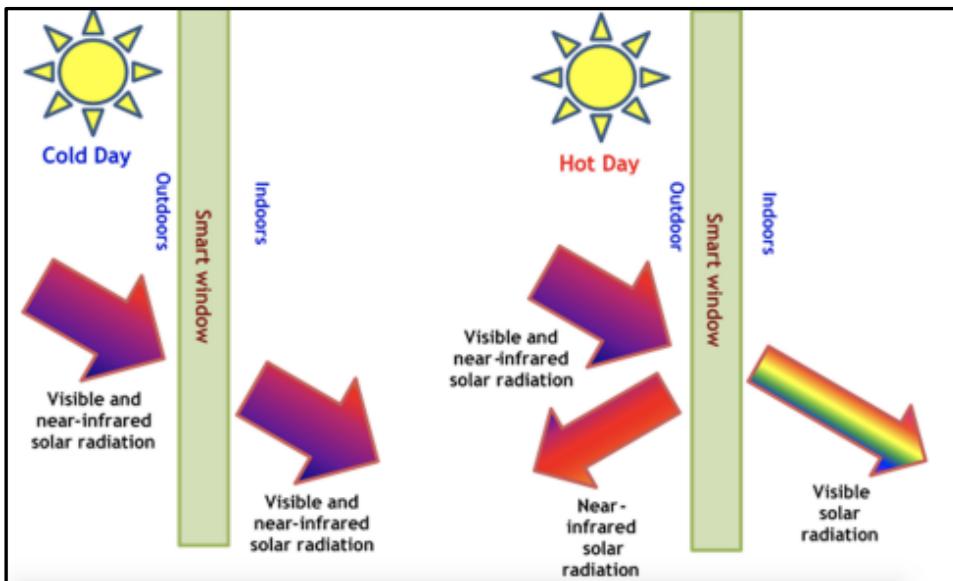


Banko et al. *Communications Materials* (2020)

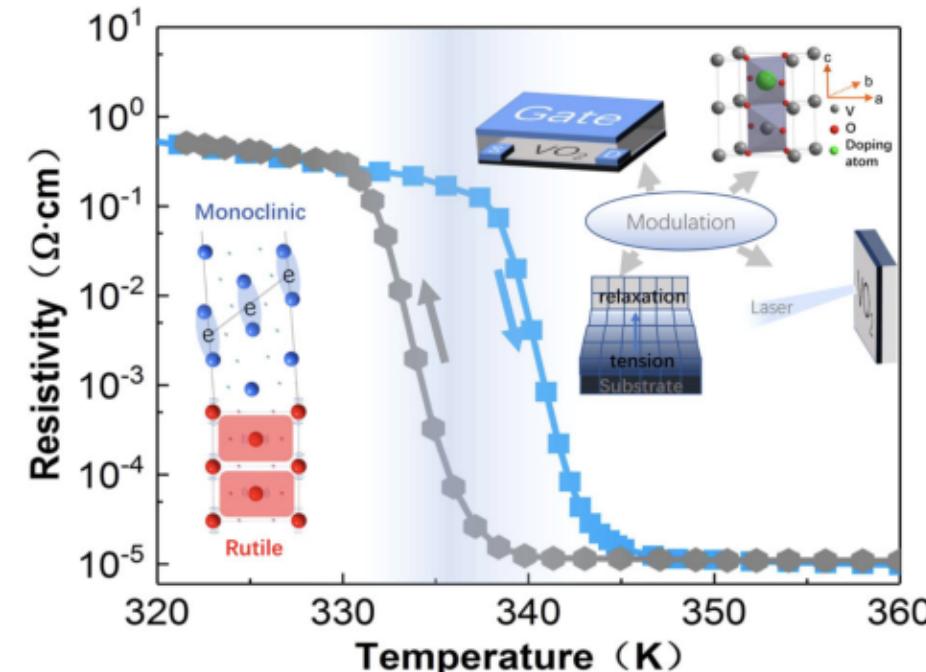
Costine et al. *Journal of Applied Physics* (2020)

ML methods can give high dimensional SZDs

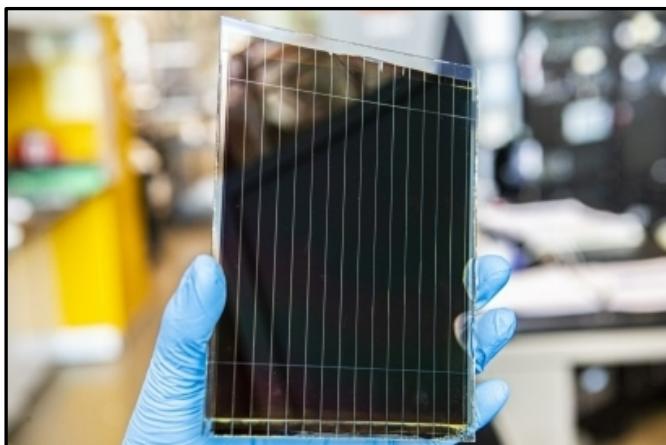
Structure-property-processing relationships in thin films



Source: nist.gov



Shao et al. *NPG Asia Materials* (2018)



Source: energy.gov

Source: renata.com

Thin film structure decides properties

Phase field simulations of alloy deposition

$$F = \int \left\{ f_\phi + \frac{\kappa_\phi}{2} (\nabla \phi)^2 + s(\phi) \left(f_c + \frac{\kappa_c}{2} (\nabla c)^2 \right) \right\} d\Omega \quad \text{Free energy of system}$$

$$\frac{\partial c}{\partial t} = \nabla \cdot \left[\mathbf{M}_c(\phi, c) \nabla \frac{\delta F}{\delta c} \right] \quad \text{Evolution equation}$$

$$\mathbf{M}_c(\phi, c) = \mathbf{M}^{\text{bulk}} + \mathbf{M}^{\text{surf}} \quad \text{Surface mobility dominates microstructure}$$

$$\mathbf{M}^{\text{bulk}} = \frac{1}{4} (2 - \phi) (1 + \phi)^2 [h(c) \mathbf{M}_A^{\text{bulk}} + (1 - h(c)) \mathbf{M}_B^{\text{bulk}}]$$

$$\mathbf{M}^{\text{surf}} = e^{-\left(\frac{\phi}{\sigma^{\text{surf}}}\right)^2} [h(c) \mathbf{M}_A^{\text{surf}} + (1 - h(c)) \mathbf{M}_B^{\text{surf}} - \mathbf{M}^{\text{bulk}}]$$

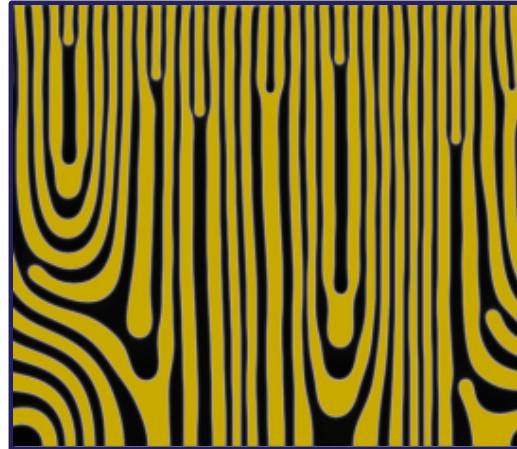
$$\frac{\partial \phi}{\partial t} = \nabla \cdot \left[\mathbf{M}(\phi) \nabla \frac{\delta F}{\delta \phi} \right] + S(n(\phi)) \quad \text{Evolution equation with source term}$$

$$\frac{\partial \rho}{\partial t} = \nabla \cdot [\mathbf{D}_\rho \nabla \rho] - \nabla \cdot [\rho \mathbf{v}] - S(n(\phi)) \quad \text{Vapor evolution equation}$$

Phase field model simulates microstructure evolution for various deposition conditions

Microstructures using constant deposition conditions

Deposition rate = 0.075



Lateral concentration modulation (LCM)

Random concentration modulation (RCM)

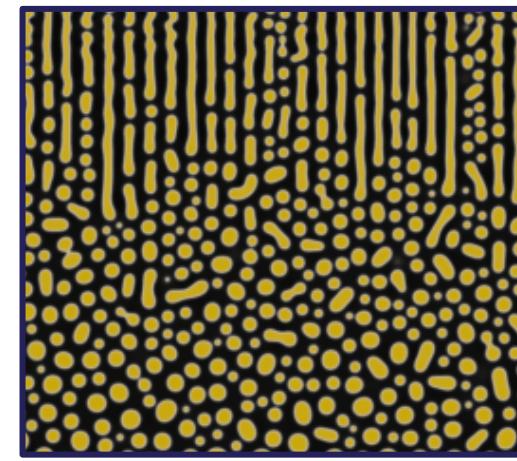
Deposition rate = 1.25

Deposition rate = 0.5

Vertical concentration modulation (VCM)

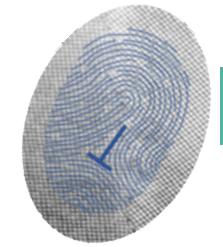
Nanoprecipitate concentration modulation (NPCM)

Deposition rate = 1.25

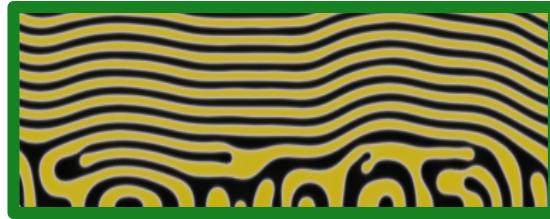


$A_{65}B_{35}$

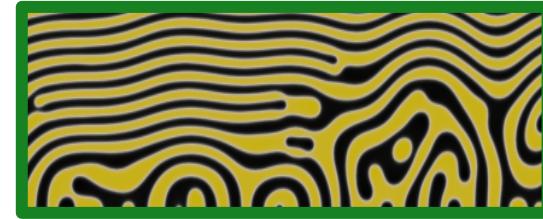
Discovering time-dependent protocols



Vertical concentration modulation (VCM)



Target

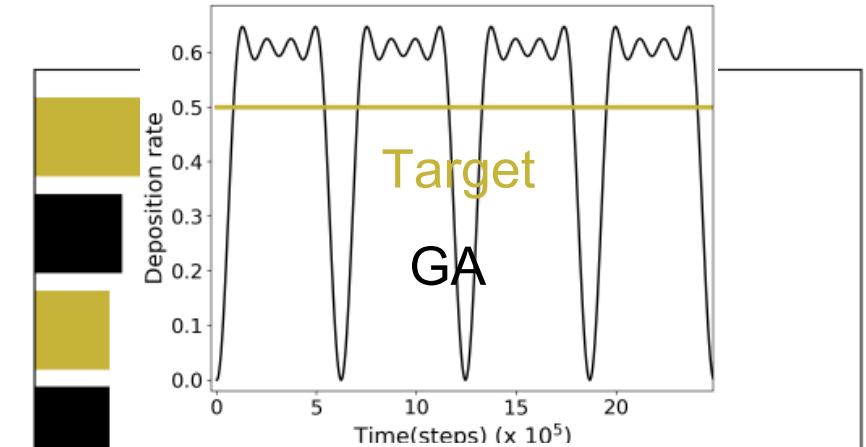
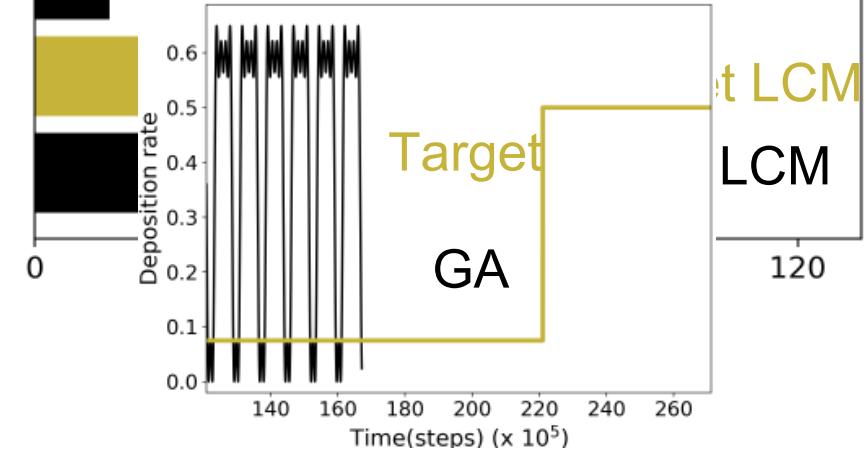


GA

Hierarchical microstructure (HCM)

Target

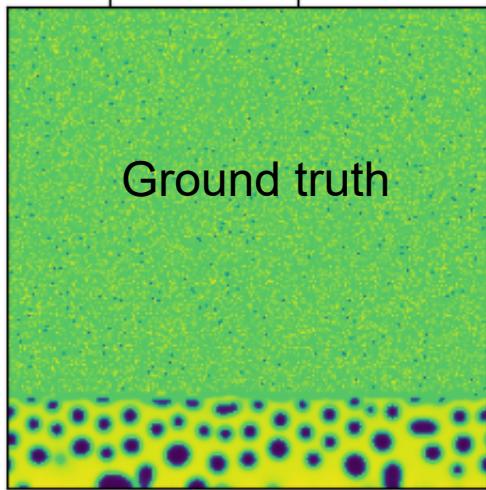
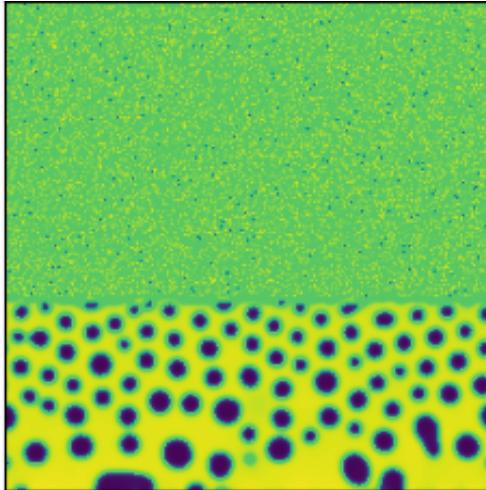
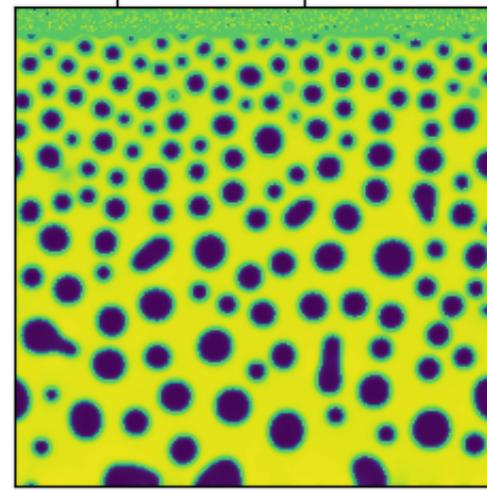
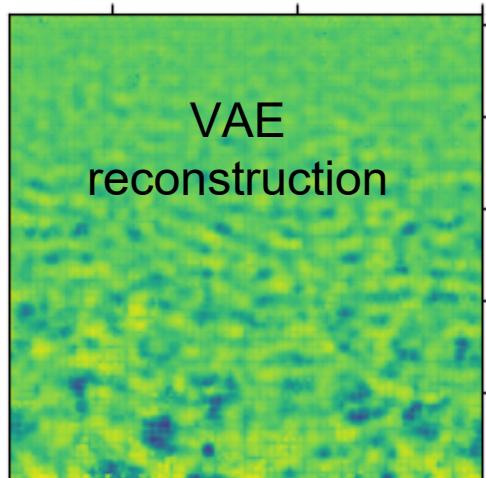
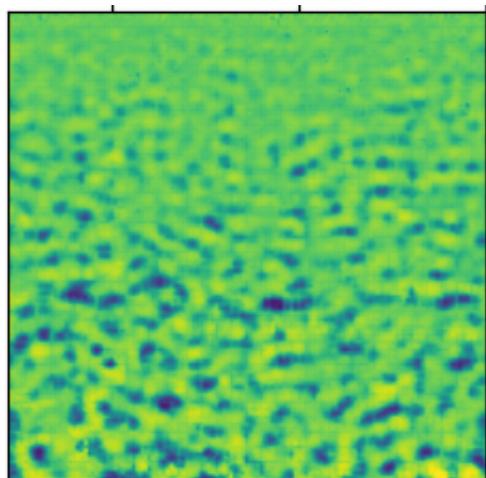
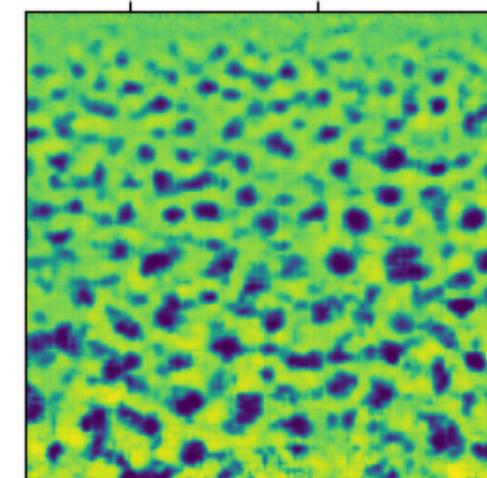
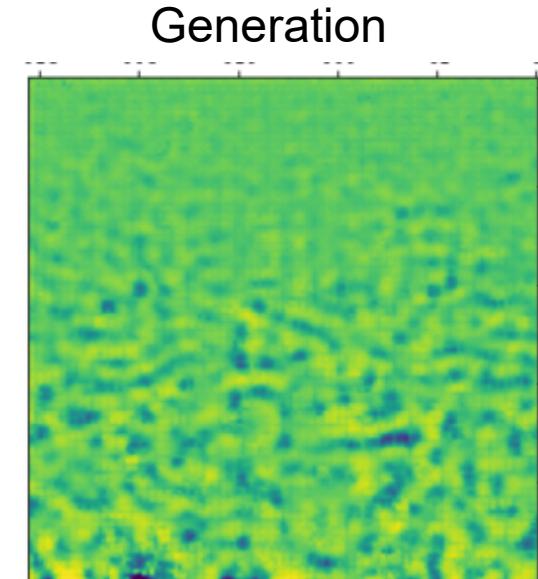
GA



- Genetic algorithm discovers pulse protocol that results in target structure
- Time taken to achieve microstructure similar or lower than target protocol

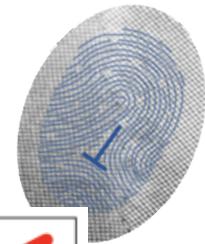
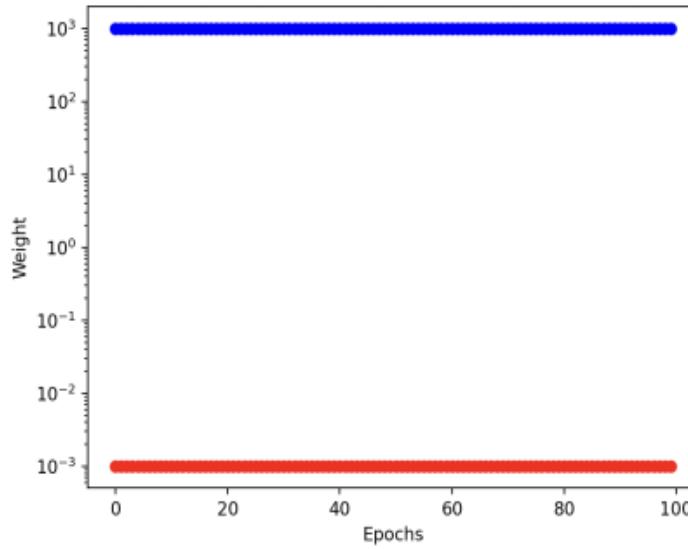
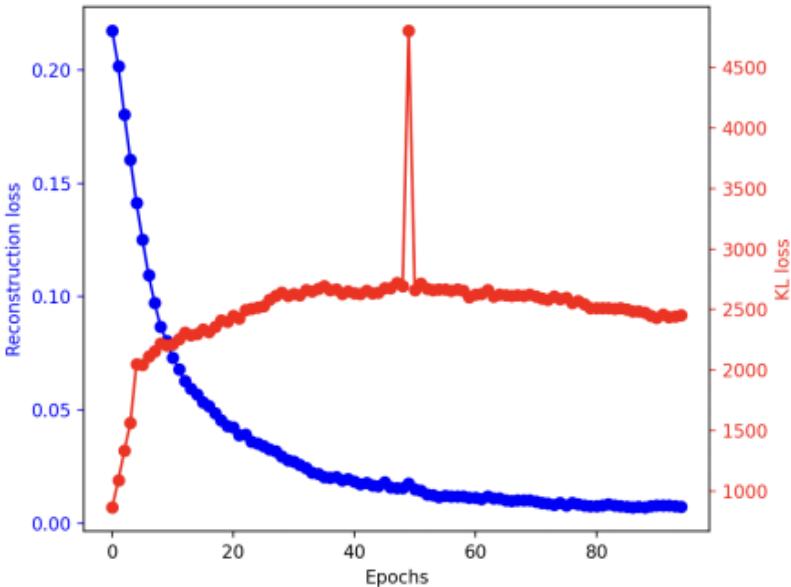
VAE for the PVD dataset

Time evolution

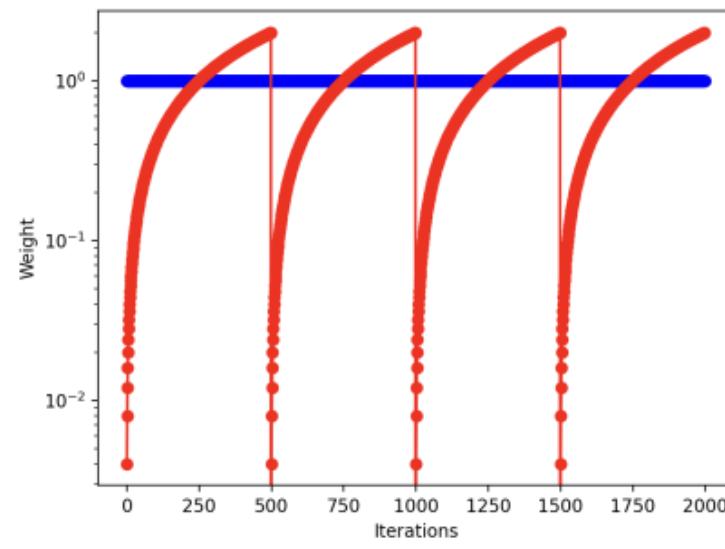
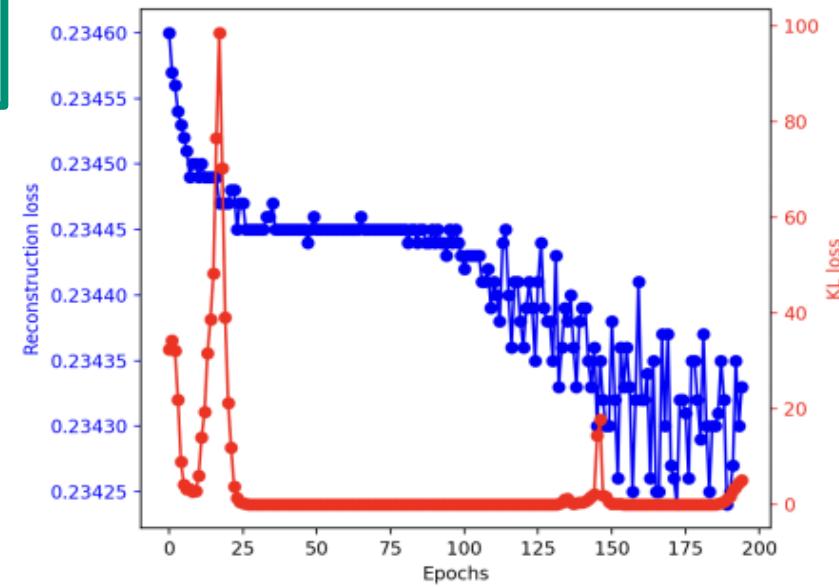


Work needed on both
reconstruction and
generation

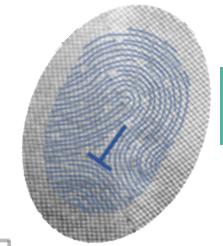
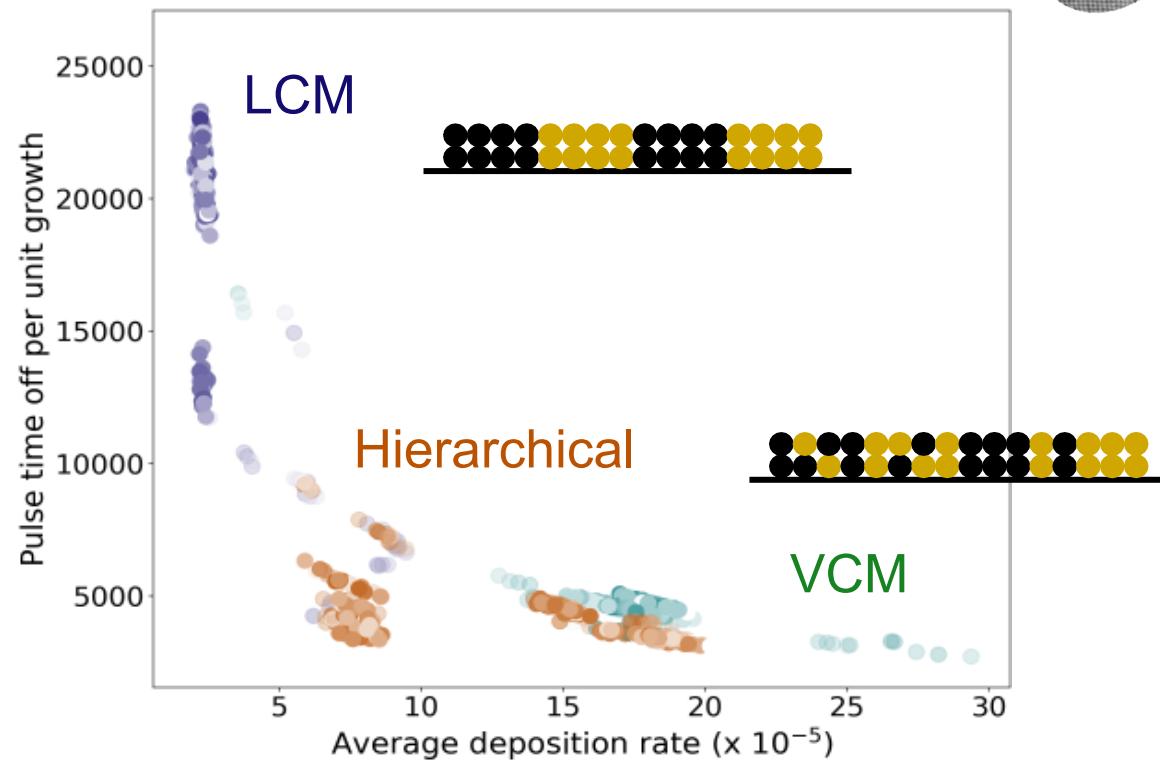
Experiments with the training protocol



Experimenting with various training protocols to reduce loss



Understanding the choices of the genetic algorithm

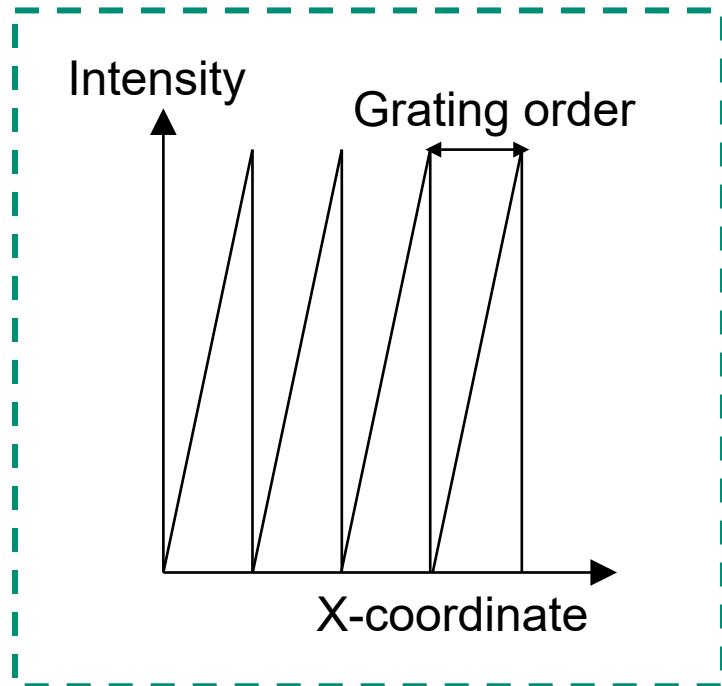


- GA favors low amplitudes to generate LCM structures and high amplitudes for VCM structures
- Range of deposition rates can be used to get hierarchical structures
- Genetic algorithm learns deposition-diffusion trade offs

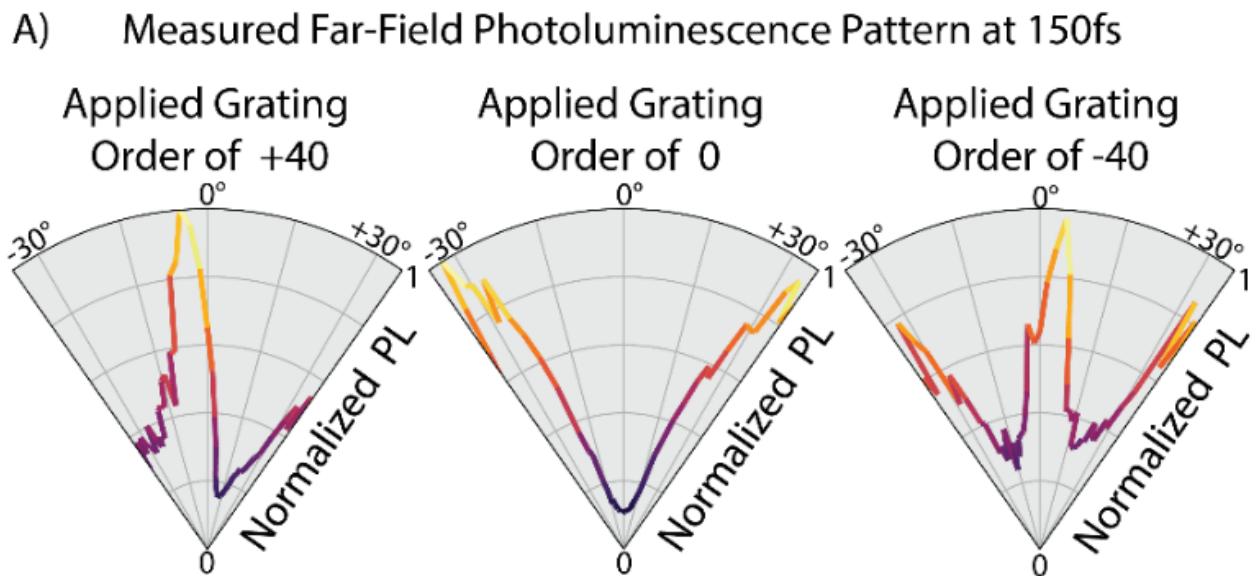
Solving simpler problems first...



Optimize input optical profiles to steer incoherent light



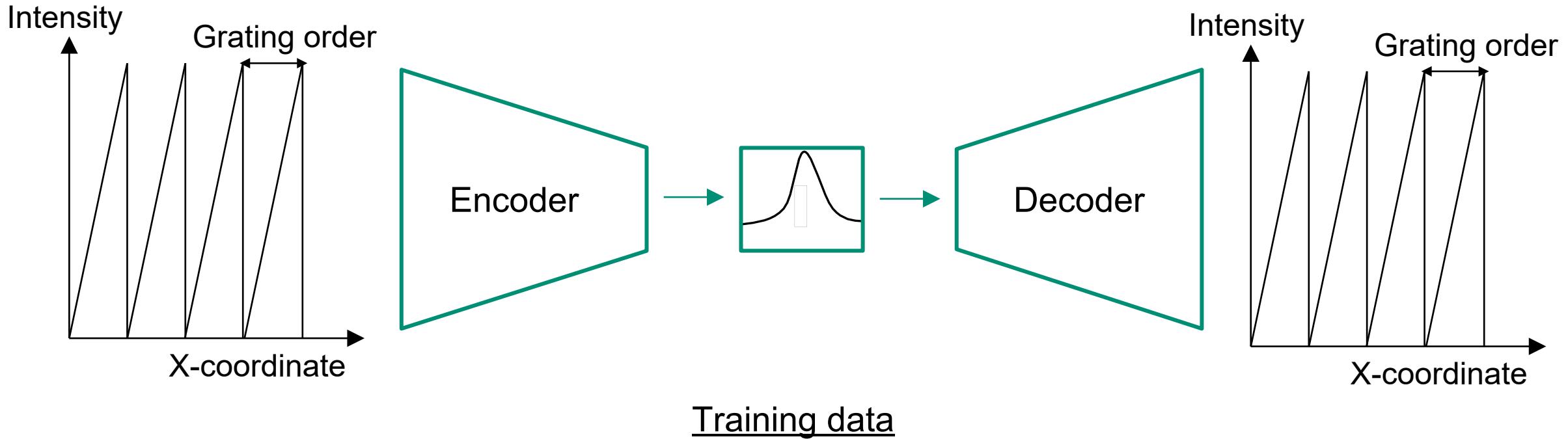
Input optical profile



Output beam steering

Specific input optical profiles result in steering of light

Generating new input profiles



Input: 1D profile – 3840 pixels

Output: 1D profile – 3840 pixels (same as input)

Loss: Reconstruction error (MSE) + KL divergence error (enforce latent space distribution)

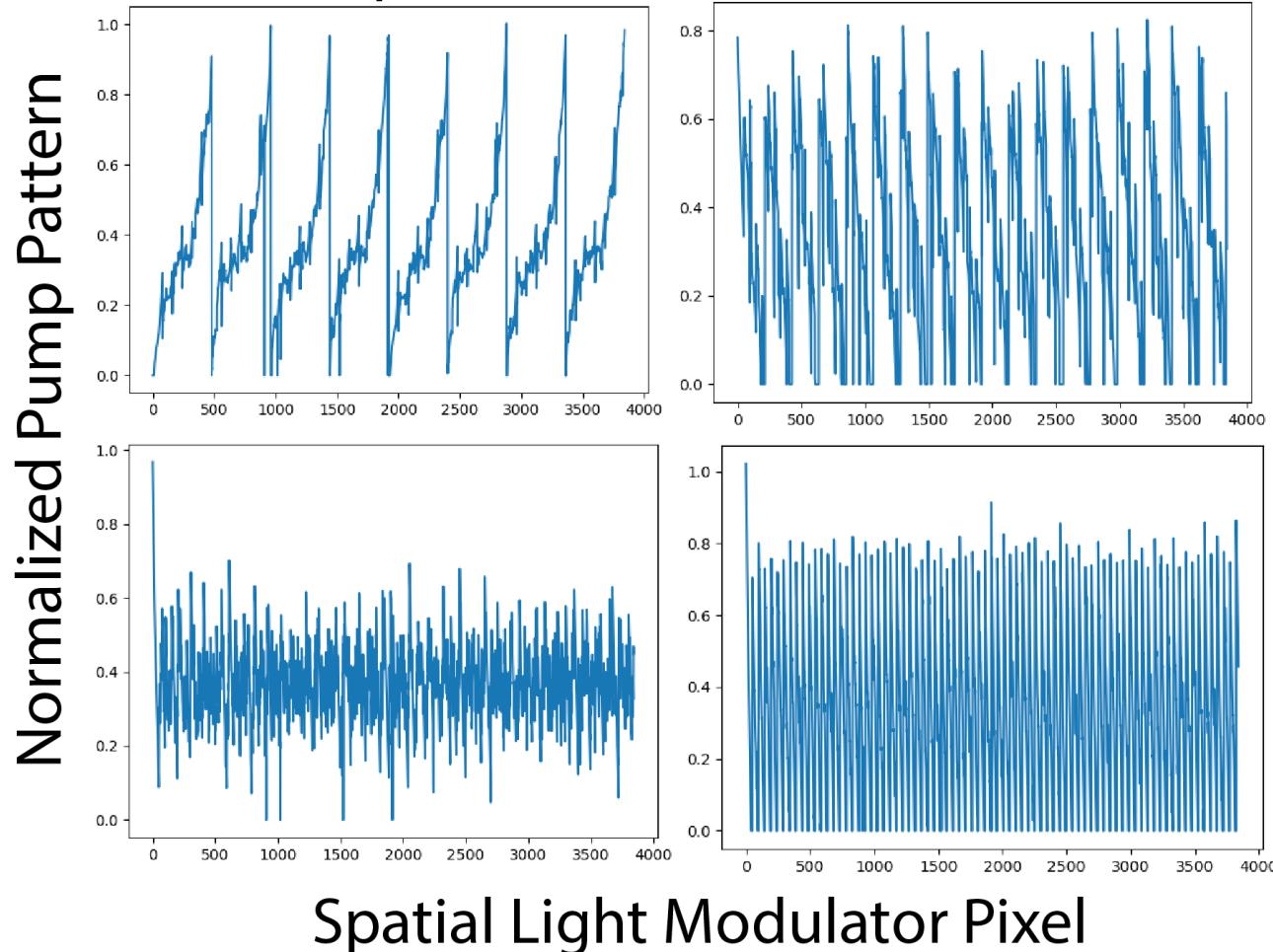
Generation (use)

Input: 'z' sampled from learnt distribution

Output: 1D profile

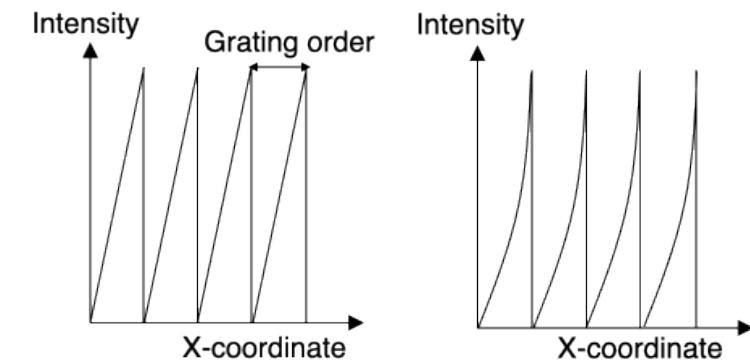
Generating new input profiles

Example VAE Patterns Generated

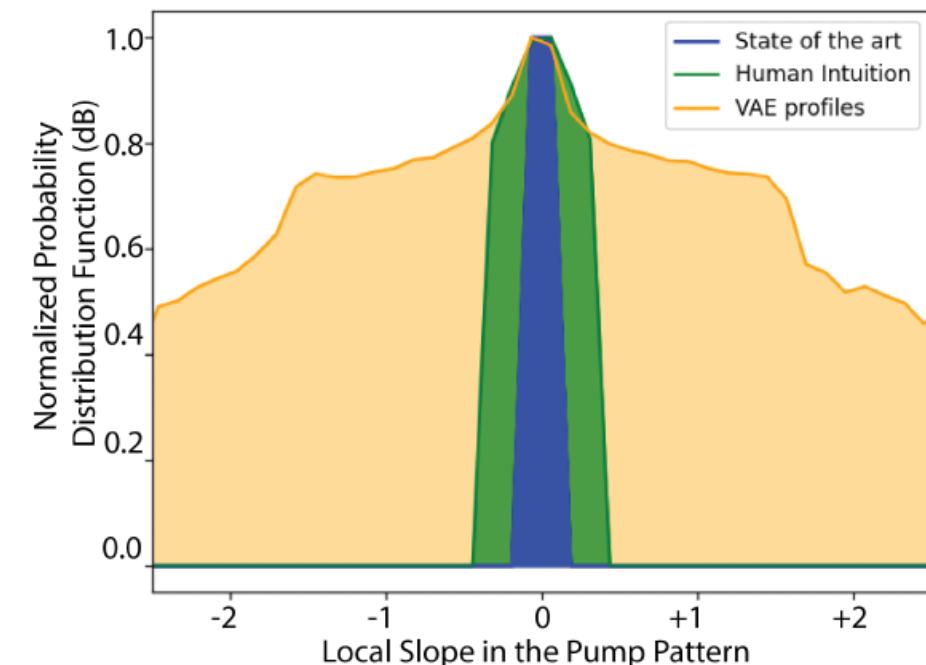


VAE generates a variety of input profiles

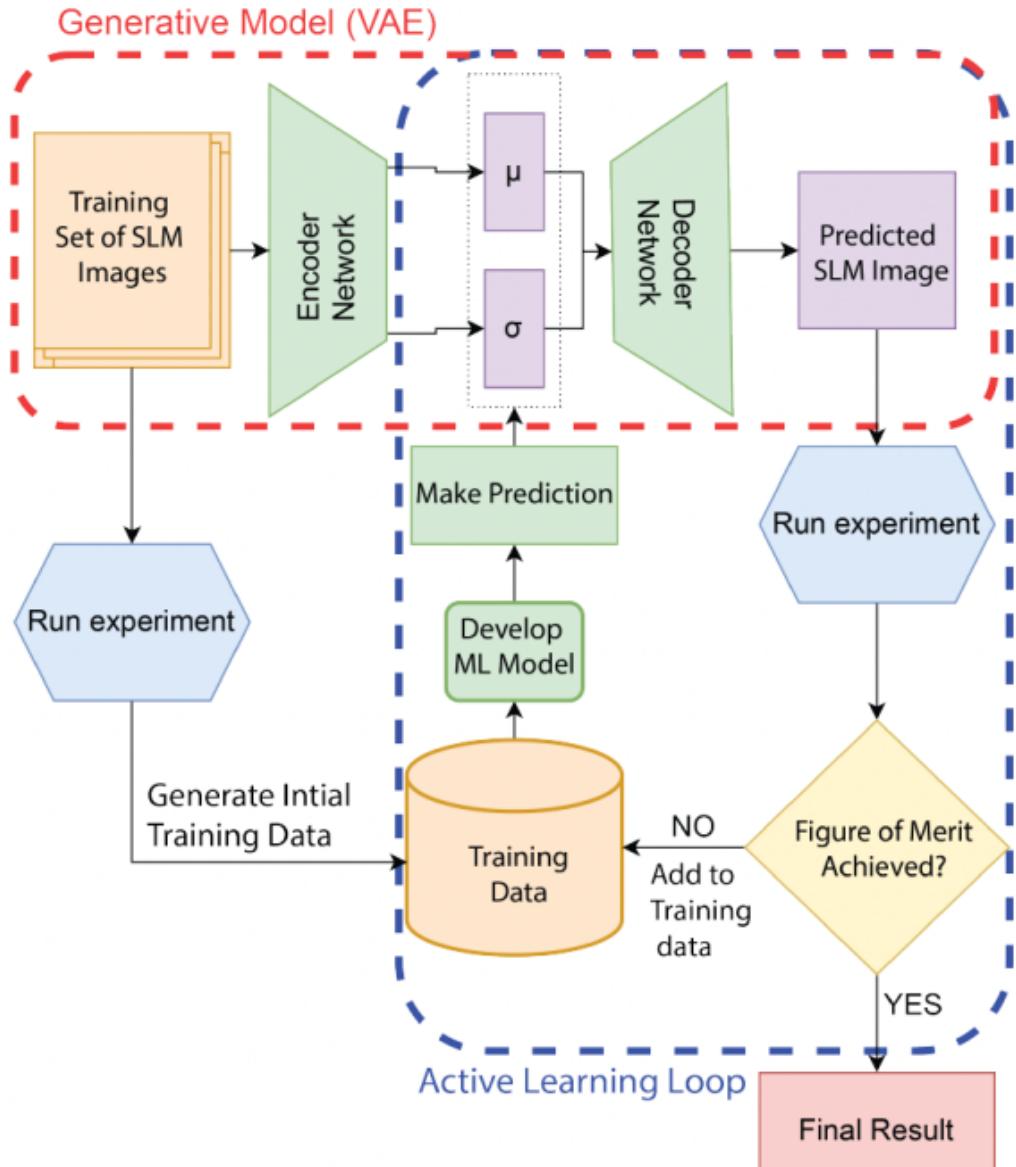
Training set



Generative Capability of the VAE

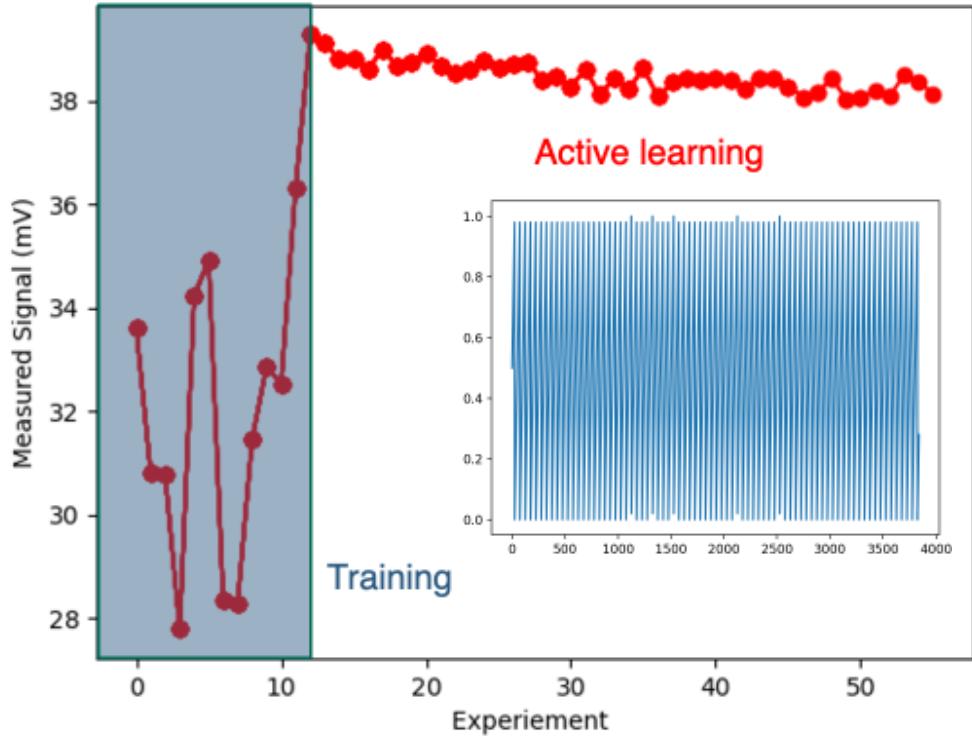


Finding optimal profiles using VAEs and active learning

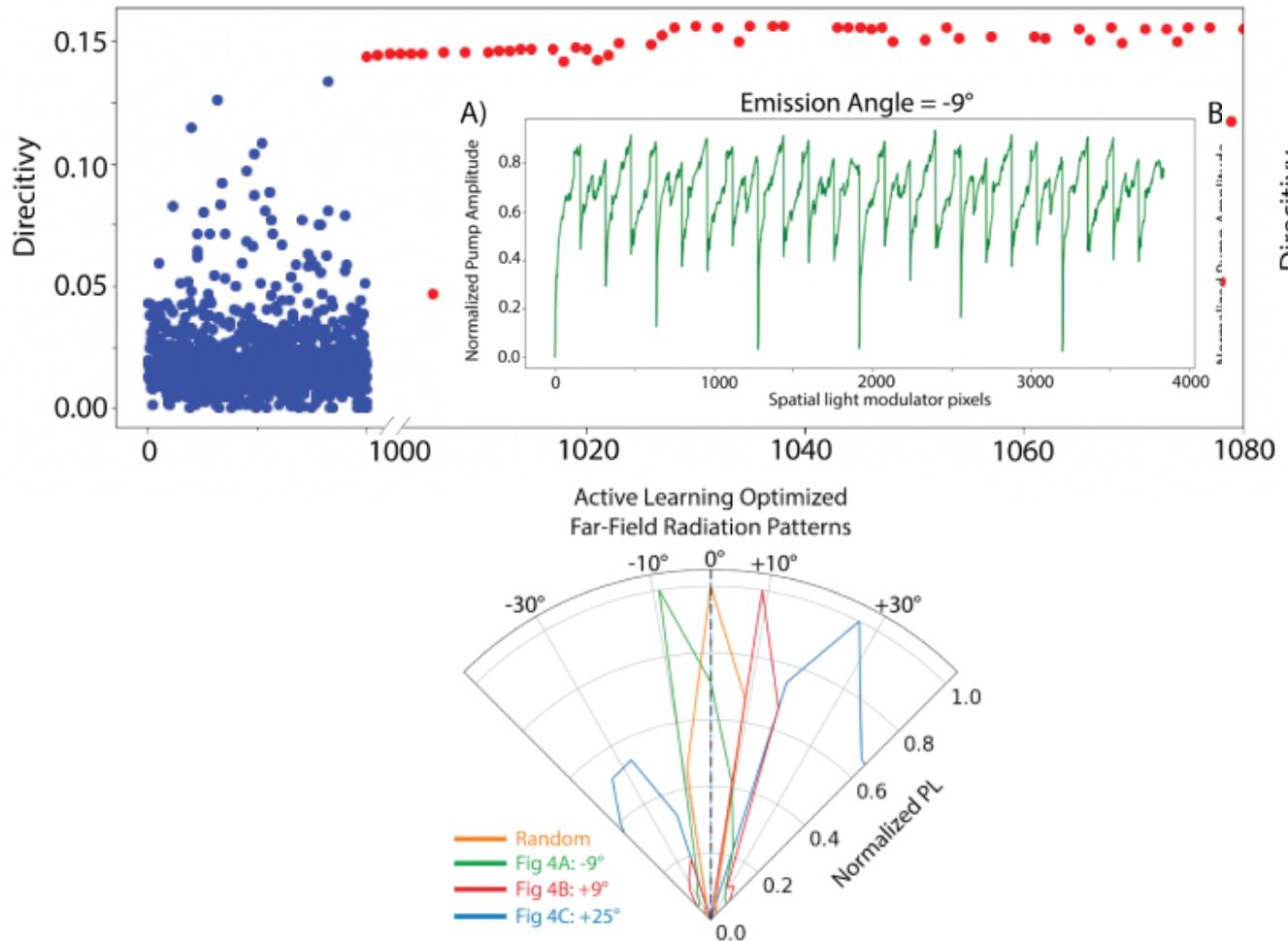


- (1) VAE trained to database of input profiles
- (2) Trained VAE coupled to active learning scheme
- (3) Active learning optimizes latent dimension such that figure of merit is achieved
- (4) Training data and data explored by active learning coupled to an equation learner to learn underlying physics

Finding optimal profiles using VAEs and active learning



Active learning redisCOVERS grating order of 80 to have maximum beam steering



Active learning finds multiple profiles beyond human intuition with varying beam steering angles