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Context: novel probabilistic strategies for transfer learning
Traditional TL

Model, M

Challenge: Many Sandia mission domains
defined by a lack of reliable data, preventing
use of many machine learning techniques for soo S | piaoy
predictive modeling: i

» Expensive computer simulations. T

I i wad  gaen PO
» Prohibitive data acquisition cost. u
. . . .. lil-posed learning
» Limited access to classified /sensitive )  rovendwet
data. Probabilistic TL
Model, M
Goal: Enhance the trust in ML within noisy
- Source Learning
and sparse data settings. wnp, iy - NECE
. . . . Tempering
Requirement: High-fidelity, closed-form parameariod by 8
approximations of parameter PDFs (as op- _a
. . . oy, Tamet  pOIDIDL)
posed to just samples) for approximation of TaiT
multimodal target likelihood p(0 | D;). QIR tcaring pomem
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Approximation of posteriors in Bayesian inference

Bayesian inference: probabilistic model p(x, z) with x,z observed, latent
variables. Some structure specified on the joint distribution e.g.

p(x,z) = p(x|z)p(z). Here we take x to be a fixed set of data D. Baye's
rule gives:

p(z| D) = p(Dp\(;))p(Z) -7 5((1?';))5((:))&; / o(D | 2)p(2)dz (1)

. VT
difficult to compute

Sampling strategies for p(z | D) include:

» MCMC: Asymptotically exact but computationally expensive.
Difficulties with multimodal distributions.

» Dropout: Adds UQ to neural networks via random perturbations of
the weights. Less costly than Variational Inference.
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Variational Inference (VI)

Sampling strategies often suffer from scalability issues, we also need
closed form approximations for the TL framework.

Variational Inference
Approximate posterior p(z | D) by qg(z) € Fg in some family Fy of
PDFs by minimizing error measure such as KL-divergence:

qe(z) = qgﬁei]rge Dki(qe(2) || p(z | D)) (2)

where 0 are the variational parameters to be optimized.

» Pros: Obtain closed form approximation gg(z) whose fidelity is
determined by choice of family, e.g., whether a single Gaussian or
mixture. Can be scalable to large NN models depending on choice
of .7:9.

» Cons: Can underestimate variance, suffers from optimization pitfalls
due to nonconvexity of objectives.
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Case: Variational Bayes

>

>

Take q(z) = H,’\il q(z;), i.e., q(z) is from the space F of PDFs that
factor over partition of latent variables into z = z3,...,2zp.

Can be shown that optimal solution of functional
ming)er Dki(q(z) || p(z| D)) is given by

) elizjllog p(z,D)]
% (z) = [ eBizillog p(z.D)] dz; )

Can sometimes determine g;(z;) to be known PDF whose
parameters satisfy set of simultaneous nonlinear equations — solve
iteratively.

For ML models E;; [log p(z, D)] hard to compute as p(z, D)
parameterized by nonlinear NN — would have to solve set of
integral equations.
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VI via gradient-based optimization

» The KL-divergence plus the Evidence Lower Bound (ELBO) Ly
differ by a constant

log p(D) = Lg(D) +Dki(ge(2) || p(z | D)) (4)
N—_—— ~——
const. w.r.t. ELBO
so that we can minimize Dk ( || ) by minimizing

—Lo(D) = Dki(q6(2) || p(2)) — Eqq [log p(D | 2)] (3)

KL-div from prior expected data fit

> If D= {(x;,yj)},{\':sl, likelihood given by 11D Gaussian over model
predictions f,(x;) with noise o, then expected data fit like a
stochastic mean-squared error (MSE):

—Eg, [log p(D | 2)] = 0(2)

ZHy,—f X ||2] (6)
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Example: ELBO for linear NN

» NN given by NNw(x) = Wx, W € R"™" where
Qpqg,2q) = N(W ’ Hq; z]q)a p(W) = N(W | Hp, Z]P)
then the ELBO objective function has form

(Y~ gX)T (Y X))+ (1 — 110) 555 11— 1)

regularization pg — pp

least squares in pq

1
+ logdet(X,1E,) + tr(2,15) + — tr{VXXT}
a

N—_———
EqHEP Eq_>0
which takes the form of in means pg with quadratic

regularization. Variance X, balanced between prior 3, and 0.
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Minimizing ELBO for nonlinear model

» Minimize Dk (qe(2) || p(z | D)) via gradient descent requires
Vo(—Lsg).
» Score function / black-box VI:

Vo(—Lo) = Egy(z) [(Voge(2)) log p(D | 2)]

> Reparametrization gradients: Express z = t(e, 8), € ~ p(€) then
gradient and expectation commute

VoEq,(z) [log p(D | 2)] = Ep)[V2 log p(D | 2) V2]
~— ————
backprop. gradient

Lower variance than score method but reparametrization more

difficult for complex distributions like GMMs (Graves,
2016),(Fignurov 2018).
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Challenges with VI for high-fidelity distributions

>

VI doesn’t scale well with high-fidelity posterior approximations such
as Gaussian mixture models or even full covariance Gaussians.

ELBO is , optimizers can find poor local minima
(Kingma, Welling 2019).

Some approaches to address this issues include annealing (Bowman,
2016),(Sonderby et. al., 2006) and good initialization strategies
(Rossi et. al 2019).

Growing body of literature suggesting
perform well in a variety of ML/UQ tasks:

1

1 _
p(Z|D) ~ Z—exp —E(Z—ZMAP)TE 1(Z_ZMAP)
g

where X = —Hgé(b(ZMAp), ZMAP IS maximum a posteriori estimate
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Global optimization and LA
Proposed approach: Approximate multimodal PDF with global
optimization and LAs. Can be used to initialize VI or, possibly, as an
alternative approximation strategy.

Outline of proposed method:
Unnormalized posterior distribution p(z)

» Global optimization carried out on p to find modes z7, ..., z} taken
as centers p1, ..., g of Gaussian components.

» Laplace approximation formed at each mode:

N(Z ’ I‘Lk’ Zk |0gp(l‘l’/))
> Fit the weights via constrained least squares:
N K
arg minz {,5(2) - ZﬁkN(z; | ek, Ek)} st. x>0
=1 k=1

then [ p(z)dz~ >, k.
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Scalability: VI vs. global opt. & LA
VI with Gaussian Mixture Models

> VI with gg(z) = Zszl TN (2 | ik, k), z € R? has variational
parameters

0:(7‘(‘1,...,WK,ul,...,uK,zl,...,EK)

so that 6 € RKTKATK(d+d")/2 __, grows like O(d?).

» Loss function nonconvex means multiple optimization runs are
needed to avoid poor local minima.

Global opt. & LA

» Carry out in smaller parameter space RY
instead of several expensive optimization runs in larger variational
2
parameter space RO(4%),

» Enhance scalability with low-rank Hessian approximations.

» A variety of global optimization techniques can be used such as
MLSL which purport to reduce number of local searches needed.
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Robustness of approach via global sensitivity
Variance based global sensitivity analysis:

o= R+ X))+ D (X X))+
i ij>i

V() = V() + D VE) DD V() +

i j>i

Use sensitivity analysis over ensemble of synthetic tests on GMMs to
study how performance f(d, K,w, c, A) varies as a function of

Parameter Description Distribution

d Dimension U{2,10}

K Number of mixture components U{2,4}

w Exponential decay factor across weights U[1, 2]

c Correlation coefficient U[0,0.7]

A Maximum overlap between components /[107%,1072]
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Robustness of approach via global sensitivity

» w controls spread of component sizes, A controls the overlap
between components measured by Dice metric.

> Accuracy measured by Dysp(G(m, 1, 2) || G(#, i, 3)), Jenson-
Shannon divergence between true, approximate GMMs. Obtained by
"symmetrizing” KL-divergence, bounded.

Global sensitivity results

Parameter Distribution S Sr

d, dim. U{8,9,10} 0.17+1073 0.65+102
K, no. components U{3,4} 0.13+107% 0.304+1073
w, weight decay U[1.3,2] 0.17+1072 0.37+£102
c, corr. U[0.1,0.7] 0+107° 0.65 4+ 102
), overlap U[10=4,1072] 0+107° 0.02+107*

Conclusion: Interaction between factors which increase difficulty of
global optimization have the greatest effect.

13/20



Scalability of global optimization, LA method

Can we improve the scalability of VI with high-fidelity GMM surrogate

posteriors using the GMM approximation scheme?

» Carry out scalability analysis in high dimensional setting on toy
problems with non-Gaussian trends.

» Cold start (randomly init. VI) versus warm start (GMM init.)
» Generate non-Gaussian mixture models by applying nonlinear

transformation Y =/ 4+ oF(Z, s, t) on standard normal r.v. Z where

s, t control skewness and tail behavior.

JSD vs runtime (dimension = 15) JSD vs runtime (dimension = 30) JSD vs runtime (dimension = 60)
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04\ \ !
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Conclusion: Using GMM approx. procedure improves scalability and
achievable accuracy.
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How does the Laplace approximation compare to VI?

Laplace approximation o . .
» Captures peak and local O.ZA 1 , w0 )
geometry. o ¢ ¢

» Approximation away from peak
worsens with increasing
non-Gaussian trends.

VI-refined approximation

> refines support of modes to lie
within high-probability regions
of true distribution.

> Doesn't capture peaks as Marginals between 3 variables of 15-dim.
closely. distribution. Black: true, Green: LA,
Red: VI.

How do these approx. differences translate into predictions?
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Structural dynamics problem

» Two-story shear frame
structure.

» Subject 2nd floor to initial
displacement.

» Inverse problem of determining
damping coefficients c1, &
while observing only the first
floor's motion.

» Can obtain multimodal
posterior over c1,C.

Equivalent to mass-spring-damper system:

1

ki —




Structural dynamics problem

» Equations of motion:

b=

0 | X
M-1K —M-1IC| |v

» Log likelihood from matrix exponential

022

» Noisy observations of
first floor

» Second floor
displacement

— Hexp(A(cy, cz)t,-))_(o)2
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Posterior and GMM approximation

“' T | True multimodal posterior (left) and two-
‘ Q - component GMM approximation (right).
Contour plots of: S
» (Top): GMM approximation
» (Middle): GMM approx. W\k
refined with VI

> (Bottom): Example of JS-divergence vs wall-clock time for warm-
randomly initialized VI solution. siart, cold-start.

Gets stuck in local min.
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Posterior pushforward

True
02

VI
02

Mass 1

Mass 2

0 %

Posterior pushforward of True (left), Global opt., LA (middle), VI-refined
(right)
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The End

Thank you!
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