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Risk-Aware Bayesian Goal-Oriented Optimal Experimental Design (OED)

Problems Goals

Develop a framework for risk-
aware OED

Collecting experimental
data is expensive

Determine optimal sensors to
measure contaminant transport

Standard OED doesn’t
account for risk

Goal-oriented optimal experimental design (GOOED)
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Bayesian inverse
problem solution
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Bayesian GOOED problem
Determine optimal design
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Rockafellar, R.T, and Uryasev, S., The fundamental risk quadrangle in risk management, optimization and statistical estimation,

Qol space

Surveys in Operations Research and Management Science, 2013

Fundamental risk quadrangle

Risk measures
generalize the OED
problem

Results

Goal-oriented scalar Qol vs. Standard OED
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Optimal designs corresponding to minimizing:

= Standard deviation of the average
concentration in the upper right versus
lower left corner

= KL-divergence on model parameters

Correspondence between
design location and Qol
location

Risk-averse vs. risk-neutral approaches for vector Qol

Optimal designs and corresponding prediction variances
(top) R := E[prediction variance]

Risk: Statistics used to characterize random variables

G-optimal:
R[X] = sup[X]
l-optimal:

R[X] == E[X]

R[X] := AVaR [ ]
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Our approach

/

Controls risk Classical
averseness
Prediction uncertainty for two design strategies
Both have the same expected uncertainty
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Steady state advection-diffusion: Modeling the concentration

of a contaminant over a 2D

domain

—V-(alx,)Vu)+bVu=f, inQ = [0,1]U[0,1]
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Diffusion:

a(x,0) = exp[91 sin(x,m) sin(x, )
+ 0,cos(3/2x,m) cos(3/2x,m)]

Scalar:

q(0) = fﬂ

Average concentration in a

u(x, 0)dx
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Nonlinear parameter-to-
observable map
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Vector:

u(x,0), e€Q cq

Concentration across the domain
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(L) 15t optimal sensor
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(bottom) R := AVaR,,_ 95 [prediction variance]
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(R) 15t & 2"d optimal sensors
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Risk-averse approach reduces maximum prediction variance
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Conclusions

Goal-oriented OED
approaches lead to
decreased uncertainty in a
Qol compared to standard
OED approaches

Generalizing the OED
problem using risk
measures allows for more
flexibility in accounting for

risk
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