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Abstract same goals via more sophisticated techniques for

The challenge of cyberattack detection can be
illustrated by the complexity of the MITRE
ATT&CK™ matrix, which catalogues >200 attack
techniques (most with multiple sub-techniques). To
reliably detect cyberattacks, we propose an evidence-
based approach which fuses multiple cyber events
over varying time periods to help differentiate normal
from malicious behavior. We use Bayesian Networks
(BNs) — probabilistic graphical models consisting of
a set of variables and their conditional dependencies
— for fusion/classification due to their interpretable
nature, ability to tolerate sparse or imbalanced data,
and resistance to overfitting. Our technique utilizes a
small collection of expert-informed cyber intrusion
indicators to create a hybrid detection system that
combines data-driven training with expert knowledge
to form a host-based intrusion detection system
(HIDS). We demonstrate a software pipeline for
efficiently generating and evaluating various BN
classifier architectures for specific datasets and
discuss explainability benefits thereof.
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1. Introduction

Prior work has used Bayesian networks (BNs) as
the core technology of an intrusion detection system
(IDS), albeit typically using a single BN architecture.
Jemili et al. (2007) designed a network-based IDS
(NIDS) that uses signature recognition matched with
known behavior in combination with the K2 BN
learning algorithm and Junction Tree inference. They
focus on detection of intrusions but do not consider
false positives, a very important metric in an IDS. Xu
and Shelton (2010) present a system for both NIDS
and HIDS based on continuous-time BNs which they
employ in lieu of dynamic BNs due to the bursty
nature of cyber event data. Their system focuses on
event timing instead of complex features even though
their HIDS data has somewhat imprecise timing
which could allow incorrect event ordering. Jabbar et
al. (2017) focus on increasing the detection rate and
accuracy while attenuating the number of false alarms
in an IDS using feature selection in combination with
a BN classifier. Our approach seeks to achieve these

feature selection and discretization and generates a
suite of BN classifiers with performance tradeoffs.

Our focus on host-based cyberattack detection
requires the use of host logs. Rather than the oft-used
DARPA KDD '99 dataset (or its revised version,
NSL-KDD), we utilized a more modern dataset from
Sandia National Laboratories which contains a
significant amount of host-based log data generated
by Windows System Monitor (a.k.a. Sysmon) with
millisecond timing, as described in detail in section 2.

BN are probabilistic graphical models capable of
multi-directional inference among multiple variables
via Bayes’ Rule (Pourret et al., 2008). When trained
upon expert-informed features, BNs yield relatively
interpretable solutions to classification problems.
They are lightweight and cheap to train, natively
provide confidence estimates and goodness-of-fit
measures, and are relatively robust to imbalanced
datasets and overfitting, especially in rare event
detection (Uusitalo, 2007). These advantages make
BNs well-suited to the detection and analysis of
suspect system logs in the cybersecurity field. We
have developed a pipeline that allows multiple BN
architectures to be evaluated to determine the highest
performing BN classifier solution for specific
stakeholder needs with minimal manual effort.

We desired the capability to be accessible from a
common data analytic environment. There was no
Python-native comprehensive package for creation,
training, and testing of BNs beyond Naive Bayes, and
although R has several strong BN packages, its
copyleft licensing is unsuitable for some intended
uses. After reviewing several BN modeling tools, we
selected Bayes Server (2021) as our engine for BN
creation, inference, and analysis, due to its Python-
accessible API and strong data-driven model-building
algorithms. We created Python wrappers for select
components of Bayes Server’s Java API, enabling
model training and assessment within an automated
workflow via a few succinct classes and methods.

We investigated several changes to manual BN
development pipelines to improve convenience and
classification performance. Key examples:

e Automatic discretization removes the need to
manually discretize new/updated data and often
outperforms continuous encodings; supervised
discretization can further improve performance.
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e Automatic feature selection reduces model size
and can improve classification performance.

e A performance-tunability metric and Pareto
method enables selecting the best model at a
given complexity.

We designed the framework for model interpretability
and results explainability, as outlined in Figure 1:

e Expert-informed datasets: Start with datasets
vetted by experts to ensure the pedigree and
content of known malicious behavior (Section 2)

e Interpretable features: Derive features based on
expert input, with names/descriptions which map
to known suspect behavior. (Section 2)

e Explainable discretization: Define feature-split
thresholds via a method explainable in terms of
importance to target classification. (Section 3.2)

e Bayesian Networks: Provide interpretability by
defining the relationships among variables
(features and target/label) both graphically and
with inspectable conditional probability tables.

e Results explainability: Enabled by BNs, provide
explainability of output classifications via impact
analysis, value of information, and analysis of
difficult/ambiguous cases. (Sections 3.4, 5.3, 5.4)

i:::::,,r:d Interpretable Explainable Bayesian Post-training
datasets features discretization Networks explainability

Figure 1. Visual outline of
interpretable/explainable design pipeline.

2. Expert-Informed Features and Data

We conducted our analysis using two datasets,
Tracer FIRE 9 (TF9) and Tracer FIRE 10 (TF10),
which consist of a combination of both “normal”,
nonsuspicious system events, as well as “suspect”
events resulting from adversarial attacks. The data was
obtained from the Sandia National Laboratories (SNL)
Tracer FIRE team. Tracer FIRE (TF) is a Forensic
Incident Response Exercise designed by SNL to give
participants an advanced persistent threat (APT) real-
life scenario driven experience to test forensic skills
and learn new methodologies to conduct forensic
investigations. Each year a new scenario is created
using the latest exposed APT attacks and software
vulnerabilities used. Vulnerabilities are embedded into
a simulated enterprise network with normal security
practices in place, then attacked by a red team using
customized APT malware. There can be multiple APT
groups with differing tactics, techniques, and
procedures (TTPs) using custom malware to gain
access and perform actions necessary to their
motivations. While each fictional APT performs its
actions, forensic details are captured by the victim
network using a variety of cyber event detectors
including Zeek and Windows System Monitor (a.k.a.
Sysmon). Access to the TF9 data is publicly available

including the raw event data as well as the forensic
reports which characterize the malicious behavior
(Tracer FIRE, 2021).

To convert the raw Sysmon data into a usable form
for training a BN, we developed a scenario extraction
tool (SET) for identifying scenarios (parent-child
process trees) which contain one or more suspicious
events (system logs) based on expert-informed
indicators and expert knowledge of cyberattacks. The
scenarios labeled as “suspect” are known malicious
APT activities within the dataset which may not
readily map to intrusions identified in the MITRE
ATT&CK matrix. The collection of suspect indicators
and associated Sysmon events used herein are
described in Table 1 and are intended to be illustrative
but not exhaustive. The SET uses wildcard string
matching to detect suspicious Sysmon events, as well
as whitelisting to ignore innocuous events.

Each scenario is represented as a collection of
aggregated statistics based on the events which
comprise it as described below, then used as an
interpretable set of features for the BN.

e known company percent. The integer percentage
(0-100) of the executables within the scenario
with a known company as the publisher. If the
publisher is known, it is specified in the Sysmon
event record, else it is blank.

o file create count/duration/stdev: The number of
times the same executable repeats a file creation
action; the duration in seconds; and standard
deviation, when multiple file saves occur (three
separate features).

e max time delta: The maximum time delta between
any two adjacent scenario events (in seconds).

o max tree depth: The maximum depth of the
process tree across all events in the scenario.

e duration: The sequence duration (starting from
the first suspect event) in seconds.

o threat [XX] count. The number of times threat
event XX from Table 1 was present in the scenario
(e.g., Threat 17 count = # of file saves) (multiple
separate features).

o priority sum: The sum of priority values across all
child events, including repeats. The priority of an
event indicates how suspicious it is (with higher
values being more suspicious). The event
prioritization scheme is based on expert input but
used for notional purposes only.
max priority: Maximum priority across all events.
single-dest count/duration/stdev: The number of
network connections from the same executable to
a single destination (beaconing); the duration in
seconds; and standard deviation when multiple
network connections occur (three features).

o multi-dest count/duration/stdev: The number of
times the same executable connects to multiple
network destinations (reconnaissance); the
duration in seconds; and standard deviation, when
multiple connections occur (three features).



Table 1. Suspect indicators

Associated

[ID] Indicator Name Sysmon Event® Priority

[1] WScript creating script in Users

subdirectory (11) FileCreate 2

[2] Execution of VB script in Users (1) Process

subdirectory creation 2

[3] PowerShell WebClient (1) Process

downloadstring creation 1
(1) Process

[4] PowerShell EncodedCommand creation 1

[5] wget storing exe file in

Windows directory (11) FileCreate 3

[6] wget creating exe file in any

directory (11) FileCreate 2

[7]1 MS Office creates exe file in

Users subdirectory (11) FileCreate 4

[8] MS Office creates any file in

Users subdirectory (11) FileCreate 2
(15) FileCreate-

[9] MS Office exe stream creation StreamHash 4
(1) Process

[10] Shell command launches exe creation 1

[11] Shell command launches exe (1) Process

in Users, Temp or Startup directory creation 2

[12] Executable launches (1) Process

power/command shell creation 1
(13) Registry-

[13] Any exe modifying registry Event (set) 1

[14] Exe in Users subdirectory or

temp directory making network (3) Network

connection connection 3

[15] Exe in user Windows directory | (3) Network

making network connection connection 1

[16] Exe in Users subdirectory

creating DLL/EXE/script in Users,

Temp or Startup directory (11) FileCreate 3

[17] Browser saves DLL, EXE, or

script in Users or Temp directory (11) FileCreate 3

[18] Exe creates DLL/EXE/script

in Users, Temp or Startup directory (11) FileCreate 2

[19] Execution of exe in Users or (1) Process

Temp subdirectory creation 2

[20] Exe in non-main root directory

creates exe in temp or downloads

directory (11) FileCreate 2

[21] Browser saves DLL, EXE, or

script in users temp/downloads (15) FileCreate-

directory via FileStream StreamHash 3

[22] Shell command saves DLL,

EXE, or script in Users, Temp or

Startup directory (11) FileCreate 2

[23] Suspect exe modification in (13) Registry-

registry Event (set) 3
(1) Process

[24] Suspect process creation creation 2

[27] Execution of exe in non-main (1) Process

root directory creation 2

[28] Execution of ping.exe (1) Process

(network discovery) creation 2

[29] Shell command launches script | (1) Process

in Users, Temp or Startup directory creation 2

* a complete description of all Sysmon events can be found at
https://docs.microsoft.com/enus/sysinternals/downloads/sysmon

3. Key Elements of BN Pipeline

The classification pipeline is based upon a Python
API extension library written to provide a convenient
level of abstraction for BN operations such as network
instantiation, parameter and structural learning, batch
queries, and explainability analyses. The library
utilizes wrapper classes that succinctly encapsulate
common BN operations from Bayes Server’s Java
API and facilitate integration with other machine

learning libraries, allowing for creation, training, and
inspection of BNs to be completed in a few high-level
object-oriented function calls. The following
subsections describe key pipeline features.

3.1.Feature Selection

Several schemes for feature selection were
developed and tested with an eye towards improving
data dimensionality and model interpretability and
robustness. A basic scheme is to remove highly
correlated features and features with zero variance,
which we refer to as covariance screening. Additional
feature-selection schemes using supervised learning
algorithms are optionally applied after. Feature
selection schemes utilizing mean decreases in
impurity (MDIs) calculated by random forests, gain
calculated by extreme gradient boosting (XGBoost)
models, or ridge regression coefficients can often
improve precision-recall performance of BNs.

3.2. BN Variable Discretization

Although Bayes Server’s API (and therefore our
library) supports continuous linear gaussian variables,
their usage often requires significant additional BN
structure complexity to adequately approximate joint
distributions, and/or reduces model performance.
Binning feature values and then using discrete
variables is common, but it is expensive for a subject
matter expert or analyst to analyze each variable
separately to determine bin boundaries — particularly
as datasets change and/or new features are engineered.
Readily available programmatic discretization
routines did not meet our needs. Thus, we investigated
automated discretization schemes involving both
supervised and unsupervised machine learning
techniques. A primary challenge was to automate
decisions that would normally require human input,
such as number of bins, location of bin boundaries
etc., in an explainable classification-salient way.

One solution was to run k-means clustering on
individual features to discretize values into distinct
clusters. The number of clusters to ultimately use for
each variable was determined by the “elbow method”
outlined by Bholowalia, et al. (2014); as the number
of clusters was increased, the mean squared error
(MSE) for each number of clusters was calculated and
the optimal number of clusters chosen when the MSE
dropped significantly, which we detected by
approximating the second derivative with respect to
the number of clusters using the central difference.
Note that our goal was not to minimize MSE, but to
provide a good balance between underfitting and
overfitting. Double-interval partitioning values were
then obtained by extracting k-mean centroids from the
k-value that had the highest central difference. We
refer to this approach of discretizing variables using
k-means clustering as “k-means discretization”.



A limitation of both the manual and k-means
discretization methods is that they do not consider the
relationship between the feature and the target
variable; a bin boundary that “clusters” the feature
well may not provide the best contrast for target
classification. With this in mind, we modified the
“random forests discretizer” proposed by Berrado and
Runger (2009). Their method allows discretizing
features in a supervised, multivariate manner that is
relatively cheap to train: a random forest model is
trained on the labeled data, and feature-split
thresholds that are most important for classification
can then be extracted by crawling through the forest.

However, as noted by Cheng (2015), raw count of
a threshold’s prevalence across all trees may be a
misleading metric of importance. Building a weighted
histogram based on change in Gini impurity at each
split in every tree provides a more meaningful
measure of the information content of a given feature
split (see Figure 2). We therefore modified Berrado
and Runger’s algorithm using delta-Gini-weighted
feature split importance histograms. Figure 2
illustrates this concept for feature “max tree depth”;
note that splits below value 3.5, for example, provide
low delta impurity and class contrast despite their
prevalence. In Figure 3, Gini-based discretization of
this same feature demonstrates high contrast between
positive and negative classes.

Although Berrado and Runger suggest a possible
thresholding method for future automation, the paper
examples are based on manual selection of histogram
modes. Needing a method to automatically determine
the number of modes/bins to select and, recognizing
that a choice of threshold is likely data-dependent, we
instead developed an elbow method for automatically
picking bin boundaries using the central difference,
similar to the terminating method used for k-means
discretization. Our modified random forest (“target-
informed discretization”) method is as follows:

1. Train a random forest classifier on the labeled
training data and, for each feature variable,
extract classification importance information for
feature-split thresholds, as measured by changes
in Gini impurity in every tree.

2. For each feature, build a weighted histogram with
thresholds on the x-axis and split importance on
the y-axis, with bin centers as candidate feature
splits/thresholds.

3. Choose the number of feature splits for each
variable using the elbow method over MSE
scores. MSE for different numbers of splits are
calculated and the optimal number of splits is
determined by the central difference. Histogram
bins the with highest relative importance are
greedily added first, and histogram bin centers
are used directly as our discretization bin
boundaries (since they are chosen specifically for
their ability to split the data for classification).
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Figure 2. A comparison of measures of feature
split importance for a numerical feature (max
tree depth) in a random forest. The top plot
shows raw count/prevalence of split values
across all trees. The bottom plot shows counts
weighted by changes in Gini impurities. In this
example, we see that some split values with
lower count (such as 7.5) provide greater delta
impurity. In contrast, splits below 3.5 are quite
frequent but provide low delta impurity and
would add little value for classification.
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Figure 3. Histogram of max tree depth values,
with bin boundaries set based on delta Gini
impurities in Figure 2. Note contrast between
negative (top) and positive class (bottom).

Key challenges included determining the number of
bins/split candidates for the elbow method to work
well, and how to decide whether/when a variable with
a moderate number of distinct states should be further
summarized in a discretized variable with fewer
states. We further recognize that performance of this
method is potentially hampered by the simplicity of
the greedy heuristic and may be quite dependent on
the binning strategy in step 2; we intend to address
these questions more thoroughly in future work.



3.3. Assessing Models: Performance-
Tunability Pareto Front

To assess BN performance, we took the geometric
mean of the area under the Precision-Recall curve and
the F1 score (at 0.5 probability threshold for positive
classification). We will refer to this metric as the
“performance-tunability” metric. The intent is to
reward models that have good default performance
and robustly tunable performance across alternate
thresholds. Once multiple networks are trained and
tested on the same data, the performance-tunability
metric and number of parameters can be extracted
from each BN and plotted. We propose selecting
models that lie on the Pareto front of the plot, i.e., no
other model can do better in one axis without getting
worse in the other. An example is shown in Figure 7;
since we wish to maximize model robustness and
minimize model complexity, the Pareto front here is
the upper left edge of the point cloud. Pareto front
selection provides a means for selecting from a suite
of models with optimal performance and complexity
tradeoffs and can easily be adapted to other
performance or complexity metrics.

3.4. Impact Analysis: Enhancing
Classification Explainability

Impact analysis indicates which features make the
greatest difference to the classification probability for
a given set of evidence (Bayes Server, 2021).
Evidence from a given data sample is included, one

feature set at a time, in a query to a BN with no other
evidence observed (or the evidence can be excluded
from a query where all other evidence is observed).
This capability leverages BNs’ unique abilities for
inference with missing feature data. Whereas
manually setting evidence feature-by-feature in a Ul
is time-consuming and error prone, automating via the
API allows the user to initiate a query directly from
common Python data structures representing the
entire feature space of a single sample/case (and, if
desired, automate over all cases in a set/list).

We introduce a network graph visualization of
impact analysis (executed for all individuals and pairs
of features) that provides single-feature information
within nodes and information for pairs of features
along edges (see Figure 4). The results of such
analyses can then be used to discern the impact of
feature states or combinations of feature states against
a particular target variable.

4. Experiment on Cybersecurity Data

We applied the pipeline capabilities above to the
classification of cybersecurity scenarios (summarized
process trees of system logs) found in the TF9 and
TF10 datasets. Manually selecting the right BN
classifier is a challenge; using the transformed TF9
and TF10 SET data, our analysis sought to determine
which BN structures have the highest performance for
scenario classification. We additionally sought to
answer the following questions in the specific context
of this application and dataset:
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e Do BN classifiers benefit from semi-supervised
training? Since BNs can learn non-target links
from unlabeled data, can augmenting the training
set with unlabeled data improve classification?

e How do feature selection and discretization —
supervised methods in particular — affect the
robustness of BNs?

Our experiment used a modification of k-fold cross-
validation. The TF9 and TF10 data were aggregated
into a single dataset and split into three separate
train/test folds by shuffling and then stratifying across
the overall dataset. We did not use more folds due to
the highly imbalanced nature of the data (TF9 had 54
positives in 310 scenarios and TF10 had 119 positives
in 3623 scenarios). We then defined three separate
train-test partition strategies, described in Table 2:

Table 2. Partition strategies

Partition | Percentage of TF9+TF10 Data in Partition
Strategy | Labeled train | Unlabeled train | Test
1-0-1 33.3% 0% 33.3%
1-1-1 33.3% 33.3% 33.3%
2-0-1 66.7% 0% 33.3%

The “2-0-17 strategy is equivalent to regular k-fold
cross-validation with three folds and is therefore also
referred to as a “2:1 train-test split”. The “1-0-1” and
“1-1-1” partition strategies are included to measure
the performance of semi-supervised training. For each
strategy, the test set was rotated among the three folds.

Four preprocessing sequences were assessed by
running k-means or Target-Informed discretization in
combination with either Covariance Screening (0.99
threshold), or Covariance+XGBoost feature selection
(0.99 cov. threshold, 0.001 XGBoost gain threshold).

Models were built via every individual structural
learning algorithm shown as a node in Figure 5, and
every valid pair shown as an edge (e.g., TAN followed
by PC is valid, but PC followed by TAN is not). The
full experiment design is summarized in Table 3.

Finally, parameter learning was performed on each
model built from a unique sequence of train/test split

Figure 5. Nodes denote structural learning
methods and edges denote valid ordered pairs
(some methods do not support link constraints
or latent variables from prior methods). Naive
Bayes is custom (to ensure an acyclic graph),
and clustering is adapted to use the elbow
method for fewer latent cluster states. All other
methods are unmodified from Bayes Server.

partitioning, preprocessing, and structural learning,
and metrics were averaged over the three test splits.

Table 3. Experiment design

’Il‘)ran}-_test Pre-p.r ocessing Structural Learning

artition (on training data) ..

Strategy Screening Discretization (O Gy ey
1-1-1 Covariance 52 k-means All methods
1-0-1 Covariance + Target- All valid pairs of
2-0-1 XGBoost informed methods

We assess each model’s performance via precision
and recall (and related F1 and PR AUC measures),
which are more appropriate for our class-imbalanced
problem than TPR, FPR, accuracy, or ROC AUC. For
simplicity, we omitted other imbalance mitigations,
such as oversampling or overweighting the minority
class, from the experiment design. Among machine
learning (ML) methods, BNs are known to be
relatively robust to imbalance (e.g., Leong, 2016) —
likely in part because they are not typically trained to
maximize accuracy — and in our experience over-
weighting the minority class does not improve a BN’s
classification performance. However, using SMOTE
(Synthetic Minority Oversampling Technique) or
other similar approaches before structural learning
may result in better BNs from some algorithms. We
intend to address class resampling and/or reweighting
for structural learning in future work.

5. Cybersecurity Experimental Results

The results of the analysis are summarized in
figures 6 and 7. In each figure, the top 20 models (by
F1 score mean) from each preprocessing and partition
combination are displayed, with each model being
trained with a different sequence of one to two
structural learning methods. Red and blue lines mark
the performance of the best Naive Bayes and tree-
augmented naive (TAN) models respectively, from
any partition and processing strategy, with respect to
the performance metric shown on the axis. The best
model is not necessarily the same on all axes, so not
all red/blue “crosshairs” will intersect a point. Values
(other than the area calculation for performance-
tunability) are calculated at the default 0.5 probability
threshold for positive classification.

The efficiency and comprehensive feature set of
the Python API extension library allowed for the
creation of highly robust models for this specific
application. Given a rich training set and adequate
discretization and data preprocessing, we saw mean
F1 scores surpass 0.87 in a highly data-imbalanced
classification application (Figure 6). Through
combining structural learning methods, models often
exceed the performance achieved by traditional Naive
Bayes and TAN models within the same partition and
pre-processing classes (recall that in Figure 6, only the
best TAN and Naive Bayes models across all
strategies are denoted by blue and red lines).
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The best F1 performance was from models using
the 2-0-1 train-test strategy (unsurprisingly) and built
using covariance screening and target-informed
discretization. Models with high F1 are generally also
tunable, based on correlation between mean F1 and
mean area under the precision-recall curve (R?> =
0.71). This indicates that competitive models can
likely be tuned to specific probability thresholds to
achieve greater performance in either precision or
recall. BNs also performed quite well with sparser
labeled training data (1-0-1 section of Figure 6),
particularly using target-informed discretization and
the less aggressive covariance screening. Going from
1-0-1 to 1-1-1, adding unlabeled data decreased mean
F1 scores. This is consistent with Cohen et al. (2003),
which observes that addition of unlabeled data to a
training set can often reduce performance on model
structures not designed to take advantage of it.

5.1. Pareto Front Selection

Plotting performance-tunability versus parameter
count in Figure 7 as discussed in section 3.3, the
Pareto front (top left) selects models with simple
underlying structures to optimally balance complexity
and performance — typically built with naive, TAN, or
clustering structural learning. K-means discretization
generally provides lower complexity, particularly
combined with XGBoost feature selection. Higher
performance often results from covariance screening
and/or target-informed discretization. Notably, the
choice of axes for the Pareto could differ based on
stakeholder priorities. In the cybersecurity domain,
analysts are typically swamped with false positives, so
choosing models with high precision and acceptable
recall is a likely strategy. We could instead select the
Pareto set of the mean precision vs. mean recall plot
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to get optimal precision-recall tradeoffs. This strategy
favors search-and-score and naive/TAN structures,
often in combination with other methods, and favors
the 2:1 train-test strategy and covariance screening.

5.2. Comparison Against Random Forest

Table 4 compares metric averages of the best-
average-F1 model — naive and clustering BN (NBC) —
for the 2-0-1 split against default random forest and
TAN BN models. This single-BN model developed by
our pipeline performs quite favorably when compared
to common naive and TAN structures and remains
competitive when compared to random forest models
in terms of F1 scores. Even greater F1 scores were
possible on our testing set by running a grid search
over different probability thresholds.

Table 4. Classifier Performance Comparison

Random TAN NBC NBC
Forest (PT=0.5) | (PT=0.5) | (PT=0.13)
Accuracy 99.3% 98.4% 99.0% 99.0%
TPR/Recall | 85.0% 80.9% 81.6% 89.0%
FPR 0.05% 0.82% 0.24% 0.56%
Precision 98.0% 82.0% 94.1% 88.0%
F1 Score 91.0% 81.4% 87.2% 88.5%

The slightly worse NBC performance compared to
a random forest was deemed acceptable considering
the vastly greater interpretability of a single BN with
inspectable probability tables vs. a large forest of
decision trees, and the local/global self-explainability
it provides for subject matter experts (although
random forests have built-in global explainability,
they require a surrogate like SHAP to derive local
explainability for specific samples). Specific
interpretability and explainability benefits of BNs are
discussed further in sections 5.3 and 5.4.

5.3. Interpretability and Explainability

As pointed out by Rudin (2019), it is preferable to
use inherently interpretable models for making high-
stakes decisions; cyber intrusion detection certainly
qualifies. Rudin further claims that any explanation
method for a black-box model will almost certainly be
inaccurate for some inputs, resulting in unpredictable
mismatches between the model and explanations.
BNs avoid these issues by providing an interpretable
model representation as well as self-explanation of
output (i.e., without needing a surrogate).

Figure 8 shows a TAN BN model trained on the
Tracer FIRE data with highly correlated variables
(34% of features) removed; it illustrates the
dependencies between the different variables for
model interpretability. The conditional probability
table (CPT) for each variable can be inspected to get
a deeper understanding of the classifier.

Aas et al. (2020) mention that a disadvantage of
calculating Shapley values — as required to explain
many common machine learning methods — is that the
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Figure 8. TAN BN trained on TF9 and TF10 data.
Target variable SUSPECT is highlighted in red.

computational complexity grows exponentially with
number of features, which has led to approximation
methods being used by the Kernel SHAP method. The
Kernel SHAP method assumes that the features are
independent and when this is not true (i.e., when some
variables are correlated) may lead to incorrect
Shapley values and thus incorrect explanations.
Further noted by Smith et al. (2021), LIME and SHAP
make strong assumptions of feature independence and
linear interactions, which are frequently inaccurate. In
contrast, not only are BN models self-explainable, but
because they are generative models, explanation does
not require additional calculations over the training
set. Thus, no subsampling is needed, and explanation
accuracy does not vary by sample size. Furthermore,
explanation calculation runtime is independent of
training set size and can be dramatically faster than
post-hoc explanation methods.

To assess SHAP explainability versus BN self-
explainability, we applied the Python implementation
of Kernel SHAP (Lundberg & Lee, 2017) to a
Categorical Naive Bayes classifier in scikit-learn
(CategoricalNB [Pedregosa et al., 2011]) using
different sample sizes for the SHAP analysis: all
3933, 1000 and 100 samples. The experiments were
performed on a Windows 10 PC with a dual-core 17-
7500U running at 2.70 GHz. We saw exceedingly
long run times (especially when using all 3933 sample
records) and an inconsistency of feature-importance
ordering between runs for sampled SHAP. As shown
in Table 5, the Kernel SHAP feature importance does
not match well with the feature importance given by
the Value of Information of the Categorical Naive
Bayes model (as produced by Bayes Server with an
equivalent model). Given this mismatch between the
BN’s self-explained feature importance (which comes
directly from the BN) and the SHAP determination of
feature importance, one could reasonably hypothesize
that using SHAP as a post-hoc explainability method



can result in misleading or incorrect feature
importance explanations for other ML models as well.

Table 5. Runtime and top-10 features for Naive
BN self-explanation vs. SHAP

method: Self-explanation* SHAP - 3933 SHAP - 1000 SHAP - 100
t(min.): ~0 630 110 <1

1 max time delta threat 18 count max time delta threat 29 count

2 max tree depth max tree depth max tree depth threat 18 count

3 threat 29 count max time delta threat 18 count file create duration

4 file create duratioanile create count

5 file create count file create count  [max time delta

6 threat 18 count file create duration threat 29 count max tree depth

7_threat 29 count

8 threat 3 count max priority

9 threat 15 count threat 3 count
10 single-dest stdev  threat 10 count

file create duration
max priority

threat 3 count
threat 15 count

Feature Rank

threat 3 count
threat 19 count
max priority

*35 measured by mutual information with, or hypothesis entropy reduction for,

the SUSPECT variable

Because the BN is a collection of CPTs, it is also
relatively straightforward to determine via Bayes Rule
how the target variable relates to individual states of
the features. This characteristic enables understanding
the effects of dependent/ correlated features and
nonlinear interactions and can provide valuable
feature insights. For instance, a state-level analysis of
the Naive Bayes model shows that low max tree depth
values provide little target contrast, and virtually all of
the discriminative power of the feature lies in the
difference between moderate and high values. Such
analysis can also be performed with partial evidence
observed, allowing the user to understand what
feature state information would be next-most-
valuable when some features are known.

5.4. Analysis of Difficult/Ambiguous Cases

A given BN classifier model can be analyzed to
determine which cases it found the most difficult to
score. By comparing the log likelihood of each case
with and without the target label observed, one can
find which cases would have significantly better
model fit without the assigned label. This analysis
process allows identifying potentially mislabeled
cases and cases whose label-salient characteristics are
perhaps not well represented in the feature space.

We demonstrate here on a model with excellent
precision and moderate recall (chosen consistent with
a priority on minimizing false negatives). As seen in
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Figure 9. Histogram of labeled minus
unlabeled log likelihood across all TF9 and
TF10 cases (average across 3 test splits) using
a high-precision BN model. Note log-y axis.

Figure 9, there are a few cases with large differences
between the log likelihood scores with and without
target labels observed. As one would expect given the
model’s high precision and modest recall, all of these
cases were false negatives in at least one test split. We
discuss three representative cases:

e TF9-240: File downloads followed by sequence
of chained command/powershell executions —
suspicious upon manual inspection, but in ways
that are not well reflected in current features.

e TF10-118: File downloads, apparently innocuous
registry sets, and download of a PowerShell
script. Weak evidence of malicious activity
without prior knowledge.

e TF10-1078: Save of a batch file by svchost.exe.
Weak evidence of malicious activity without
prior knowledge.

In these cases, it is understandable why the model
provided false negatives (and why models that label
these correctly might have worse precision). Such
cases are expected, since APTs intentionally perform
attacks using standard techniques to mimic normal
host behavior and avoid detection. Additionally, cases
such as TF9-240 may motivate iterative refinement of
the feature space when existing features do not reflect
key nuances relevant to the classification problem.

Ambiguous cases can also be identified based on
classification probability, and impact analysis (as
discussed in section 3) may help clarify the model’s
labeling rationale and give analysts more evidence to
determine whether a classification might be incorrect.
Figure 4 depicts such a case, TF9-122, which was
highly ambiguous (P(Suspect) = 0.4996) in one test
split. Review of an impact analysis visualization such
as Figure 4 would allow an expert to determine the
salient features of such a case and determine whether
the evidence was sufficient for a given classification.

6. Conclusions

This study demonstrated the effectiveness and
efficiency of building BNs for detecting cyberattacks
through automated pipelines using a novel Python
API extension library. Automating structural and
parameter learning, discretization, and k-fold cross-
validation accelerate model building and assessment
and enable more comprehensive experimentation and
model optimization. In particular, the ability to
automate structural learning across a wide selection of
algorithm combinations enables creation of a diverse
portfolio of networks, improving the likelihood of
creating appropriate models for a wide range of use
cases and stakeholder needs. As APT behavior drifts,
models can quickly be rebuilt or retrained.

Using this pipeline, we can efficiently create a
cyberattack detection system which considers the
tradeoff between the probability of detection and the
probability of false alarm. This tradeoff can be



considered both during model selection, and in tuning
the selected model’s detection threshold. Given the
typically unbalanced data that will be experienced in
real-world systems, managing this tradeoff is critical
since missing a true attack could result in a significant
compromise whereas excessive false positives make
it far more difficult to single out an actual attack.

Calculating log likelihood of each case with and
without the target label observed allows identifying
cases that the model had difficulty classifying. This
can lead to greater understanding of false negative/
false positive trends, and of where features can be
improved. Batch impact efficiently provides tabular
and/or graphical classification explanations for any
desired data samples. This capability could aid cyber
analysts in quickly determining if certain ambiguous
scenarios are malicious or innocuous and why.

While other methods such as random forests may
have greater classification performance in certain
instances, the BN pipeline provides a suite of models
that are mostly simpler and more interpretable, with
built-in explainability (such as value of information,
impact analysis, and analysis of difficult cases). In this
application, because we have developed interpretable
features, the BN variables (ignoring latent variables)
map directly to the input data and there is no
“semantic gap between real-world interpretation and
low-level feature space” (Smith et al. 2021) as seen in
black-box ML systems. These interpretability and
explainability characteristics of BNs are critical to
analyst and stakeholder trust in results as well as
overall utility of the system.
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