
Bayesian Networks for Interpretable Cyberattack Detection

Barnett Yang

Sandia National Laboratories

bzyang@sandia.gov

Matthew Hoffman

Sandia National Laboratories

mjhoffm@sandia.gov

Nathanael Brown

Sandia National Laboratories

njbrown@sandia.gov

Abstract
The challenge of cyberattack detection can be

illustrated by the complexity of the MITRE

ATT&CKTM matrix, which catalogues >200 attack

techniques (most with multiple sub-techniques). To

reliably detect cyberattacks, we propose an evidence-

based approach which fuses multiple cyber events

over varying time periods to help differentiate normal

from malicious behavior. We use Bayesian Networks

(BNs) – probabilistic graphical models consisting of

a set of variables and their conditional dependencies

– for fusion/classification due to their interpretable

nature, ability to tolerate sparse or imbalanced data,

and resistance to overfitting. Our technique utilizes a

small collection of expert-informed cyber intrusion

indicators to create a hybrid detection system that

combines data-driven training with expert knowledge

to form a host-based intrusion detection system

(HIDS). We demonstrate a software pipeline for

efficiently generating and evaluating various BN

classifier architectures for specific datasets and

discuss explainability benefits thereof.

Keywords: Bayesian networks, cybersecurity,

explainable machine learning, semi-supervised

learning, discretization

1. Introduction

Prior work has used Bayesian networks (BNs) as

the core technology of an intrusion detection system

(IDS), albeit typically using a single BN architecture.

Jemili et al. (2007) designed a network-based IDS

(NIDS) that uses signature recognition matched with

known behavior in combination with the K2 BN

learning algorithm and Junction Tree inference. They

focus on detection of intrusions but do not consider

false positives, a very important metric in an IDS. Xu

and Shelton (2010) present a system for both NIDS

and HIDS based on continuous-time BNs which they

employ in lieu of dynamic BNs due to the bursty

nature of cyber event data. Their system focuses on

event timing instead of complex features even though

their HIDS data has somewhat imprecise timing

which could allow incorrect event ordering. Jabbar et

al. (2017) focus on increasing the detection rate and

accuracy while attenuating the number of false alarms

in an IDS using feature selection in combination with

a BN classifier. Our approach seeks to achieve these

same goals via more sophisticated techniques for

feature selection and discretization and generates a

suite of BN classifiers with performance tradeoffs.

Our focus on host-based cyberattack detection

requires the use of host logs. Rather than the oft-used

DARPA KDD '99 dataset (or its revised version,

NSL-KDD), we utilized a more modern dataset from

Sandia National Laboratories which contains a

significant amount of host-based log data generated

by Windows System Monitor (a.k.a. Sysmon) with

millisecond timing, as described in detail in section 2.

BNs are probabilistic graphical models capable of

multi-directional inference among multiple variables

via Bayes’ Rule (Pourret et al., 2008). When trained

upon expert-informed features, BNs yield relatively

interpretable solutions to classification problems.

They are lightweight and cheap to train, natively

provide confidence estimates and goodness-of-fit

measures, and are relatively robust to imbalanced

datasets and overfitting, especially in rare event

detection (Uusitalo, 2007). These advantages make

BNs well-suited to the detection and analysis of

suspect system logs in the cybersecurity field. We

have developed a pipeline that allows multiple BN

architectures to be evaluated to determine the highest

performing BN classifier solution for specific

stakeholder needs with minimal manual effort.

We desired the capability to be accessible from a

common data analytic environment. There was no

Python-native comprehensive package for creation,

training, and testing of BNs beyond Naïve Bayes, and

although R has several strong BN packages, its

copyleft licensing is unsuitable for some intended

uses. After reviewing several BN modeling tools, we

selected Bayes Server (2021) as our engine for BN

creation, inference, and analysis, due to its Python-

accessible API and strong data-driven model-building

algorithms. We created Python wrappers for select

components of Bayes Server’s Java API, enabling

model training and assessment within an automated

workflow via a few succinct classes and methods.

We investigated several changes to manual BN

development pipelines to improve convenience and

classification performance. Key examples:

• Automatic discretization removes the need to

manually discretize new/updated data and often

outperforms continuous encodings; supervised

discretization can further improve performance.

SAND2022-12653CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

• Automatic feature selection reduces model size

and can improve classification performance.

• A performance-tunability metric and Pareto

method enables selecting the best model at a

given complexity.

We designed the framework for model interpretability

and results explainability, as outlined in Figure 1:

• Expert-informed datasets: Start with datasets

vetted by experts to ensure the pedigree and

content of known malicious behavior (Section 2)

• Interpretable features: Derive features based on

expert input, with names/descriptions which map

to known suspect behavior. (Section 2)

• Explainable discretization: Define feature-split

thresholds via a method explainable in terms of

importance to target classification. (Section 3.2)

• Bayesian Networks: Provide interpretability by

defining the relationships among variables

(features and target/label) both graphically and

with inspectable conditional probability tables.

• Results explainability: Enabled by BNs, provide

explainability of output classifications via impact

analysis, value of information, and analysis of

difficult/ambiguous cases. (Sections 3.4, 5.3, 5.4)

 Figure 1. Visual outline of
interpretable/explainable design pipeline.

2. Expert-Informed Features and Data

 We conducted our analysis using two datasets,

Tracer FIRE 9 (TF9) and Tracer FIRE 10 (TF10),

which consist of a combination of both “normal”,

nonsuspicious system events, as well as “suspect”

events resulting from adversarial attacks. The data was

obtained from the Sandia National Laboratories (SNL)

Tracer FIRE team. Tracer FIRE (TF) is a Forensic

Incident Response Exercise designed by SNL to give

participants an advanced persistent threat (APT) real-

life scenario driven experience to test forensic skills

and learn new methodologies to conduct forensic

investigations. Each year a new scenario is created

using the latest exposed APT attacks and software

vulnerabilities used. Vulnerabilities are embedded into

a simulated enterprise network with normal security

practices in place, then attacked by a red team using

customized APT malware. There can be multiple APT

groups with differing tactics, techniques, and

procedures (TTPs) using custom malware to gain

access and perform actions necessary to their

motivations. While each fictional APT performs its

actions, forensic details are captured by the victim

network using a variety of cyber event detectors

including Zeek and Windows System Monitor (a.k.a.

Sysmon). Access to the TF9 data is publicly available

including the raw event data as well as the forensic

reports which characterize the malicious behavior

(Tracer FIRE, 2021).
 To convert the raw Sysmon data into a usable form

for training a BN, we developed a scenario extraction

tool (SET) for identifying scenarios (parent-child

process trees) which contain one or more suspicious

events (system logs) based on expert-informed

indicators and expert knowledge of cyberattacks. The

scenarios labeled as “suspect” are known malicious

APT activities within the dataset which may not

readily map to intrusions identified in the MITRE

ATT&CK matrix. The collection of suspect indicators

and associated Sysmon events used herein are

described in Table 1 and are intended to be illustrative

but not exhaustive. The SET uses wildcard string

matching to detect suspicious Sysmon events, as well

as whitelisting to ignore innocuous events.

Each scenario is represented as a collection of

aggregated statistics based on the events which

comprise it as described below, then used as an

interpretable set of features for the BN.

• known company percent: The integer percentage
(0-100) of the executables within the scenario
with a known company as the publisher. If the
publisher is known, it is specified in the Sysmon
event record, else it is blank.

• file create count/duration/stdev: The number of
times the same executable repeats a file creation
action; the duration in seconds; and standard
deviation, when multiple file saves occur (three
separate features).

• max time delta: The maximum time delta between
any two adjacent scenario events (in seconds).

• max tree depth: The maximum depth of the
process tree across all events in the scenario.

• duration: The sequence duration (starting from
the first suspect event) in seconds.

• threat [XX] count: The number of times threat
event XX from Table 1 was present in the scenario
(e.g., Threat 17 count = # of file saves) (multiple
separate features).

• priority sum: The sum of priority values across all
child events, including repeats. The priority of an
event indicates how suspicious it is (with higher
values being more suspicious). The event
prioritization scheme is based on expert input but
used for notional purposes only.

• max priority: Maximum priority across all events.

• single-dest count/duration/stdev: The number of
network connections from the same executable to
a single destination (beaconing); the duration in
seconds; and standard deviation when multiple
network connections occur (three features).

• multi-dest count/duration/stdev: The number of
times the same executable connects to multiple
network destinations (reconnaissance); the
duration in seconds; and standard deviation, when
multiple connections occur (three features).

3. Key Elements of BN Pipeline

The classification pipeline is based upon a Python

API extension library written to provide a convenient

level of abstraction for BN operations such as network

instantiation, parameter and structural learning, batch

queries, and explainability analyses. The library

utilizes wrapper classes that succinctly encapsulate

common BN operations from Bayes Server’s Java

API and facilitate integration with other machine

learning libraries, allowing for creation, training, and

inspection of BNs to be completed in a few high-level

object-oriented function calls. The following

subsections describe key pipeline features.

3.1. Feature Selection

Several schemes for feature selection were

developed and tested with an eye towards improving

data dimensionality and model interpretability and

robustness. A basic scheme is to remove highly

correlated features and features with zero variance,

which we refer to as covariance screening. Additional

feature-selection schemes using supervised learning

algorithms are optionally applied after. Feature

selection schemes utilizing mean decreases in

impurity (MDIs) calculated by random forests, gain

calculated by extreme gradient boosting (XGBoost)

models, or ridge regression coefficients can often

improve precision-recall performance of BNs.

3.2. BN Variable Discretization

Although Bayes Server’s API (and therefore our

library) supports continuous linear gaussian variables,

their usage often requires significant additional BN

structure complexity to adequately approximate joint

distributions, and/or reduces model performance.

Binning feature values and then using discrete

variables is common, but it is expensive for a subject

matter expert or analyst to analyze each variable

separately to determine bin boundaries – particularly

as datasets change and/or new features are engineered.

Readily available programmatic discretization

routines did not meet our needs. Thus, we investigated

automated discretization schemes involving both

supervised and unsupervised machine learning

techniques. A primary challenge was to automate

decisions that would normally require human input,

such as number of bins, location of bin boundaries

etc., in an explainable classification-salient way.

One solution was to run k-means clustering on

individual features to discretize values into distinct

clusters. The number of clusters to ultimately use for

each variable was determined by the “elbow method”

outlined by Bholowalia, et al. (2014); as the number

of clusters was increased, the mean squared error

(MSE) for each number of clusters was calculated and

the optimal number of clusters chosen when the MSE

dropped significantly, which we detected by

approximating the second derivative with respect to

the number of clusters using the central difference.

Note that our goal was not to minimize MSE, but to

provide a good balance between underfitting and

overfitting. Double-interval partitioning values were

then obtained by extracting k-mean centroids from the

k-value that had the highest central difference. We

refer to this approach of discretizing variables using

k-means clustering as “k-means discretization”.

Table 1. Suspect indicators

[ID] Indicator Name
Associated

Sysmon Eventa Priority

[1] WScript creating script in Users

subdirectory (11) FileCreate 2

[2] Execution of VB script in Users

subdirectory

(1) Process

creation 2

[3] PowerShell WebClient

downloadstring

(1) Process

creation 1

[4] PowerShell EncodedCommand

(1) Process

creation 1

[5] wget storing exe file in

Windows directory (11) FileCreate 3

[6] wget creating exe file in any

directory (11) FileCreate 2

[7] MS Office creates exe file in

Users subdirectory (11) FileCreate 4

[8] MS Office creates any file in

Users subdirectory (11) FileCreate 2

[9] MS Office exe stream creation

(15) FileCreate-

StreamHash 4

[10] Shell command launches exe

(1) Process

creation 1

[11] Shell command launches exe

in Users, Temp or Startup directory

(1) Process

creation 2

[12] Executable launches

power/command shell

(1) Process

creation 1

[13] Any exe modifying registry

(13) Registry-

Event (set) 1

[14] Exe in Users subdirectory or

temp directory making network

connection

(3) Network

connection 3

[15] Exe in user Windows directory

making network connection

(3) Network

connection 1

[16] Exe in Users subdirectory

creating DLL/EXE/script in Users,

Temp or Startup directory (11) FileCreate 3

[17] Browser saves DLL, EXE, or

script in Users or Temp directory (11) FileCreate 3

[18] Exe creates DLL/EXE/script

in Users, Temp or Startup directory (11) FileCreate 2

[19] Execution of exe in Users or

Temp subdirectory

(1) Process

creation 2

[20] Exe in non-main root directory

creates exe in temp or downloads

directory (11) FileCreate 2

[21] Browser saves DLL, EXE, or

script in users temp/downloads

directory via FileStream

(15) FileCreate-

StreamHash 3

[22] Shell command saves DLL,

EXE, or script in Users, Temp or

Startup directory (11) FileCreate 2

[23] Suspect exe modification in

registry

(13) Registry-

Event (set) 3

[24] Suspect process creation

(1) Process

creation 2

[27] Execution of exe in non-main

root directory

(1) Process

creation 2

[28] Execution of ping.exe

(network discovery)

(1) Process

creation 2

[29] Shell command launches script

in Users, Temp or Startup directory

(1) Process

creation 2
a. a complete description of all Sysmon events can be found at

https://docs.microsoft.com/enus/sysinternals/downloads/sysmon

A limitation of both the manual and k-means

discretization methods is that they do not consider the

relationship between the feature and the target

variable; a bin boundary that “clusters” the feature

well may not provide the best contrast for target

classification. With this in mind, we modified the

“random forests discretizer” proposed by Berrado and

Runger (2009). Their method allows discretizing

features in a supervised, multivariate manner that is

relatively cheap to train: a random forest model is

trained on the labeled data, and feature-split

thresholds that are most important for classification

can then be extracted by crawling through the forest.

However, as noted by Cheng (2015), raw count of

a threshold’s prevalence across all trees may be a

misleading metric of importance. Building a weighted

histogram based on change in Gini impurity at each

split in every tree provides a more meaningful

measure of the information content of a given feature

split (see Figure 2). We therefore modified Berrado

and Runger’s algorithm using delta-Gini-weighted

feature split importance histograms. Figure 2

illustrates this concept for feature “max tree depth”;

note that splits below value 3.5, for example, provide

low delta impurity and class contrast despite their

prevalence. In Figure 3, Gini-based discretization of

this same feature demonstrates high contrast between

positive and negative classes.

Although Berrado and Runger suggest a possible

thresholding method for future automation, the paper

examples are based on manual selection of histogram

modes. Needing a method to automatically determine

the number of modes/bins to select and, recognizing

that a choice of threshold is likely data-dependent, we

instead developed an elbow method for automatically

picking bin boundaries using the central difference,

similar to the terminating method used for k-means

discretization. Our modified random forest (“target-

informed discretization”) method is as follows:

1. Train a random forest classifier on the labeled

training data and, for each feature variable,

extract classification importance information for

feature-split thresholds, as measured by changes

in Gini impurity in every tree.

2. For each feature, build a weighted histogram with

thresholds on the x-axis and split importance on

the y-axis, with bin centers as candidate feature

splits/thresholds.

3. Choose the number of feature splits for each

variable using the elbow method over MSE

scores. MSE for different numbers of splits are

calculated and the optimal number of splits is

determined by the central difference. Histogram

bins the with highest relative importance are

greedily added first, and histogram bin centers

are used directly as our discretization bin

boundaries (since they are chosen specifically for

their ability to split the data for classification).

Key challenges included determining the number of

bins/split candidates for the elbow method to work

well, and how to decide whether/when a variable with

a moderate number of distinct states should be further

summarized in a discretized variable with fewer

states. We further recognize that performance of this

method is potentially hampered by the simplicity of

the greedy heuristic and may be quite dependent on

the binning strategy in step 2; we intend to address

these questions more thoroughly in future work.

Figure 3. Histogram of max tree depth values,
with bin boundaries set based on delta Gini
impurities in Figure 2. Note contrast between
negative (top) and positive class (bottom).

Figure 2. A comparison of measures of feature
split importance for a numerical feature (max
tree depth) in a random forest. The top plot
shows raw count/prevalence of split values
across all trees. The bottom plot shows counts
weighted by changes in Gini impurities. In this
example, we see that some split values with
lower count (such as 7.5) provide greater delta
impurity. In contrast, splits below 3.5 are quite
frequent but provide low delta impurity and
would add little value for classification.

3.3. Assessing Models: Performance-

Tunability Pareto Front

To assess BN performance, we took the geometric

mean of the area under the Precision-Recall curve and

the F1 score (at 0.5 probability threshold for positive

classification). We will refer to this metric as the

“performance-tunability” metric. The intent is to

reward models that have good default performance

and robustly tunable performance across alternate

thresholds. Once multiple networks are trained and

tested on the same data, the performance-tunability

metric and number of parameters can be extracted

from each BN and plotted. We propose selecting

models that lie on the Pareto front of the plot, i.e., no

other model can do better in one axis without getting

worse in the other. An example is shown in Figure 7;

since we wish to maximize model robustness and

minimize model complexity, the Pareto front here is

the upper left edge of the point cloud. Pareto front

selection provides a means for selecting from a suite

of models with optimal performance and complexity

tradeoffs and can easily be adapted to other

performance or complexity metrics.

3.4. Impact Analysis: Enhancing

Classification Explainability

Impact analysis indicates which features make the

greatest difference to the classification probability for

a given set of evidence (Bayes Server, 2021).

Evidence from a given data sample is included, one

feature set at a time, in a query to a BN with no other

evidence observed (or the evidence can be excluded

from a query where all other evidence is observed).

This capability leverages BNs’ unique abilities for

inference with missing feature data. Whereas

manually setting evidence feature-by-feature in a UI

is time-consuming and error prone, automating via the

API allows the user to initiate a query directly from

common Python data structures representing the

entire feature space of a single sample/case (and, if

desired, automate over all cases in a set/list).

We introduce a network graph visualization of

impact analysis (executed for all individuals and pairs

of features) that provides single-feature information

within nodes and information for pairs of features

along edges (see Figure 4). The results of such

analyses can then be used to discern the impact of

feature states or combinations of feature states against

a particular target variable.

4. Experiment on Cybersecurity Data

 We applied the pipeline capabilities above to the
classification of cybersecurity scenarios (summarized
process trees of system logs) found in the TF9 and
TF10 datasets. Manually selecting the right BN
classifier is a challenge; using the transformed TF9
and TF10 SET data, our analysis sought to determine
which BN structures have the highest performance for
scenario classification. We additionally sought to
answer the following questions in the specific context
of this application and dataset:

Figure 4. A graphical depiction of impact analysis queried on a BN trained on cybersecurity data, using
feature state values from a single scenario. Nodes indicate feature names, states, and positive class
probability if only this feature’s evidence is observed. Edges indicate positive class probability if the
two connected features’ evidence is observed. The graph is filtered to show only combinations of
evidence that substantially increase the probability of a positive classification (vs. no evidence). The
darkest links belong to the subgraph of features most strongly tied to a positive classification. This
model believes that the combination of 0 known company percent with 1 threat 19 count or 0 threat 10
count are the most suspect in the absence of other evidence. A similar graphic can be produced to
understand which features/pairs are most impactful when excluded from the scenario evidence.

• Do BN classifiers benefit from semi-supervised

training? Since BNs can learn non-target links

from unlabeled data, can augmenting the training

set with unlabeled data improve classification?

• How do feature selection and discretization –

supervised methods in particular – affect the

robustness of BNs?

Our experiment used a modification of k-fold cross-

validation. The TF9 and TF10 data were aggregated

into a single dataset and split into three separate

train/test folds by shuffling and then stratifying across

the overall dataset. We did not use more folds due to

the highly imbalanced nature of the data (TF9 had 54

positives in 310 scenarios and TF10 had 119 positives

in 3623 scenarios). We then defined three separate

train-test partition strategies, described in Table 2:

The “2-0-1” strategy is equivalent to regular k-fold

cross-validation with three folds and is therefore also

referred to as a “2:1 train-test split”. The “1-0-1” and

“1-1-1” partition strategies are included to measure

the performance of semi-supervised training. For each

strategy, the test set was rotated among the three folds.

Four preprocessing sequences were assessed by

running k-means or Target-Informed discretization in

combination with either Covariance Screening (0.99

threshold), or Covariance+XGBoost feature selection

(0.99 cov. threshold, 0.001 XGBoost gain threshold).

Models were built via every individual structural

learning algorithm shown as a node in Figure 5, and

every valid pair shown as an edge (e.g., TAN followed

by PC is valid, but PC followed by TAN is not). The

full experiment design is summarized in Table 3.

Finally, parameter learning was performed on each

model built from a unique sequence of train/test split

partitioning, preprocessing, and structural learning,

and metrics were averaged over the three test splits.

We assess each model’s performance via precision

and recall (and related F1 and PR AUC measures),

which are more appropriate for our class-imbalanced

problem than TPR, FPR, accuracy, or ROC AUC. For

simplicity, we omitted other imbalance mitigations,

such as oversampling or overweighting the minority

class, from the experiment design. Among machine

learning (ML) methods, BNs are known to be

relatively robust to imbalance (e.g., Leong, 2016) –

likely in part because they are not typically trained to

maximize accuracy – and in our experience over-

weighting the minority class does not improve a BN’s

classification performance. However, using SMOTE

(Synthetic Minority Oversampling Technique) or

other similar approaches before structural learning

may result in better BNs from some algorithms. We

intend to address class resampling and/or reweighting

for structural learning in future work.

5. Cybersecurity Experimental Results

 The results of the analysis are summarized in

figures 6 and 7. In each figure, the top 20 models (by

F1 score mean) from each preprocessing and partition

combination are displayed, with each model being

trained with a different sequence of one to two

structural learning methods. Red and blue lines mark

the performance of the best Naïve Bayes and tree-

augmented naïve (TAN) models respectively, from

any partition and processing strategy, with respect to

the performance metric shown on the axis. The best

model is not necessarily the same on all axes, so not

all red/blue “crosshairs” will intersect a point. Values

(other than the area calculation for performance-

tunability) are calculated at the default 0.5 probability

threshold for positive classification.

The efficiency and comprehensive feature set of

the Python API extension library allowed for the

creation of highly robust models for this specific

application. Given a rich training set and adequate

discretization and data preprocessing, we saw mean

F1 scores surpass 0.87 in a highly data-imbalanced

classification application (Figure 6). Through

combining structural learning methods, models often

exceed the performance achieved by traditional Naïve

Bayes and TAN models within the same partition and

pre-processing classes (recall that in Figure 6, only the

best TAN and Naïve Bayes models across all

strategies are denoted by blue and red lines).

Table 2. Partition strategies

Partition

Strategy

Percentage of TF9+TF10 Data in Partition

Labeled train Unlabeled train Test

1-0-1 33.3% 0% 33.3%

1-1-1 33.3% 33.3% 33.3%

2-0-1 66.7% 0% 33.3%

Table 3. Experiment design

Train-test

Partition

Strategy
×

Pre-processing

(on training data)

×

Structural Learning

(on training data)
Screening

×

Discretization

1-1-1 Covariance k-means All methods

1-0-1 Covariance +

XGBoost

Target-

informed

All valid pairs of

methods 2-0-1

Figure 5. Nodes denote structural learning
methods and edges denote valid ordered pairs
(some methods do not support link constraints
or latent variables from prior methods). Naïve
Bayes is custom (to ensure an acyclic graph),
and clustering is adapted to use the elbow
method for fewer latent cluster states. All other
methods are unmodified from Bayes Server.

The best F1 performance was from models using

the 2-0-1 train-test strategy (unsurprisingly) and built

using covariance screening and target-informed

discretization. Models with high F1 are generally also

tunable, based on correlation between mean F1 and

mean area under the precision-recall curve (R2 =

0.71). This indicates that competitive models can

likely be tuned to specific probability thresholds to

achieve greater performance in either precision or

recall. BNs also performed quite well with sparser

labeled training data (1-0-1 section of Figure 6),

particularly using target-informed discretization and

the less aggressive covariance screening. Going from

1-0-1 to 1-1-1, adding unlabeled data decreased mean

F1 scores. This is consistent with Cohen et al. (2003),

which observes that addition of unlabeled data to a

training set can often reduce performance on model

structures not designed to take advantage of it.

5.1. Pareto Front Selection

Plotting performance-tunability versus parameter

count in Figure 7 as discussed in section 3.3, the

Pareto front (top left) selects models with simple

underlying structures to optimally balance complexity

and performance – typically built with naïve, TAN, or

clustering structural learning. K-means discretization

generally provides lower complexity, particularly

combined with XGBoost feature selection. Higher

performance often results from covariance screening

and/or target-informed discretization. Notably, the

choice of axes for the Pareto could differ based on

stakeholder priorities. In the cybersecurity domain,

analysts are typically swamped with false positives, so

choosing models with high precision and acceptable

recall is a likely strategy. We could instead select the

Pareto set of the mean precision vs. mean recall plot

Figure 6. Mean F1 score across 3 test splits of best 20 models for each preprocessing strategy

(colors) and partition strategy (x-axis). Red line = F1 of best Naïve Bayes, Blue line = F1 of best TAN.

Figure 7. Mean performance-tunability index vs. mean parameter count across all 3 splits.

to get optimal precision-recall tradeoffs. This strategy

favors search-and-score and naïve/TAN structures,

often in combination with other methods, and favors

the 2:1 train-test strategy and covariance screening.

5.2. Comparison Against Random Forest

Table 4 compares metric averages of the best-

average-F1 model – naïve and clustering BN (NBC) –

for the 2-0-1 split against default random forest and

TAN BN models. This single-BN model developed by

our pipeline performs quite favorably when compared

to common naïve and TAN structures and remains

competitive when compared to random forest models

in terms of F1 scores. Even greater F1 scores were

possible on our testing set by running a grid search

over different probability thresholds.

The slightly worse NBC performance compared to

a random forest was deemed acceptable considering

the vastly greater interpretability of a single BN with

inspectable probability tables vs. a large forest of

decision trees, and the local/global self-explainability

it provides for subject matter experts (although

random forests have built-in global explainability,

they require a surrogate like SHAP to derive local

explainability for specific samples). Specific

interpretability and explainability benefits of BNs are

discussed further in sections 5.3 and 5.4.

5.3. Interpretability and Explainability

As pointed out by Rudin (2019), it is preferable to

use inherently interpretable models for making high-

stakes decisions; cyber intrusion detection certainly

qualifies. Rudin further claims that any explanation

method for a black-box model will almost certainly be

inaccurate for some inputs, resulting in unpredictable

mismatches between the model and explanations.

BNs avoid these issues by providing an interpretable

model representation as well as self-explanation of

output (i.e., without needing a surrogate).

Figure 8 shows a TAN BN model trained on the

Tracer FIRE data with highly correlated variables

(34% of features) removed; it illustrates the

dependencies between the different variables for

model interpretability. The conditional probability

table (CPT) for each variable can be inspected to get

a deeper understanding of the classifier.

Aas et al. (2020) mention that a disadvantage of

calculating Shapley values – as required to explain

many common machine learning methods – is that the

computational complexity grows exponentially with

number of features, which has led to approximation

methods being used by the Kernel SHAP method. The

Kernel SHAP method assumes that the features are

independent and when this is not true (i.e., when some

variables are correlated) may lead to incorrect

Shapley values and thus incorrect explanations.

Further noted by Smith et al. (2021), LIME and SHAP

make strong assumptions of feature independence and

linear interactions, which are frequently inaccurate. In

contrast, not only are BN models self-explainable, but

because they are generative models, explanation does

not require additional calculations over the training

set. Thus, no subsampling is needed, and explanation

accuracy does not vary by sample size. Furthermore,

explanation calculation runtime is independent of

training set size and can be dramatically faster than

post-hoc explanation methods.

To assess SHAP explainability versus BN self-

explainability, we applied the Python implementation

of Kernel SHAP (Lundberg & Lee, 2017) to a

Categorical Naïve Bayes classifier in scikit-learn

(CategoricalNB [Pedregosa et al., 2011]) using

different sample sizes for the SHAP analysis: all

3933, 1000 and 100 samples. The experiments were

performed on a Windows 10 PC with a dual-core i7-

7500U running at 2.70 GHz. We saw exceedingly

long run times (especially when using all 3933 sample

records) and an inconsistency of feature-importance

ordering between runs for sampled SHAP. As shown

in Table 5, the Kernel SHAP feature importance does

not match well with the feature importance given by

the Value of Information of the Categorical Naïve

Bayes model (as produced by Bayes Server with an

equivalent model). Given this mismatch between the

BN’s self-explained feature importance (which comes

directly from the BN) and the SHAP determination of

feature importance, one could reasonably hypothesize

that using SHAP as a post-hoc explainability method

Figure 8. TAN BN trained on TF9 and TF10 data.
Target variable SUSPECT is highlighted in red.

Table 4. Classifier Performance Comparison

 Random

Forest

TAN

(PT=0.5)

NBC

(PT=0.5)

NBC

(PT=0.13)

Accuracy 99.3% 98.4% 99.0% 99.0%

TPR/Recall 85.0% 80.9% 81.6% 89.0%

FPR 0.05% 0.82% 0.24% 0.56%

Precision 98.0% 82.0% 94.1% 88.0%

F1 Score 91.0% 81.4% 87.2% 88.5%

can result in misleading or incorrect feature

importance explanations for other ML models as well.

Table 5. Runtime and top-10 features for Naïve

BN self-explanation vs. SHAP

Because the BN is a collection of CPTs, it is also

relatively straightforward to determine via Bayes Rule

how the target variable relates to individual states of

the features. This characteristic enables understanding

the effects of dependent/ correlated features and

nonlinear interactions and can provide valuable

feature insights. For instance, a state-level analysis of

the Naïve Bayes model shows that low max tree depth

values provide little target contrast, and virtually all of

the discriminative power of the feature lies in the

difference between moderate and high values. Such

analysis can also be performed with partial evidence

observed, allowing the user to understand what

feature state information would be next-most-

valuable when some features are known.

5.4. Analysis of Difficult/Ambiguous Cases

A given BN classifier model can be analyzed to

determine which cases it found the most difficult to

score. By comparing the log likelihood of each case

with and without the target label observed, one can

find which cases would have significantly better

model fit without the assigned label. This analysis

process allows identifying potentially mislabeled

cases and cases whose label-salient characteristics are

perhaps not well represented in the feature space.

We demonstrate here on a model with excellent

precision and moderate recall (chosen consistent with

a priority on minimizing false negatives). As seen in

Figure 9, there are a few cases with large differences

between the log likelihood scores with and without

target labels observed. As one would expect given the

model’s high precision and modest recall, all of these

cases were false negatives in at least one test split. We

discuss three representative cases:

• TF9-240: File downloads followed by sequence

of chained command/powershell executions –

suspicious upon manual inspection, but in ways

that are not well reflected in current features.

• TF10-118: File downloads, apparently innocuous

registry sets, and download of a PowerShell

script. Weak evidence of malicious activity

without prior knowledge.

• TF10-1078: Save of a batch file by svchost.exe.

Weak evidence of malicious activity without

prior knowledge.

In these cases, it is understandable why the model

provided false negatives (and why models that label

these correctly might have worse precision). Such

cases are expected, since APTs intentionally perform

attacks using standard techniques to mimic normal

host behavior and avoid detection. Additionally, cases

such as TF9-240 may motivate iterative refinement of

the feature space when existing features do not reflect

key nuances relevant to the classification problem.

Ambiguous cases can also be identified based on

classification probability, and impact analysis (as

discussed in section 3) may help clarify the model’s

labeling rationale and give analysts more evidence to

determine whether a classification might be incorrect.

Figure 4 depicts such a case, TF9-122, which was

highly ambiguous (P(Suspect) = 0.4996) in one test

split. Review of an impact analysis visualization such

as Figure 4 would allow an expert to determine the

salient features of such a case and determine whether

the evidence was sufficient for a given classification.

6. Conclusions

This study demonstrated the effectiveness and

efficiency of building BNs for detecting cyberattacks

through automated pipelines using a novel Python

API extension library. Automating structural and

parameter learning, discretization, and k-fold cross-

validation accelerate model building and assessment

and enable more comprehensive experimentation and

model optimization. In particular, the ability to

automate structural learning across a wide selection of

algorithm combinations enables creation of a diverse

portfolio of networks, improving the likelihood of

creating appropriate models for a wide range of use

cases and stakeholder needs. As APT behavior drifts,

models can quickly be rebuilt or retrained.

Using this pipeline, we can efficiently create a

cyberattack detection system which considers the

tradeoff between the probability of detection and the

probability of false alarm. This tradeoff can be

Figure 9. Histogram of labeled minus

unlabeled log likelihood across all TF9 and
TF10 cases (average across 3 test splits) using

a high-precision BN model. Note log-y axis.

considered both during model selection, and in tuning

the selected model’s detection threshold. Given the

typically unbalanced data that will be experienced in

real-world systems, managing this tradeoff is critical

since missing a true attack could result in a significant

compromise whereas excessive false positives make

it far more difficult to single out an actual attack.

Calculating log likelihood of each case with and

without the target label observed allows identifying

cases that the model had difficulty classifying. This

can lead to greater understanding of false negative/

false positive trends, and of where features can be

improved. Batch impact efficiently provides tabular

and/or graphical classification explanations for any

desired data samples. This capability could aid cyber

analysts in quickly determining if certain ambiguous

scenarios are malicious or innocuous and why.

While other methods such as random forests may

have greater classification performance in certain

instances, the BN pipeline provides a suite of models

that are mostly simpler and more interpretable, with

built-in explainability (such as value of information,

impact analysis, and analysis of difficult cases). In this

application, because we have developed interpretable

features, the BN variables (ignoring latent variables)

map directly to the input data and there is no

“semantic gap between real-world interpretation and

low-level feature space” (Smith et al. 2021) as seen in

black-box ML systems. These interpretability and

explainability characteristics of BNs are critical to

analyst and stakeholder trust in results as well as

overall utility of the system.

7. Acknowledgment

Sandia National Laboratories is a multimission

laboratory managed and operated by National

Technology & Engineering Solutions of Sandia, LLC,

a wholly owned subsidiary of Honeywell

International Inc., for the U.S. Department of

Energy’s National Nuclear Security Administration

under contract DE-NA0003525. This paper describes

objective technical results and analysis. Any

subjective views or opinions that might be expressed

in the paper do not necessarily represent the views of

the U.S. Department of Energy or the United States

Government. SAND XXXYYY

8. References

[1] Aas, K., Jullum, M., & Løland, A. (2020, February 6).
Explaining individual predictions when features are
dependent: More accurate approximations to Shapley values.
arXiv.org. Retrieved May 25, 2022, from
https://arxiv.org/abs/1903.10464

[2] Bayes Server (2021). Bayes Server (Version 9.5) [Bayesian
Network & Causal Artificial Intelligence software].
Retrieved April 15, 2021, from
https://www.bayesserver.com/

[3] Berrado, A., & Runger, G. C. (2009). Supervised
multivariate discretization in mixed data with random
forests. 2009 IEEE/ACS International Conference on
Computer Systems and Applications.
https://doi.org/10.1109/aiccsa.2009.5069327

[4] Bholowalia, P., & Kumar, A. (2014). EBK-Means: A
Clustering Technique based on Elbow Method and K-Means
in WSN. International Journal of Computer Applications,
105(9), 17–24.

[5] Cheng, S. (2015, October 1). Unboxing the random forest
classifier: The threshold distributions. Medium. Retrieved
May 3, 2022, from https://medium.com/airbnb-
engineering/unboxing-the-random-forest-classifier-the-
threshold-distributions-22ea2bb58ea6

[6] Cohen, I., Sebe, N., Gozman, F. G., Cirelo, M. C., & Huang,
T. S. (2003). Learning bayesian network classifiers for facial
expression recognition both labeled and unlabeled data. 2003
IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, 2003. Proceedings.
https://doi.org/10.1109/cvpr.2003.1211408

[7] Jabbar, M. A., Aluvalu, R., & Satyanarayana Reddy, S. S.
(2017). Intrusion detection system using bayesian network
and feature subset selection. 2017 IEEE International
Conference on Computational Intelligence and Computing
Research (ICCIC), 1–5.
https://doi.org/10.1109/iccic.2017.8524381

[8] Jemili, F., Zaghdoud, M., & Ahmed, M. (2007). A
framework for an adaptive intrusion detection system using
Bayesian Network. 2007 IEEE Intelligence and Security
Informatics, 66–70. https://doi.org/10.1109/isi.2007.379535

[9] Leong, C. K. (2016). Credit risk scoring with bayesian
network models. Computational Economics, 47(3), 423-446.

[10] Lundberg, S., & Lee, S.-I. (2017, November 25). A unified
approach to interpreting model predictions. arXiv.org.
Retrieved May 26, 2022, from
https://arxiv.org/abs/1705.07874

[11] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss,
R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D.,
Brucher, M., Perrot, M., & Duchesnay, É. (2011, February
1). Scikit-Learn: Machine learning in Python. The Journal of
Machine Learning Research. Retrieved May 26, 2022, from
https://dl.acm.org/doi/10.5555/1953048.2078195

[12] Pourret, O., Naïm P., & Marcot, B. (2008). Bayesian
networks: A Practical Guide to Applications. Wiley & Sons.

[13] Rudin, C. (2019, September 22). Stop explaining black box
machine learning models for high stakes decisions and use
interpretable models instead. arXiv.org. Retrieved May 26,
2022, from https://arxiv.org/abs/1811.10154

[14] Smith, M., Acquesta, E., Ames, A., Carey, A., Cuellar, C.,
Field, R., Maxfield, T., Mitchell, S., Morris, E., Moss, B.,
Nyre-Yu, M., Rushdi, A., Stites, M., Smutz, C., & Zhou, X.
(2021, September 1). SAGE Intrusion Detection System:
Sensitivity Analysis Guided Explainability for Machine
Learning. (Technical Report) | OSTI.GOV. Retrieved May
31, 2022, from https://www.osti.gov/biblio/1820253

[15] Tracer FIRE (2021). Tracer FIRE 9 data, SAND2021-5906
[raw event data files and forensic reports]. Sandia National
Laboratories.
https://tracerfire9.s3.amazonaws.com/ossec_data.zip,
https://tracerfire9-
release.s3.amazonaws.com/TF9+Forensic+Reports.7z.

[16] Uusitalo, L. (2007). Advantages and challenges of Bayesian
networks in environmental modelling. Ecological Modelling,
203(3-4), 312–318.
https://doi.org/10.1016/j.ecolmodel.2006.11.033

[17] Xu, J., & Shelton, C. R. (2010). Intrusion detection using
continuous time Bayesian networks. Journal of Artificial
Intelligence Research, 39, 745–774.
https://doi.org/10.1613/jair.3050

