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3

316 SS used as cladding material, but undergoes microstructural
changes under neutron irradiation

Ion Type
Fe
Cr
Ni
Mn
Si
Mo
H

2

at%

65.407
18.124
11.430
1.656
1.271
1.208
0.812
0.066
0.028

error
0.054
0.024
0.018
0.007
0.006
0.006
0.005
0.001
0.001

Si
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APT shows uniform
distribution of all
solute elements and

impurity element —
20 nm

distribution. / L. SR ..
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« 300C ’
Pre-Irradiation \ Cr13 at% Mo 4 ay

Uniform elemental
distribution

Post-Irradiation
Ni-Si-Cr precipitates '

1. What affect does this precipitation have on
mechanical properties?
2. Can we mimic this process with ion beams?




41 lon irradiation used to mimic neutron damage

Why utilize ion beams?
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Investigating the nm Scale to Understand the km Scale

1 nm 1 um 1 mm 1m 1 km

In situ lon Irradiation TEM (I*TEM) lon Beam Lab (IBL)




Log dpa

Can we accurately mimic the neutron damage with high dose,
elevated temperature ion damage!
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7| But how does irradiation affect the material properties?
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Small-scale mechanical testing useful for irradiated samples and
8 | visualizing deformation in real-time
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analyzing irradiated
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9 I In situ Mechanical Testing

Qualitative “Bulk” Mechanical Testing Quantitative Mechanical Testing

Minimal control over displacement and no “out-of-box” force Minimal control over displacement and no “out-of-box”

information force information

*  Successful in studies in observing dislocation-GB *  Sub nanometer displacement resolution
interactions/mechanisms *  Quantitative force information with uN resolution

*  Ideally both grains have kinematic BF 2-beam conditions:

hallenging in ST holder . . .
cEnene o Hysitron PI1-95 Holder RSt RIS IR-EIL

Traditional Gatan Heating and Straining Holder

1) Indentation
2) Tension

3) Fatigue

4) Creep

5) Compression
6) Bend




10 I Sandia’s Concurrent In situ lon Irradiation TEM Facility
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316 stainless steel cladding investigated for its nanomechanical
11 1 properties

| RS SR ALY
316 bulk piece is a rolle
rod. EBSD of as-rolled rod
showing heavy texturing b V. -e 3
ZL!rcany- 4 A5 446° 3 S R 0.80 nA ri'.éassls rbar (6.6 mm
Due to the rolling process, ~100 nm
E‘.‘Ll‘lriﬂiﬂ‘ate grains form with low angle grain
boundaries
Zircaloy-4
Nickel Gortar .
e Nanopillars have a range of i
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e SiEsanssses  Contain an interface

v

Single crystal
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Some pillars are single crystal, contain an interface, and/or
12 1 contain precipitates

. FIB-induced
Single crystal, interfaces,
no precipitates
precipitates

Interface, no

Interfaces, precipitates

with
precipitates




As-fabricated pillars have properties that depend on the
13 1 microstructure of the pillar

Interfaces, no precipitates Single Crystal Interface & precipitates

Average Flow Stress: Average Flow Stress: Average Flow Stress:
519 MPa 862 MPa 618 MPa
1400 : ::IZEEZ:: :g g;:i:z::::: :::: 1200: ® Precipitates at Interface
z 500: g 600 I
0-_,. % 0+—r . '
Strain 'Strain ' Strain

Thanks to R.M. Schoell
for assistance



Irradiated pillars — irradiated post fabrication with Au and He
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15 | Irradiated pillars show similar behavior
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16 I Single Crystal and pillars without segregation
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17 | Irradiated pillars show hardening overall, but lack statistics
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In-situ TEM ion irradiation and mechanical testing offers a
18 I nanoscale probe into the effect of irradiation-induced defects

Goal: comparison to neutron
irradiated pillars to examine if
He+Au irradiation can accurately
emulate the effect on the
nanomechanical properties

We observe hardening of the pillars
following irradiation but the original
microstructure shows more impact
on the properties than irradiation

Neutron irradiated 316 pillars were
fabricated, but did not survive

shipping

Also, irradiation-induced defects
are on the same scale as the pillar
itself, size effects matter

Set of pillars
from neutron
irradiated
cladding
C13-2-3-
CLAD26

. Theoretical strength ~ Strength

" Dislocation Less grain determining
source feature/volume ratio Igg:”mr: dominated

approaching single

crystal property 5 Poly_—fe_tature E(C_?;B,

Behavior of irradiated material
Radiation damage results in
very small features

......

» e | Specimen dimension =

sui#..| Single crystal material
. with no other
=z | gtrengthening effects

— - e v w ow = w e
P. Hosemann, Developing Ultra-small Scale Mechanical Testing Methods and
Microstructural Investigation Procedures for Irradiated Materials




Successful examinations of high dose heavy ion bombardment
19 | coupled with in-situ testing to probe neutron-ion surrogacy

High dose Au bombardment coupled
with APT analysis to investigate
microstructure

Can we emulate the neutron
irradiation-induced change in
mechanical properties with ion
irradiation?

In-situ TEM nanopillar compression
of 316 SS with and without dual
beam He+Au ion irradiation
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