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/" Dynamic Experimental Techniques
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Incident Bar Stress

Kolsky Bar (Split Hopkinson Bar)
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/" Dynamic Stress-Strain Response of Elastic-Plastic Foam Materials
z

rd

‘4

Polyurethane Foam (0.24x10° kg/m?) Polystyrene Foam (0.40x1032 kg/m?3) Epoxy Foam (0.12x103 kg/m3)
15 - 20 4.0
= ], DO . 4| =—o—0.05!5
: _.::.Tgﬁ?: 4 1 354~ 55
12 == ifiie i - _ J|—— 133!;
— = = 20505 =i & 2 oaod| T N
g 41008 g ; ﬁm ﬂ&“q peeeee ﬁﬂoﬂ% % || —— 530/s
= —— 1150/s
= = QM‘:- A & % 254 5700/ /
W 5 = W “?D A o 04
o o l:l = .
_E i 4 ;;’F .E 84 m-u E 154
_u:_;l f.r;-" E '::'"E%F . 1T|:}FS IE‘ 1 g el "'rMnfﬂ'.‘? R
o i =) o o 280/s W04 BO000CO0E e O wq:.w“w
i I LR ‘}mg ] l:r.fﬁd"-': ---------------------
u u a 4 460Is oy
14 il o 950/s T
0 T f T T T T - T ﬂr ¥ T T T ¥ T T T ¥ T T 0.0 T T T T T ¥ T T T T T T
0.0 0.1 02 03 04 05 06 0.7 0.00 0.03 0.08 0.08 0.12 0.15 018 0.0 0.1 0.2 0.3 0.4 0.5 0.6 07
Engineering strain Engineering strain Engineering Strain

The stress-strain response depends on density, temperature, stress state, etc.
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Foam Specimen

Unconfined versus Confined

Engineering stress (MPa)

Dynamic Stress-Strain Response of Elastic-Brittle Foam Materials
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Dynamic Stress-Strain Response of Hyperelastic Foam Materials

,/ Liquid Crystal Elastomer (LCE) Lattice Foam

It has been very challenging to dynamically characterize such
soft lattice foam materials at high strain rates with a Kolsky
compression bar, due to relatively large (long) specimen size
and low wave speed.

Kolsky compression bar is also not able to be used to
characterize the unloading stress-strain response for such soft
materials, which is critical for energy dissipation calculation.

Energy dissipation:

A= Eloading - Eunloading
= cdg — j ode
loading unloading
Energy dissipation ratio:
A IM . odeg
5 _ _ 1_ unloading

Eloading .[ loading O-dg ‘



Bench-top Intermediate-Strain-Rate Test Apparatus

Rexroth® high speed electromechanical
actuator

o Maximum impact velocity: ~1.9 m/s
o Maximum travel distance: 6" (~150

mm)
o Maximum acceleration: ~400 m/s?
Rexroth I o Load capacity: 3000 Ibs (~13300 N)
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For a 10 mm (diameter) by 5 mm
(thickness) specimen,

Adapting Rod

e Maximum stress: ~1/70 MPa
e« Maximum strain rate: ~380 s
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Loading-Unloading Stress-Strain Response at Intermediate Rates
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P / Shock Mitigation Analyses with a Kolsky Compression Bar (Time Domain)
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/ Shock Mitigation Analyses with a Kolsky Compression Bar (Frequency

’ Domain)

Incident Bar Specimen Transmitted Bar Accelerometer
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Energy dissipation ratio
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Frequency-dependent Energy Dissipation of Elastic-Plastic Foams
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Silicone foam !

Energy Dissipation Characteristic of Confined Silicone Foam
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P Summary

Goal: maximize shock mitigation, optimize material and structural design

o Material properties need to be fully characterized
o At different strain rates
o At different temperatures
o At different stress states

o Direct energy absorption and dissipation calculation from loading-unloading stress-
strain curves

o Dependent on strain, strain rate, temperature, stress state, etc.
o Structural response in terms of shock mitigation needs to be fully characterized
o Impact crush response
o Impact energy dissipation
o In time domain
o In frequency domain




