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Abstract 
The challenge of cyberattack detection can be 

illustrated by the complexity of the MITRE 

ATT&CKTM matrix, which catalogues >200 attack 

techniques (most with multiple sub-techniques). To 

reliably detect cyberattacks, we propose an evidence-

based approach which fuses multiple cyber events 

over varying time periods to help differentiate normal 

from malicious behavior. We use Bayesian Networks 

(BNs) – probabilistic graphical models consisting of 

a set of variables and their conditional dependencies 

– for fusion/classification due to their interpretable 

nature, ability to tolerate sparse or imbalanced data, 

and resistance to overfitting. Our technique utilizes a 

small collection of expert-informed cyber intrusion 

indicators to create a hybrid detection system that 

combines data-driven training with expert knowledge 

to form a host-based intrusion detection system 

(HIDS). We demonstrate a software pipeline for 

efficiently generating and evaluating various BN 

classifier architectures for specific datasets and 

discuss explainability benefits thereof. 

Keywords: Bayesian networks, cybersecurity, 

explainable machine learning, semi-supervised 

learning, discretization 

1. Introduction 

Prior work has used Bayesian networks (BNs) as 

the core technology of an intrusion detection system 

(IDS), albeit typically using a single BN architecture. 

Jemili et al. (2007) designed a network-based IDS 

(NIDS) that uses signature recognition matched with 

known behavior in combination with the K2 BN 

learning algorithm and Junction Tree inference. They 

focus on detection of intrusions but do not consider 

false positives, a very important metric in an IDS. Xu 

and Shelton (2010) present a system for both NIDS 

and HIDS based on continuous-time BNs which they 

employ in lieu of dynamic BNs due to the bursty 

nature of cyber event data. Their system focuses on 

event timing instead of complex features even though 

their HIDS data has somewhat imprecise timing 

which could allow incorrect event ordering. Jabbar et 

al. (2017) focus on increasing the detection rate and 

accuracy while attenuating the number of false alarms 

in an IDS using feature selection in combination with 

a BN classifier. Our approach seeks to achieve these 

same goals via more sophisticated techniques for 

feature selection and discretization and generates a 

suite of BN classifiers with performance tradeoffs. 

Our focus on host-based cyberattack detection 

requires the use of host logs. Rather than the oft-used 

DARPA KDD '99 dataset (or its revised version, 

NSL-KDD), we utilized a more modern dataset from 

Sandia National Laboratories which contains a 

significant amount of host-based log data generated 

by Windows System Monitor (a.k.a. Sysmon) with 

millisecond timing, as described in detail in section 2. 

BNs are probabilistic graphical models capable of 

multi-directional inference among multiple variables 

via Bayes’ Rule (Pourret et al., 2008). When trained 

upon expert-informed features, BNs yield relatively 

interpretable solutions to classification problems. 

They are lightweight and cheap to train, natively 

provide confidence estimates and goodness-of-fit 

measures, and are relatively robust to imbalanced 

datasets and overfitting, especially in rare event 

detection (Uusitalo, 2007). These advantages make 

BNs well-suited to the detection and analysis of 

suspect system logs in the cybersecurity field. We 

have developed a pipeline that allows multiple BN 

architectures to be evaluated to determine the highest 

performing BN classifier solution for specific 

stakeholder needs with minimal manual effort.  

We desired the capability to be accessible from a 

common data analytic environment. There was no 

Python-native comprehensive package for creation, 

training, and testing of BNs beyond Naïve Bayes, and 

although R has several strong BN packages, its 

copyleft licensing is unsuitable for some intended 

uses. After reviewing several BN modeling tools, we 

selected Bayes Server (2021) as our engine for BN 

creation, inference, and analysis, due to its Python-

accessible API and strong data-driven model-building 

algorithms. We created Python wrappers for select 

components of Bayes Server’s Java API, enabling 

model training and assessment within an automated 

workflow via a few succinct classes and methods. 

We investigated several changes to manual BN 

development pipelines to improve convenience and 

classification performance. Key examples: 

• Automatic discretization removes the need to 

manually discretize new/updated data and often 

outperforms continuous encodings; supervised 

discretization can further improve performance. 
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• Automatic feature selection reduces model size 

and can improve classification performance. 

• A performance-tunability metric and Pareto 

method enables selecting the best model at a 

given complexity. 

We designed the framework for model interpretability 

and results explainability, as outlined in Figure 1: 

• Expert-informed datasets: Start with datasets 

vetted by experts to ensure the pedigree and 

content of known malicious behavior (Section 2) 

• Interpretable features: Derive features based on 

expert input, with names/descriptions which map 

to known suspect behavior. (Section 2) 

• Explainable discretization: Define feature-split 

thresholds via a method explainable in terms of 

importance to target classification. (Section 3.2) 

• Bayesian Networks: Provide interpretability by 

defining the relationships among variables 

(features and target/label) both graphically and 

with inspectable conditional probability tables. 

• Results explainability: Enabled by BNs, provide 

explainability of output classifications via impact 

analysis, value of information, and analysis of 

difficult/ambiguous cases. (Sections 3.4, 5.3, 5.4) 

 Figure 1. Visual outline of 
interpretable/explainable design pipeline. 

2. Expert-Informed Features and Data 

 We conducted our analysis using two datasets, 

Tracer FIRE 9 (TF9) and Tracer FIRE 10 (TF10), 

which consist of a combination of both “normal”, 

nonsuspicious system events, as well as “suspect” 

events resulting from adversarial attacks. The data was 

obtained from the Sandia National Laboratories (SNL) 

Tracer FIRE team. Tracer FIRE (TF) is a Forensic 

Incident Response Exercise designed by SNL to give 

participants an advanced persistent threat (APT) real-

life scenario driven experience to test forensic skills 

and learn new methodologies to conduct forensic 

investigations. Each year a new scenario is created 

using the latest exposed APT attacks and software 

vulnerabilities used. Vulnerabilities are embedded into 

a simulated enterprise network with normal security 

practices in place, then attacked by a red team using 

customized APT malware. There can be multiple APT 

groups with differing tactics, techniques, and 

procedures (TTPs) using custom malware to gain 

access and perform actions necessary to their 

motivations. While each fictional APT performs its 

actions, forensic details are captured by the victim 

network using a variety of cyber event detectors 

including Zeek and Windows System Monitor (a.k.a. 

Sysmon). Access to the TF9 data is publicly available 

including the raw event data as well as the forensic 

reports which characterize the malicious behavior 

(Tracer FIRE, 2021).  
 To convert the raw Sysmon data into a usable form 

for training a BN, we developed a scenario extraction 

tool (SET) for identifying scenarios (parent-child 

process trees) which contain one or more suspicious 

events (system logs) based on expert-informed 

indicators and expert knowledge of cyberattacks. The 

scenarios labeled as “suspect” are known malicious 

APT activities within the dataset which may not 

readily map to intrusions identified in the MITRE 

ATT&CK matrix. The collection of suspect indicators 

and associated Sysmon events used herein are 

described in Table 1 and are intended to be illustrative 

but not exhaustive. The SET uses wildcard string 

matching to detect suspicious Sysmon events, as well 

as whitelisting to ignore innocuous events.  

Each scenario is represented as a collection of 

aggregated statistics based on the events which 

comprise it as described below, then used as an 

interpretable set of features for the BN.  

• known company percent: The integer percentage 
(0-100) of the executables within the scenario 
with a known company as the publisher. If the 
publisher is known, it is specified in the Sysmon 
event record, else it is blank. 

• file create count/duration/stdev: The number of 
times the same executable repeats a file creation 
action; the duration in seconds; and standard 
deviation, when multiple file saves occur (three 
separate features). 

• max time delta: The maximum time delta between 
any two adjacent scenario events (in seconds). 

• max tree depth: The maximum depth of the 
process tree across all events in the scenario. 

• duration: The sequence duration (starting from 
the first suspect event) in seconds. 

• threat [XX] count: The number of times threat 
event XX from Table 1 was present in the scenario 
(e.g., Threat 17 count = # of file saves) (multiple 
separate features). 

• priority sum: The sum of priority values across all 
child events, including repeats. The priority of an 
event indicates how suspicious it is (with higher 
values being more suspicious). The event 
prioritization scheme is based on expert input but 
used for notional purposes only. 

• max priority: Maximum priority across all events.  

• single-dest count/duration/stdev: The number of 
network connections from the same executable to 
a single destination (beaconing); the duration in 
seconds; and standard deviation when multiple 
network connections occur (three features). 

• multi-dest count/duration/stdev: The number of 
times the same executable connects to multiple 
network destinations (reconnaissance); the 
duration in seconds; and standard deviation, when 
multiple connections occur (three features). 



3. Key Elements of BN Pipeline 

The classification pipeline is based upon a Python 

API extension library written to provide a convenient 

level of abstraction for BN operations such as network 

instantiation, parameter and structural learning, batch 

queries, and explainability analyses. The library 

utilizes wrapper classes that succinctly encapsulate 

common BN operations from Bayes Server’s Java 

API and facilitate integration with other machine 

learning libraries, allowing for creation, training, and 

inspection of BNs to be completed in a few high-level 

object-oriented function calls. The following 

subsections describe key pipeline features. 

3.1. Feature Selection 

Several schemes for feature selection were 

developed and tested with an eye towards improving 

data dimensionality and model interpretability and 

robustness. A basic scheme is to remove highly 

correlated features and features with zero variance, 

which we refer to as covariance screening. Additional 

feature-selection schemes using supervised learning 

algorithms are optionally applied after. Feature 

selection schemes utilizing mean decreases in 

impurity (MDIs) calculated by random forests, gain 

calculated by extreme gradient boosting (XGBoost) 

models, or ridge regression coefficients can often 

improve precision-recall performance of BNs. 

3.2. BN Variable Discretization 

Although Bayes Server’s API (and therefore our 

library) supports continuous linear gaussian variables, 

their usage often requires significant additional BN 

structure complexity to adequately approximate joint 

distributions, and/or reduces model performance. 

Binning feature values and then using discrete 

variables is common, but it is expensive for a subject 

matter expert or analyst to analyze each variable 

separately to determine bin boundaries – particularly 

as datasets change and/or new features are engineered. 

Readily available programmatic discretization 

routines did not meet our needs. Thus, we investigated 

automated discretization schemes involving both 

supervised and unsupervised machine learning 

techniques. A primary challenge was to automate 

decisions that would normally require human input, 

such as number of bins, location of bin boundaries 

etc., in an explainable classification-salient way. 

One solution was to run k-means clustering on 

individual features to discretize values into distinct 

clusters. The number of clusters to ultimately use for 

each variable was determined by the “elbow method” 

outlined by Bholowalia, et al. (2014); as the number 

of clusters was increased, the mean squared error 

(MSE) for each number of clusters was calculated and 

the optimal number of clusters chosen when the MSE 

dropped significantly, which we detected by 

approximating the second derivative with respect to 

the number of clusters using the central difference. 

Note that our goal was not to minimize MSE, but to 

provide a good balance between underfitting and 

overfitting. Double-interval partitioning values were 

then obtained by extracting k-mean centroids from the 

k-value that had the highest central difference. We 

refer to this approach of discretizing variables using 

k-means clustering as “k-means discretization”.  

Table 1. Suspect indicators 

[ID] Indicator Name 
Associated 

Sysmon Eventa Priority 

[1] WScript creating script in Users 

subdirectory (11) FileCreate 2 

[2] Execution of VB script in Users 

subdirectory 

(1) Process 

creation 2 

[3] PowerShell WebClient 

downloadstring 

(1) Process 

creation 1 

[4] PowerShell EncodedCommand 

(1) Process 

creation 1 

[5] wget storing exe file in 

Windows directory (11) FileCreate 3 

[6] wget creating exe file in any 

directory (11) FileCreate 2 

[7] MS Office creates exe file in 

Users subdirectory (11) FileCreate 4 

[8] MS Office creates any file in 

Users subdirectory (11) FileCreate 2 

[9] MS Office exe stream creation 

(15) FileCreate- 

StreamHash 4 

[10] Shell command launches exe 

(1) Process 

creation 1 

[11] Shell command launches exe  

in Users, Temp or Startup directory 

(1) Process 

creation 2 

[12] Executable launches 

power/command shell 

(1) Process 

creation 1 

[13] Any exe modifying registry 

(13) Registry- 

Event (set) 1 

[14] Exe in Users subdirectory or 

temp directory making network 

connection 

(3) Network 

connection 3 

[15] Exe in user Windows directory 

making network connection 

(3) Network 

connection 1 

[16] Exe in Users subdirectory 

creating DLL/EXE/script in Users, 

Temp or Startup directory (11) FileCreate 3 

[17] Browser saves DLL, EXE, or 

script in Users or Temp directory (11) FileCreate 3 

[18] Exe creates DLL/EXE/script 

in Users, Temp or Startup directory (11) FileCreate 2 

[19] Execution of exe in Users or 

Temp subdirectory 

(1) Process 

creation 2 

[20] Exe in non-main root directory 

creates exe in temp or downloads 

directory (11) FileCreate 2 

[21] Browser saves DLL, EXE, or 

script in users temp/downloads 

directory via FileStream 

(15) FileCreate- 

StreamHash 3 

[22] Shell command saves DLL, 

EXE, or script in Users, Temp or 

Startup directory (11) FileCreate 2 

[23] Suspect exe modification in 

registry 

(13) Registry- 

Event (set) 3 

[24] Suspect process creation 

(1) Process 

creation 2 

[27] Execution of exe in non-main 

root directory 

(1) Process 

creation 2 

[28] Execution of ping.exe 

(network discovery) 

(1) Process 

creation 2 

[29] Shell command launches script 

in Users, Temp or Startup directory 

(1) Process 

creation 2 
a. a complete description of all Sysmon events can be found at 

https://docs.microsoft.com/enus/sysinternals/downloads/sysmon 



A limitation of both the manual and k-means 

discretization methods is that they do not consider the 

relationship between the feature and the target 

variable; a bin boundary that “clusters” the feature 

well may not provide the best contrast for target 

classification. With this in mind, we modified the 

“random forests discretizer” proposed by Berrado and 

Runger (2009). Their method allows discretizing 

features in a supervised, multivariate manner that is 

relatively cheap to train: a random forest model is 

trained on the labeled data, and feature-split 

thresholds that are most important for classification 

can then be extracted by crawling through the forest. 

However, as noted by Cheng (2015), raw count of 

a threshold’s prevalence across all trees may be a 

misleading metric of importance. Building a weighted 

histogram based on change in Gini impurity at each 

split in every tree provides a more meaningful 

measure of the information content of a given feature 

split (see Figure 2). We therefore modified Berrado 

and Runger’s algorithm using delta-Gini-weighted 

feature split importance histograms. Figure 2 

illustrates this concept for feature “max tree depth”; 

note that splits below value 3.5, for example, provide 

low delta impurity and class contrast despite their 

prevalence. In Figure 3, Gini-based discretization of 

this same feature demonstrates high contrast between 

positive and negative classes.  

Although Berrado and Runger suggest a possible 

thresholding method for future automation, the paper 

examples are based on manual selection of histogram 

modes. Needing a method to automatically determine 

the number of modes/bins to select and, recognizing 

that a choice of threshold is likely data-dependent, we 

instead developed an elbow method for automatically 

picking bin boundaries using the central difference, 

similar to the terminating method used for k-means 

discretization. Our modified random forest (“target-

informed discretization”) method is as follows: 

1. Train a random forest classifier on the labeled 

training data and, for each feature variable, 

extract classification importance information for 

feature-split thresholds, as measured by changes 

in Gini impurity in every tree. 

2. For each feature, build a weighted histogram with 

thresholds on the x-axis and split importance on 

the y-axis, with bin centers as candidate feature 

splits/thresholds. 

3. Choose the number of feature splits for each 

variable using the elbow method over MSE 

scores. MSE for different numbers of splits are 

calculated and the optimal number of splits is 

determined by the central difference. Histogram 

bins the with highest relative importance are 

greedily added first, and histogram bin centers 

are used directly as our discretization bin 

boundaries (since they are chosen specifically for 

their ability to split the data for classification). 

Key challenges included determining the number of 

bins/split candidates for the elbow method to work 

well, and how to decide whether/when a variable with 

a moderate number of distinct states should be further 

summarized in a discretized variable with fewer 

states. We further recognize that performance of this 

method is potentially hampered by the simplicity of 

the greedy heuristic and may be quite dependent on 

the binning strategy in step 2; we intend to address 

these questions more thoroughly in future work.  

 
Figure 3. Histogram of max tree depth values, 
with bin boundaries set based on delta Gini 
impurities in Figure 2. Note contrast between 
negative (top) and positive class (bottom).  

 

 
Figure 2. A comparison of measures of feature 
split importance for a numerical feature (max 
tree depth) in a random forest. The top plot 
shows raw count/prevalence of split values 
across all trees. The bottom plot shows counts 
weighted by changes in Gini impurities. In this 
example, we see that some split values with 
lower count (such as 7.5) provide greater delta 
impurity. In contrast, splits below 3.5 are quite 
frequent but provide low delta impurity and 
would add little value for classification. 



3.3. Assessing Models: Performance-

Tunability Pareto Front 

To assess BN performance, we took the geometric 

mean of the area under the Precision-Recall curve and 

the F1 score (at 0.5 probability threshold for positive 

classification). We will refer to this metric as the 

“performance-tunability” metric. The intent is to 

reward models that have good default performance 

and robustly tunable performance across alternate 

thresholds. Once multiple networks are trained and 

tested on the same data, the performance-tunability 

metric and number of parameters can be extracted 

from each BN and plotted. We propose selecting 

models that lie on the Pareto front of the plot, i.e., no 

other model can do better in one axis without getting 

worse in the other. An example is shown in Figure 7; 

since we wish to maximize model robustness and 

minimize model complexity, the Pareto front here is 

the upper left edge of the point cloud. Pareto front 

selection provides a means for selecting from a suite 

of models with optimal performance and complexity 

tradeoffs and can easily be adapted to other 

performance or complexity metrics.  

3.4. Impact Analysis: Enhancing 

Classification Explainability 

Impact analysis indicates which features make the 

greatest difference to the classification probability for 

a given set of evidence (Bayes Server, 2021). 

Evidence from a given data sample is included, one 

feature set at a time, in a query to a BN with no other 

evidence observed (or the evidence can be excluded 

from a query where all other evidence is observed). 

This capability leverages BNs’ unique abilities for 

inference with missing feature data. Whereas 

manually setting evidence feature-by-feature in a UI 

is time-consuming and error prone, automating via the 

API allows the user to initiate a query directly from 

common Python data structures representing the 

entire feature space of a single sample/case (and, if 

desired, automate over all cases in a set/list).  

We introduce a network graph visualization of 

impact analysis (executed for all individuals and pairs 

of features) that provides single-feature information 

within nodes and information for pairs of features 

along edges (see Figure 4). The results of such 

analyses can then be used to discern the impact of 

feature states or combinations of feature states against 

a particular target variable. 

4. Experiment on Cybersecurity Data 

 We applied the pipeline capabilities above to the 
classification of cybersecurity scenarios (summarized 
process trees of system logs) found in the TF9 and 
TF10 datasets. Manually selecting the right BN 
classifier is a challenge; using the transformed TF9 
and TF10 SET data, our analysis sought to determine 
which BN structures have the highest performance for 
scenario classification. We additionally sought to 
answer the following questions in the specific context 
of this application and dataset:  

 
Figure 4. A graphical depiction of impact analysis queried on a BN trained on cybersecurity data, using 
feature state values from a single scenario. Nodes indicate feature names, states, and positive class 
probability if only this feature’s evidence is observed.  Edges indicate positive class probability if the 
two connected features’ evidence is observed. The graph is filtered to show only combinations of 
evidence that substantially increase the probability of a positive classification (vs. no evidence). The 
darkest links belong to the subgraph of features most strongly tied to a positive classification. This 
model believes that the combination of 0 known company percent with 1 threat 19 count or 0 threat 10 
count are the most suspect in the absence of other evidence. A similar graphic can be produced to 
understand which features/pairs are most impactful when excluded from the scenario evidence. 

 



• Do BN classifiers benefit from semi-supervised 

training? Since BNs can learn non-target links 

from unlabeled data, can augmenting the training 

set with unlabeled data improve classification? 

• How do feature selection and discretization – 

supervised methods in particular – affect the 

robustness of BNs?  

Our experiment used a modification of k-fold cross-

validation. The TF9 and TF10 data were aggregated 

into a single dataset and split into three separate 

train/test folds by shuffling and then stratifying across 

the overall dataset. We did not use more folds due to 

the highly imbalanced nature of the data (TF9 had 54 

positives in 310 scenarios and TF10 had 119 positives 

in 3623 scenarios). We then defined three separate 

train-test partition strategies, described in Table 2:  

 

The “2-0-1” strategy is equivalent to regular k-fold 

cross-validation with three folds and is therefore also 

referred to as a “2:1 train-test split”. The “1-0-1” and 

“1-1-1” partition strategies are included to measure 

the performance of semi-supervised training. For each 

strategy, the test set was rotated among the three folds. 

Four preprocessing sequences were assessed by 

running k-means or Target-Informed discretization in 

combination with either Covariance Screening (0.99 

threshold), or Covariance+XGBoost feature selection 

(0.99 cov. threshold, 0.001 XGBoost gain threshold). 

Models were built via every individual structural 

learning algorithm shown as a node in Figure 5, and 

every valid pair shown as an edge (e.g., TAN followed 

by PC is valid, but PC followed by TAN is not). The 

full experiment design is summarized in Table 3.  

Finally, parameter learning was performed on each 

model built from a unique sequence of train/test split 

partitioning, preprocessing, and structural learning, 

and metrics were averaged over the three test splits.  

We assess each model’s performance via precision 

and recall (and related F1 and PR AUC measures), 

which are more appropriate for our class-imbalanced 

problem than TPR, FPR, accuracy, or ROC AUC. For 

simplicity, we omitted other imbalance mitigations, 

such as oversampling or overweighting the minority 

class, from the experiment design. Among machine 

learning (ML) methods, BNs are known to be 

relatively robust to imbalance (e.g., Leong, 2016) – 

likely in part because they are not typically trained to 

maximize accuracy – and in our experience over-

weighting the minority class does not improve a BN’s 

classification performance. However, using SMOTE 

(Synthetic Minority Oversampling Technique) or 

other similar approaches before structural learning 

may result in better BNs from some algorithms. We 

intend to address class resampling and/or reweighting 

for structural learning in future work. 

5. Cybersecurity Experimental Results 

 The results of the analysis are summarized in 

figures 6 and 7. In each figure, the top 20 models (by 

F1 score mean) from each preprocessing and partition 

combination are displayed, with each model being 

trained with a different sequence of one to two 

structural learning methods. Red and blue lines mark 

the performance of the best Naïve Bayes and tree-

augmented naïve (TAN) models respectively, from 

any partition and processing strategy, with respect to 

the performance metric shown on the axis. The best 

model is not necessarily the same on all axes, so not 

all red/blue “crosshairs” will intersect a point. Values 

(other than the area calculation for performance-

tunability) are calculated at the default 0.5 probability 

threshold for positive classification. 

The efficiency and comprehensive feature set of 

the Python API extension library allowed for the 

creation of highly robust models for this specific 

application. Given a rich training set and adequate 

discretization and data preprocessing, we saw mean 

F1 scores surpass 0.87 in a highly data-imbalanced 

classification application (Figure 6). Through 

combining structural learning methods, models often 

exceed the performance achieved by traditional Naïve 

Bayes and TAN models within the same partition and 

pre-processing classes (recall that in Figure 6, only the 

best TAN and Naïve Bayes models across all 

strategies are denoted by blue and red lines).  

Table 2. Partition strategies 

Partition 

Strategy 

Percentage of TF9+TF10 Data in Partition 

Labeled train Unlabeled train Test 

1-0-1 33.3% 0% 33.3% 

1-1-1 33.3% 33.3% 33.3% 

2-0-1 66.7% 0% 33.3% 

 

Table 3. Experiment design 

Train-test 

Partition  

Strategy 
× 

Pre-processing  

(on training data) 

× 

Structural Learning 

(on training data) 
Screening 

× 

Discretization 

1-1-1 Covariance k-means All methods 

1-0-1 Covariance + 

XGBoost 

Target- 

informed 

All valid pairs of 

methods 2-0-1 

 

 
Figure 5. Nodes denote structural learning 
methods and edges denote valid ordered pairs 
(some methods do not support link constraints 
or latent variables from prior methods). Naïve 
Bayes is custom (to ensure an acyclic graph), 
and clustering is adapted to use the elbow 
method for fewer latent cluster states. All other 
methods are unmodified from Bayes Server. 



The best F1 performance was from models using 

the 2-0-1 train-test strategy (unsurprisingly) and built 

using covariance screening and target-informed 

discretization. Models with high F1 are generally also 

tunable, based on correlation between mean F1 and 

mean area under the precision-recall curve (R2 = 

0.71). This indicates that competitive models can 

likely be tuned to specific probability thresholds to 

achieve greater performance in either precision or 

recall. BNs also performed quite well with sparser 

labeled training data (1-0-1 section of Figure 6), 

particularly using target-informed discretization and 

the less aggressive covariance screening. Going from 

1-0-1 to 1-1-1, adding unlabeled data decreased mean 

F1 scores. This is consistent with Cohen et al. (2003), 

which observes that addition of unlabeled data to a 

training set can often reduce performance on model 

structures not designed to take advantage of it. 

5.1. Pareto Front Selection 

Plotting performance-tunability versus parameter 

count in Figure 7 as discussed in section 3.3, the 

Pareto front (top left) selects models with simple 

underlying structures to optimally balance complexity 

and performance – typically built with naïve, TAN, or 

clustering structural learning. K-means discretization 

generally provides lower complexity, particularly 

combined with XGBoost feature selection. Higher 

performance often results from covariance screening 

and/or target-informed discretization. Notably, the 

choice of axes for the Pareto could differ based on 

stakeholder priorities. In the cybersecurity domain, 

analysts are typically swamped with false positives, so 

choosing models with high precision and acceptable 

recall is a likely strategy. We could instead select the 

Pareto set of the mean precision vs. mean recall plot 

 
Figure 6. Mean F1 score across 3 test splits of best 20 models for each preprocessing strategy 

(colors) and partition strategy (x-axis). Red line = F1 of best Naïve Bayes, Blue line = F1 of best TAN. 

 
Figure 7. Mean performance-tunability index vs. mean parameter count across all 3 splits. 



to get optimal precision-recall tradeoffs. This strategy 

favors search-and-score and naïve/TAN structures, 

often in combination with other methods, and favors 

the 2:1 train-test strategy and covariance screening.  

5.2. Comparison Against Random Forest  

Table 4 compares metric averages of the best-

average-F1 model – naïve and clustering BN (NBC) – 

for the 2-0-1 split against default random forest and 

TAN BN models. This single-BN model developed by 

our pipeline performs quite favorably when compared 

to common naïve and TAN structures and remains 

competitive when compared to random forest models 

in terms of F1 scores. Even greater F1 scores were 

possible on our testing set by running a grid search 

over different probability thresholds.  

The slightly worse NBC performance compared to 

a random forest was deemed acceptable considering 

the vastly greater interpretability of a single BN with 

inspectable probability tables vs. a large forest of 

decision trees, and the local/global self-explainability 

it provides for subject matter experts (although 

random forests have built-in global explainability, 

they require a surrogate like SHAP to derive local 

explainability for specific samples). Specific 

interpretability and explainability benefits of BNs are 

discussed further in sections 5.3 and 5.4. 

5.3. Interpretability and Explainability 

As pointed out by Rudin (2019), it is preferable to 

use inherently interpretable models for making high-

stakes decisions; cyber intrusion detection certainly 

qualifies. Rudin further claims that any explanation 

method for a black-box model will almost certainly be 

inaccurate for some inputs, resulting in unpredictable 

mismatches between the model and explanations. 

BNs avoid these issues by providing an interpretable 

model representation as well as self-explanation of 

output (i.e., without needing a surrogate).  

Figure 8 shows a TAN BN model trained on the 

Tracer FIRE data with highly correlated variables 

(34% of features) removed; it illustrates the 

dependencies between the different variables for 

model interpretability. The conditional probability 

table (CPT) for each variable can be inspected to get 

a deeper understanding of the classifier.  

Aas et al. (2020) mention that a disadvantage of 

calculating Shapley values – as required to explain 

many common machine learning methods – is that the 

computational complexity grows exponentially with 

number of features, which has led to approximation 

methods being used by the Kernel SHAP method. The 

Kernel SHAP method assumes that the features are 

independent and when this is not true (i.e., when some 

variables are correlated) may lead to incorrect 

Shapley values and thus incorrect explanations. 

Further noted by Smith et al. (2021), LIME and SHAP 

make strong assumptions of feature independence and 

linear interactions, which are frequently inaccurate. In 

contrast, not only are BN models self-explainable, but 

because they are generative models, explanation does 

not require additional calculations over the training 

set. Thus, no subsampling is needed, and explanation 

accuracy does not vary by sample size. Furthermore, 

explanation calculation runtime is independent of 

training set size and can be dramatically faster than 

post-hoc explanation methods.  

To assess SHAP explainability versus BN self-

explainability, we applied the Python implementation 

of Kernel SHAP (Lundberg & Lee, 2017) to a 

Categorical Naïve Bayes classifier in scikit-learn 

(CategoricalNB [Pedregosa et al., 2011]) using 

different sample sizes for the SHAP analysis: all 

3933, 1000 and 100 samples. The experiments were 

performed on a Windows 10 PC with a dual-core i7-

7500U running at 2.70 GHz. We saw exceedingly 

long run times (especially when using all 3933 sample 

records) and an inconsistency of feature-importance 

ordering between runs for sampled SHAP. As shown 

in Table 5, the Kernel SHAP feature importance  does 

not match well with the feature importance given by 

the Value of Information of the Categorical Naïve 

Bayes model (as produced by Bayes Server with an 

equivalent model). Given this mismatch between the 

BN’s self-explained feature importance (which comes 

directly from the BN) and the SHAP determination of 

feature importance, one could reasonably hypothesize 

that using SHAP as a post-hoc explainability method 

Figure 8. TAN BN trained on TF9 and TF10 data. 
Target variable SUSPECT is highlighted in red. 

Table 4. Classifier Performance Comparison 

 Random 

Forest 

TAN 

(PT=0.5) 

NBC 

(PT=0.5) 

NBC 

(PT=0.13) 

Accuracy 99.3% 98.4% 99.0% 99.0% 

TPR/Recall 85.0% 80.9% 81.6% 89.0% 

FPR 0.05% 0.82% 0.24% 0.56% 

Precision 98.0% 82.0% 94.1% 88.0% 

F1 Score 91.0% 81.4% 87.2% 88.5% 

 



can result in misleading or incorrect feature 

importance explanations for other ML models as well.  

 
Table 5. Runtime and top-10 features for  Naïve 

BN self-explanation vs. SHAP

 

Because the BN is a collection of CPTs, it is also 

relatively straightforward to determine via Bayes Rule 

how the target variable relates to individual states of 

the features. This characteristic enables understanding 

the effects of dependent/ correlated features and 

nonlinear interactions and can provide valuable 

feature insights. For instance, a state-level analysis of 

the Naïve Bayes model shows that low max tree depth 

values provide little target contrast, and virtually all of 

the discriminative power of the feature lies in the 

difference between moderate and high values. Such 

analysis can also be performed with partial evidence 

observed, allowing the user to understand what 

feature state information would be next-most-

valuable when some features are known. 

5.4. Analysis of Difficult/Ambiguous Cases 

A given BN classifier model can be analyzed to 

determine which cases it found the most difficult to 

score. By comparing the log likelihood of each case 

with and without the target label observed, one can 

find which cases would have significantly better 

model fit without the assigned label. This analysis 

process allows identifying potentially mislabeled 

cases and cases whose label-salient characteristics are 

perhaps not well represented in the feature space.  

We demonstrate here on a model with excellent 

precision and moderate recall (chosen consistent with 

a priority on minimizing false negatives). As seen in 

Figure 9, there are a few cases with large differences 

between the log likelihood scores with and without 

target labels observed. As one would expect given the 

model’s high precision and modest recall, all of these 

cases were false negatives in at least one test split. We 

discuss three representative cases:  

• TF9-240: File downloads followed by sequence 

of chained command/powershell executions – 

suspicious upon manual inspection, but in ways 

that are not well reflected in current features. 

• TF10-118: File downloads, apparently innocuous 

registry sets, and download of a PowerShell 

script. Weak evidence of malicious activity 

without prior knowledge. 

• TF10-1078: Save of a batch file by svchost.exe. 

Weak evidence of malicious activity without 

prior knowledge.  

In these cases, it is understandable why the model 

provided false negatives (and why models that label 

these correctly might have worse precision). Such 

cases are expected, since APTs intentionally perform 

attacks using standard techniques to mimic normal 

host behavior and avoid detection. Additionally, cases 

such as TF9-240 may motivate iterative refinement of 

the feature space when existing features do not reflect 

key nuances relevant to the classification problem.  

Ambiguous cases can also be identified based on 

classification probability, and impact analysis (as 

discussed in section 3) may help clarify the model’s 

labeling rationale and give analysts more evidence to 

determine whether a classification might be incorrect. 

Figure 4 depicts such a case, TF9-122, which was 

highly ambiguous (P(Suspect) = 0.4996) in one test 

split. Review of an impact analysis visualization such 

as Figure 4 would allow an expert to determine the 

salient features of such a case and determine whether 

the evidence was sufficient for a given classification. 

6. Conclusions 

This study demonstrated the effectiveness and 

efficiency of building BNs for detecting cyberattacks 

through automated pipelines using a novel Python 

API extension library. Automating structural and 

parameter learning, discretization, and k-fold cross-

validation accelerate model building and assessment 

and enable more comprehensive experimentation and 

model optimization. In particular, the ability to 

automate structural learning across a wide selection of 

algorithm combinations enables creation of a diverse 

portfolio of networks, improving the likelihood of 

creating appropriate models for a wide range of use 

cases and stakeholder needs. As APT behavior drifts, 

models can quickly be rebuilt or retrained.  

Using this pipeline, we can efficiently create a 

cyberattack detection system which considers the 

tradeoff between the probability of detection and the 

probability of false alarm. This tradeoff can be 

 
Figure 9. Histogram of labeled minus 

unlabeled log likelihood across all TF9 and 
TF10 cases (average across 3 test splits) using 

a high-precision BN model. Note log-y axis.  



considered both during model selection, and in tuning 

the selected model’s detection threshold. Given the 

typically unbalanced data that will be experienced in 

real-world systems, managing this tradeoff is critical 

since missing a true attack could result in a significant 

compromise whereas excessive false positives make 

it far more difficult to single out an actual attack.  

Calculating log likelihood of each case with and 

without the target label observed allows identifying 

cases that the model had difficulty classifying. This 

can lead to greater understanding of false negative/ 

false positive trends, and of where features can be 

improved. Batch impact efficiently provides tabular 

and/or graphical classification explanations for any 

desired data samples. This capability could aid cyber 

analysts in quickly determining if certain ambiguous 

scenarios are malicious or innocuous and why.  

While other methods such as random forests may 

have greater classification performance in certain 

instances, the BN pipeline provides a suite of models 

that are mostly simpler and more interpretable, with 

built-in explainability (such as value of information, 

impact analysis, and analysis of difficult cases). In this 

application, because we have developed interpretable 

features, the BN variables (ignoring latent variables) 

map directly to the input data and there is no 

“semantic gap between real-world interpretation and 

low-level feature space” (Smith et al. 2021) as seen in 

black-box ML systems. These interpretability and 

explainability characteristics of BNs are critical to 

analyst and stakeholder trust in results as well as 

overall utility of the system. 
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