
Exceptional service in the national interest

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and
Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S.

Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Linear Solvers and
Preconditioners

Graham Harper, Jennifer Loe

Center for Computing Research

Sandia National Laboratories

EuroTUG 2022

14/08/22

SAND2022-12312CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Linear Solver and Preconditioning Packages in Trilinos

2

• Belos – Iterative solvers
• Ifpack2/ShyLU – Factorization-based and domain decomposition preconditioners
• Amesos2 – Direct solvers interface
• MueLu - Multigrid

Belos: Iterative and Krylov solvers + Preconditioning

3

1) Belos Basics:
1) How to choose the best solver for your needs.
2) Common solver parameters

2) New(ish) Belos Capabilities:
1) Communication-Avoiding Tpetra solvers
2) Upcoming Mixed precision GMRES

3) Factorization-Based Preconditioners
1) Overview of Capabilities
2) Recent performance improvements

Choosing a Belos solver for Ax=b: (One right-hand side.)

4

Is my matrix
square and

nonsingular?

No Use
LSQR.

Is my matrix
symmetric?

Yes

Is my matrix
positive definite?

(All positive
eigenvalues)

Yes

Yes Use
CG.

No Use
MinRes.

No
Use

GMRES,
BiCGStab,
or TFQMR.

(*Sometimes CG still works for indefinite matrices.)

But how to choose? See next slide.

Costs for kth iteration:

(Table adapted from: A Comparison of Preconditioned
Krylov Subspace Methods for Large-Scale Nonsymmetric
Linear Systems. Ghai, Lu, Jiao.)

Comparing Belos Solvers for Non-Symmetric Linear Systems

5

SpMV axpy
Inner

Product
Stored
vectors

GMRES 1 k+1 k+1 k+5
TFQMR 2 10 4 8
BiCGStab 2 6 4 10

GMRES is tried and true, with
theoretical convergence guarantees
minimizing | 𝑏 − 𝐴𝑥 |!, but its
convergence can be slowed by
restarting.
TFQMR and BiCGStab can be much
cheaper than GMRES when GMRES
needs many iterations. However, they
may have more erratic convergence.

Alternative for non-symmetric systems that need many iterations and
restarts in GMRES: Use GCRO-DR with large (25-50) “Num Recycled Blocks.”
This option will retain important eigenvector information from the Krylov
subspace at the restart to improve convergence.

What about multiple right-hand sides (RHS)?

6

Block vs PseudoBlock methods:
• Both can solve for a single RHS or multiple. (Recommend PseudoBlock for a single RHS.)
• Block methods use the information from ALL right-hand sides mathematically to find the

best solution for each right-hand side. This can sometimes give faster convergence and/or
better solutions, but it comes at an extra computational cost.

• PseudoBlock methods are mathematically equivalent to solving for each right-hand side
individually, but they provide improved performance by applying certain mathematical
operations to all right-hand sides concurrently.

• Additionally, recycling methods can be helpful for a problem with a sequence of right-
hand sides; they use information from the previous RHS to help with the next RHS.

Block Methods PseudoBlock Methods Single RHS
Only Methods

Recycling Methods (1 RHS at a
time; good for sequences)

BlockCG PseudoBlockCG MinRes RCG (Recycling CG)
BlockGMRES PseudoBlockGMRES TFQMR GCRODR (GMRES with recycling)
BlockGCRODR PseudoBlockTFQMR LSQR

Translating Common Belos Solver Parameters:

7

• Block Size: (Typically) number of right-hand sides in linear system.
• Maximum Iterations: Maximum number of solver iterations.
• Orthogonalization: ICGS[2] (2 steps of blocked Classical Gram-Schmidt), IMGS[1] (Modified

Gram-Schmidt), DGKS (Gram-Schmidt using tolerance to determine need for re-
orthogonalization). [Or TSQR (communication-avoiding Tall-Skinny QR) if enabled.]

• Convergence Tolerance: Residual norm tolerance for ||𝑏 − 𝐴𝑥||!.
• Num Blocks: Restart length for GMRES.

Can I use a variable preconditioner?

8

• Yes, use Flexible GMRES. (FGMRES)
• Possible use cases:

• Adaptive preconditioner that changes at each Krylov iteration.
• Low precision (e.g. FP32 or FP16) preconditioner.
• Solver to precondition another solver. (Yes, you can use GMRES to precondition FGMRES!)

• Implemented as a parameter for the BlockGMRES solver: (not available for PseudoBlock)
belosList.set("Flexible Gmres", true);

*Note: There is no reason to turn on the “Flexible” GMRES option if you are using a constant
preconditioner! It will only increase costs.

What about matrix-free operators and preconditioners?

9

• Belos fully supports matrix-free operators and preconditioners!
• Simply implement Belos::OperatorTraits for your operator and selected multivector type.
• Polynomial preconditioning (based upon GMRES polynomial) available for general

nonsymmetric and/or matrix-free operators. See GmresPolySolMgr.

https://docs.trilinos.org/dev/packages/belos/doc/html/classBelos_1_1OperatorTraits.html

https://docs.trilinos.org/dev/packages/belos/doc/html/classBelos_1_1GmresPolySolMgr.html
https://docs.trilinos.org/dev/packages/belos/doc/html/classBelos_1_1OperatorTraits.html

Belos: Communication-Avoiding and Pipelined Solvers

10

• A communication-avoiding solver has modifications to the original algorithm to reduce
MPI communication (sends & receives) and/or overlap it with other operations
(pipelining). Communication avoiding algorithms may also avoid local memory access (e.g.,
replacing BLAS2 with BLAS3), so the orthogonalization can run faster with one MPI rank.

• TSQR – Orthogonalization option (for GMRES and GCRO-DR) that is communication-
avoiding. (Available for Epetra and Tpetra. Requires extra CMake options to enable.)

• Single-Reduce CG option available in Belos for both BlockCG and PseudoBlockCG when
solving one RHS only.

• New Tpetra-only Belos solvers:
• Located in Trilinos/packages/belos/tpetra/src/solvers.
• Main author: Ichi Yamazaki (iyamaza@sandia.gov)
• Enabled in Belos::SolverFactory. (Soon to be available through Stratimikos!)

• Available communication-avoiding Tpetra-only solvers (all take only one RHS):
• Pipelined CG
• Single-Reduce CG
• Pipelined GMRES
• S-Step GMRES [includes impl of CholQR]
• Single-Reduce GMRES (a.k.a. “one-synch”)

mailto:iyamaza@sandia.gov

Coming Soon: GMRES-IR (Mixed Precision GMRES)

11

• GMRES-IR = GMRES with iterative refinement.
Run GMRES + preconditioning in FP32, refine in
FP64 to get double-precision accuracy.

• Convergence typically follows double precision
GMRES!

0 2000 4000 6000 8000 10000 12000 14000

Number of Iterations

10°11

10°10

10°9

10°8

10°7

10°6

10°5

10°4

10°3

10°2

10°1

100

||R
||

Linear Solver Convergence BentPipe2D1500

Double Precision
Single Precision
GMRES IR

Double IR
Solver

0

10

20

30

40

50

60

Ti
m

e
[s

]

Solver Timings BentPipe2D1500

GEMV (Trans)
Norm
Gemv (No Trans)
A*x
Other

• 32% speedup for this example over all-double
precision.

• Requires storing two copies of A (or
implementing two operators).

Belos/Krylov Solvers Resources and References:

12

• Amesos2 and Belos: Direct and iterative solvers for sparse linear systems [link]
Eric Bavier, Mark Hoemmen, Sivasankaran Rajamanickam, Heidi Thornquist

• Belos Doxygen: https://docs.trilinos.org/dev/packages/belos/doc/html/index.html
• A Comparison of Preconditioned Krylov Subspace Methods for Large-Scale Nonsymmetric

Linear Systems [link]. Aditi Ghai, Cao Lu and Xiangmin Jiao
• Examples in Trilinos/packages/belos/epetra/tests/*

and in Trilinos/packages/belos/tpetra/tests/*

https://www.semanticscholar.org/paper/Amesos2-and-Belos%3A-Direct-and-iterative-solvers-for-Bavier-Hoemmen/3bea76afd23eb716e90f4669743f688ee963c8b4
https://docs.trilinos.org/dev/packages/belos/doc/html/index.html
https://onlinelibrary.wiley.com/doi/am-pdf/10.1002/nla.2215

MultigridDomain Decomposition

Overview of Preconditioning in Trilinos:

13

2-level Domain
Decomposition

(ShyLU-DD + FROSCH)

1-Level Domain
Decomposition

(Ifpack2)

Multigrid
(MueLu)

On-node subdomain solver/ smoother options
(Ifpack2 has interfaces to all)

Jacobi, GS, ILU,
Chebyshev

(native to Ifpack2)

Interfaces to SuperLU,
MUMPS, Pardiso direct

linear solvers (Amesos2)

Threaded Cholesky (Tacho),
FastILU, Sparse LU (Basker)

(All in ShyLU-Node)

Incomplete LU factorization (ILU) Preconditioning Choices for Thermal
Fluids Application:

Least Robust Most Robust

Parallelism

Factorization
(ILU)

Slower on GPUFaster on GPU

Robustness

Triangular
Solve (TRSV)

Fast ILU RILU(k) Serial RILU(k)
Approximate iterative
factorization

Extracts some parallelism
with level scheduling

Non-parallel

Fast TRSV KKSpTRSV Serial TRSV
Polynomial approximation
to triangular solve

Extracts some parallelism
with level scheduling

Non-parallel

*FastILU + FastTRSV is faster on GPU only if it converges in few enough sweeps.
** KKSpTRSV and Serial TRSV are equally robust, but they may have different numerical behavior.
This is also true for RUIL(k) and Serial RILU(k).

ATS2 (4 V100 GPUs/node) vs
CTS1 (Intel Broadwell 36 cores/node):
1.4x Speedup over fastest CTS1 run.

Historical Speedup on 4 nodes x 4 V100 GPUs:

12.5x Speedup with Metis reordering!

RILU(3) + KKSpTRSV (Standard ILU Option)

Improvement Highlights:
§Move some operations from compute (called every solve) to initialize (called with new matrix
pattern). (V. Dang)
§Removed extra device to host copies. (V. Dang, J. Hu)
§Performance improvements to Kokkos Kernels RILU(k) numeric (V. Dang)
§Performance improvements to Ifpack2 RILU(k), avoiding extra copies. (B. Kelley, V. Dang, J. Hu)
§Update Ifpack2 interface to allow Metis reordering (I. Yamazaki)

Trilinos 13.2+
(RCM)

Trilinos Dev
(Metis) Speedup

Compute 10.36 0.98 10.6
Solve 15.71 1.11 14.2
Total 26.07 2.09 12.5

ATS2 Best CTS1 Best Speedup
Compute 0.98 0.17 0.2
Solve 1.11 2.75 2.5
Total 2.09 2.92 1.4

Left: RILU(3)+KKSpTRSV timings from milestone start.
Right: Timings at milestone end. Both on ATS2.

Left: RILU(3)+KKSpTRSV on ATS2 with Trilinos Dev and Metis reordering.
Right: RILU(3)+KKSpTRSV on CTS1 with Trilinos Dev and RCM reordering.

FastILU + FastSpTRSV

ATS2 (4 V100 GPUs/node) vs
CTS1 (Intel Broadwell 36 cores/node):
1.8x Speedup over fastest CTS1 run!

Historical Speedup on 4 nodes x 4 V100 GPUs:
Infinite speedup! J

(FastILU existed in Trilinos but did not build on GPU
successfully in Trilinos 13.2.)

16x Speedup over previous fastest ILU!

Improvement Highlights:
§Fix errors to enable FastILU option for ATS-2 (I. Yamazaki)

§Several performance improvements to FastILU (I. Yamazaki, V. Dang, B. Kelley, S. Rajamanickam)

§Update Ifpack2 interface to allow Metis reordering (I. Yamazaki, E. Boman)

§Coming Soon: “FastILUT” (Based on ParILUT; Chow, Anzt, Dongarra, Rajamanickam, Patel, Boman, others)

ATS2 FastILU
(RCM) CTS1 Best Speedup

Compute 1.37 0.17 0.1
Solve 0.25 2.75 10.9
Total 1.63 2.92 1.8

**Note: Even though it is speedy, "Fast" ILU and TRSV perform up to 10x more
FLOPS than their traditional counterparts! (Cost depends on number of sweeps.)

Left: FastILU + FastTRSV on ATS2 with Trilinos Dev and RCM reordering.
Right: RILU(3)+KKSpTRSV on CTS1 with Trilinos Dev and RCM reordering.
(Fastest of all CTS1 ILU-type options.)

Trilinos 13.2
(RCM)

Trilinos Dev
Fast ILU Speedup

Compute 10.36 1.37 7.5
Solve 15.71 0.25 62.5
Total 26.07 1.63 16.0

Left: RILU(3)+KKSpTRSV timings from milestone start on ATS2.
Right: FastILU + FastTRSV on ATS2 with Trilinos Dev and RCM reordering.

Trilinos Preconditioning Resources and References:

17

• FastILU: Finegrained ASynchronous iterative ILU. [Slides here]
• ShyLU: A Collection of Node-Scalable Sparse Linear Solvers [slides here]
• ShyLU-FROSCH: https://shylu-frosch.github.io/about/
• Ifpack2 User’s Guide [here]
• Trilinos Framework and Solvers [slides here]
• Trilinos 10.10 tutorial [here]

https://www.osti.gov/biblio/1422094
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwjblbDLlIj6AhWljIkEHcV3BLkQFnoECAoQAQ&url=https%3A%2F%2Fwww.osti.gov%2Fservlets%2Fpurl%2F1426409&usg=AOvVaw22zOfNGkhwmrS3lrpkkwMK
https://shylu-frosch.github.io/about/
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwi9-Irhk4j6AhXikokEHU4ED-QQFnoECA0QAQ&url=https%3A%2F%2Ftrilinos.github.io%2Fpdfs%2Fifpack2guide.pdf&usg=AOvVaw0said4QLm4dqR5UL7XQ5S1
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwiKpemLlIj6AhWqkIkEHfHdBF8QFnoECAgQAQ&url=https%3A%2F%2Fwww.osti.gov%2Fservlets%2Fpurl%2F1575986&usg=AOvVaw1zEVzI73LF7F_O4ikqYwaP
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwiKpemLlIj6AhWqkIkEHfHdBF8QFnoECCsQAQ&url=https%3A%2F%2Ftrilinos.github.io%2Fpdfs%2FTrilinos10.10Tutorial.pdf&usg=AOvVaw0uZVFtMwoZwgE7tWzjpsg4

Amesos2

18

• Amesos2 is a direct solver package (interfaces to many direct solvers).
• Three native solvers: KLU2 (default), Basker, ShyLU/Tacho

• Required packages: Teuchos, Tpetra, Kokkos
• Optional packages: Epetra, ShyLU
• Optional TPLs: MPI, SuperLU, MUMPS, Pardiso, (Par)METIS, LAPACK, Strumpack

• Capabilities: numeric factorizations (KLU), and more...

Amesos2: Recent Developments

19

• Supernodal SpTRSV for SuperLU/Cholmod
• Kokkos-based: runs SpTRSV on GPU
• Utilizes “supernodal” block structures (block operations, hierarchical parallelism).
• Implements several algorithms including “partitioned inverse.”
• Transforms SpTRSV into a sequence of SpMVs (one SpMV / level).

• ShyLU/Tacho
• Kokkos-based: runs on CUDA/AMD GPU
• Level-set based sparse factorization (not tasking; “original” Tacho = Task-parallel sparse Cholesky)
• Supports LDLT, LU, Cholesky (symmetric indefinite, symmetric sparsity pattern, SPD, respectively)

• ShuLU/Basker
• “Threaded” version of KLU2
• Threaded-performance has been improved in recent years.
• Primarily used for circuit design (e.g., Xyce).

• Amesos2 (SolverCore) now implements iterative refinement
• Beneficial for recovering potential accuracy degradation due to limited pivoting (e.g., in parallel

factorization).

MueLu

• MueLu is a multigrid solving/preconditioning package.
• Part of the second-generation of Trilinos

• Templated on scalars, ordinals, and nodes

• Multigrid is an optimal complexity O(n) solver
for linear systems.
1. Start with a "fine grid"
2. Smooth error, transfer to coarser grid
3. Repeat 2...
4. Perform a direct solve on the "coarse grid"
5. Transfer to finer grid, smooth error
6. Repeat 5...
7. Transfer to original "fine grid", smooth error

• "Is multigrid right for me?"
•When backslash doesn't cut it

20

MueLu Capabilities

21

• Can precondition a linear system or iteratively solve a linear system
• Supports a wide variety of grid transfers,

smoothers (via Ifpack2/Amesos2), and more
• Inputs commonly supplied in XML format

• Updated MueLu tutorial:
https://muelu-tutorial.readthedocs.io
(subject to change)

• Required packages: Teuchos, Xpetra, KokkosCore*, KokkosContainers*, KokkosKernels*
• Optional packages: Belos, Epetra, Teko, Amesos(2), Ifpack(2), Intrepid2, ML, Tpetra,

Zoltan(2), Stratimikos, Thyra

MueLu Developments

22

• Hierarchical Matrices
• For applications with dense matrices

• Maxwell1
•Multigrid for electromagnetics

• Multiprecision
•Do coarse levels at lower precision than finer levels

• Higher Order
• P-coarsening
• Supports schedules

MueLu Developments

23

• Region Multigrid
• Grids of grids
• Subgrids coarsened geometrically or algebraically

• Geometric Multigrid
• Problems with structured meshes

• NotayAggregation
• Pairwise aggregation

• Cut Drop
• Tackles fill-in from Sa-AMG
• For dropping weak distant connections

Upcoming MueLu Developments & More

24

• Machine Learning for AMG
•Determining tolerances via ML

• BlockCRS
• Preserve (small)

fixed blocked structure

• Matrix-Free
•MF tentative prolongator operator
•Hierarchy treats R,P as operators
•MF -> matrix coarse operator next
• Synergistic with high order work and Maxwell

Thank you!

25

Questions?

Contacts:
Belos: Jennifer Loe jloe@sandia.gov
MueLu: Graham Harper gbharpe@sandia.gov

Communication-Avoiding Belos Solvers: Ichi Yamazaki iyamaza@sandia.gov
Ifpack2: Jonathan Hu jhu@sandia.gov
ShyLU / Amesos2: Siva Rajamanickam srajama@sandia.gov

mailto:jloe@sandia.gov
mailto:gbharpe@sandia.gov
mailto:iyamaza@sandia.gov
mailto:jhu@sandia.gov
mailto:srajama@sandia.gov

