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Context: novel probabilistic strategies for transfer learning

Challenge: Many Sandia mission domains
defined by a lack of reliable data, preventing
use of many machine learning techniques for
predictive modeling:

I Expensive computer simulations.

I Prohibitive data acquisition cost.

I Limited access to classified/sensitive
data.

Goal: Enhance the trust in ML within noisy
and sparse data settings.

Requirement: High-fidelity, closed-form
approximations of parameter PDFs (as op-
posed to just samples) for approximation of
multimodal target likelihood p(θ | Dt).

Traditional TL

Probabilistic TL
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Approximation of posteriors in Bayesian inference

Bayesian inference: probabilistic model p(x, z) with x,z observed, latent
variables. Some structure specified on the joint distribution e.g.
p(x, z) = p(x | z)p(z). Here we take x to be a fixed set of data D. Baye’s
rule gives:

p(z | D) =
p(D | z)p(z)

p(D)
=

p(D | z)p(z)∫
p(D | z)p(z) dz

;

∫
p(D | z)p(z) dz︸ ︷︷ ︸

difficult to compute

(1)

Sampling strategies for p(z | D) include:

I MCMC: Asymptotically exact but computationally expensive.
Difficulties with multimodal distributions.

I Dropout: Adds UQ to neural networks via random perturbations of
the weights. Less costly than Variational Inference.
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Variational Inference (VI)

Sampling strategies often suffer from scalability issues, we also need
closed form approximations for the TL framework.

Variational Inference
Approximate posterior p(z | D) by qθ(z) ∈ Fθ in some family Fθ of
PDFs by minimizing error measure such as KL-divergence:

qθ(z) = min
qθ∈Fθ

DKL(qθ(z) ‖ p(z | D)) (2)

where θ are the variational parameters to be optimized.

I Pros: Obtain closed form approximation qθ(z) whose fidelity is
determined by choice of family, e.g., whether a single Gaussian or
mixture. Can be scalable to large NN models depending on choice
of Fθ.

I Cons: Can underestimate variance, suffers from optimization pitfalls
due to nonconvexity of objectives.
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Case: Variational Bayes

I Take q(z) =
∏M

i=1 q(zi ), i.e., q(z) is from the space F of PDFs that
factor over partition of latent variables into z = z1, . . . , zM .

I Can be shown that optimal solution of functional
minq(z)∈F DKL(q(z) ‖ p(z | D)) is given by

q∗j (zj) =
eEi 6=j [log p(z,D)]∫
eEi 6=j [log p(z,D)] dzj

(3)

I Can sometimes determine q∗j (zj) to be known PDF whose
parameters satisfy set of simultaneous nonlinear equations → solve
iteratively.

I For ML models Ei 6=j [log p(z,D)] hard to compute as p(z,D)
parameterized by nonlinear NN → would have to solve set of
integral equations.
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VI via gradient-based optimization
I The KL-divergence plus the Evidence Lower Bound (ELBO) Lθ

differ by a constant

log p(D)︸ ︷︷ ︸
const. w.r.t. θ

= Lθ(D)︸ ︷︷ ︸
ELBO

+DKL(qθ(z) ‖ p(z | D)) (4)

so that we can minimize DKL( ‖ ) by minimizing

−Lθ(D) = DKL(qθ(z) ‖ p(z))︸ ︷︷ ︸
KL-div from prior

−Eqθ [log p(D | z)]︸ ︷︷ ︸
expected data fit

(5)

I If D = {(xi , yj)}Ns
i=1, likelihood given by IID Gaussian over model

predictions fz(xi ) with noise σ, then expected data fit like a
stochastic mean-squared error (MSE):

−Eqθ [log p(D | z)] =
1

2σ
Eqθ(z)

[
Ns∑
s=1

||yi − fz(xi )||2
]

(6)
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Example: ELBO for linear NN

I NN given by NNW(x) = Wx, W ∈ Rn×n where

q(µq ,Σq) = N (W | µq,Σq), p(W) = N (W | µp,Σp)

then the ELBO objective function has form

1

σ2
tr{(Y − µqX)T (Y − µqX)}︸ ︷︷ ︸

least squares in µq

+ (µp − µq)TΣ−1
p (µp − µq)︸ ︷︷ ︸

regularization µq → µp

+ log det(Σ−1
q Σp) + tr(Σ−1

p Σq)︸ ︷︷ ︸
Σq→Σp

+
1

σ2
tr{VXXT}︸ ︷︷ ︸
Σq→0

which takes the form of least squares in means µq with quadratic
regularization. Variance Σq balanced between prior Σp and 0.
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Minimizing ELBO for nonlinear model

I Minimize DKL(qθ(z) ‖ p(z | D)) via gradient descent requires
∇θ(−Lθ).

I Score function / black-box VI:

∇θ(−Lθ) = Eqθ(z) [(∇θqθ(z)) log p(D | z)]

I Reparametrization gradients: Express z = t(ε,θ), ε ∼ p(ε) then
gradient and expectation commute

∇θEqθ(z) [log p(D | z)] = Ep(ε)[∇z log p(D | z)︸ ︷︷ ︸
backprop. gradient

∇θz]

Lower variance than score method but reparametrization more
difficult for complex distributions like GMMs (Graves,
2016),(Fignurov 2018).
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Challenges with VI for high-fidelity distributions

I VI doesn’t scale well with high-fidelity posterior approximations such
as Gaussian mixture models or even full covariance Gaussians.

I ELBO is nonconvex, optimizers can find poor local minima
(Kingma, Welling 2019).

I Some approaches to address this issues include annealing (Bowman,
2016),(Sonderby et. al., 2006) and good initialization strategies
(Rossi et. al 2019).

I Growing body of literature suggesting Laplace approximations (LAs)
perform well in a variety of ML/UQ tasks:

p(z | D) ≈ 1

Zg
exp

[
−1

2
(z− zMAP)TΣ−1(z− zMAP)

]
where Σ = −H−1

log φ(zMAP), zMAP is maximum a posteriori estimate
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Global optimization and LA
Proposed approach: Approximate multimodal PDF with global
optimization and LAs. Can be used to initialize VI or, possibly, as an
alternative approximation strategy.

Outline of proposed method:
Unnormalized posterior distribution p̃(z)

I Global optimization carried out on p̃ to find modes z∗1, . . . , z
∗
K taken

as centers µ1, . . . ,µK of Gaussian components.

I Laplace approximation formed at each mode:

N (z | µk ,Σk = H−1
− log p̃(µi ))

I Fit the weights via constrained least squares:

arg min
π

N∑
i=1

{
p̃(z)−

K∑
k=1

π̃kN (zi | µk ,Σk)

}
s.t. π̃k ≥ 0

then
∫
p̃(z) dz ≈

∑
k π̃k .
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Scalability: VI vs. global opt. & LA
VI with Gaussian Mixture Models

I VI with qθ(z) =
∑K

k=1 πkN (z | µk ,Σk), z ∈ Rd has variational
parameters

θ = (π1, . . . , πK ,µ1, . . . ,µK ,Σ1, . . . ,ΣK )

so that θ ∈ RK+Kd+K(d+d2)/2 −→ grows like O(d2).

I Loss function nonconvex means multiple optimization runs are
needed to avoid poor local minima.

Global opt. & LA

I Carry out many local optimizations in smaller parameter space Rd

instead of several expensive optimization runs in larger variational
parameter space RO(d2).

I Enhance scalability with low-rank Hessian approximations.

I A variety of global optimization techniques can be used such as
MLSL which purport to reduce number of local searches needed.
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Robustness of approach via global sensitivity
Variance based global sensitivity analysis:

f = f0 +
∑
i

fi (Xi ) +
∑
i

∑
j>i

fij(Xi ,Xj) + · · ·

V(f ) = V(f0) +
∑
i

V(fi ) +
∑
i

∑
j>i

V(fij) + · · ·

Use sensitivity analysis over ensemble of synthetic tests on GMMs to
study how performance f (d ,K , ω, c , λ) varies as a function of

Parameter Description Distribution

d Dimension U{2, 10}
K Number of mixture components U{2, 4}
ω Exponential decay factor across weights U [1, 2]
c Correlation coefficient U [0, 0.7]
λ Maximum overlap between components U [10−4, 10−2]
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Robustness of approach via global sensitivity

I ω controls spread of component sizes, λ controls the overlap
between components measured by Dice metric.

I Accuracy measured by DJSD(G(π,µ,Σ) ‖ G(π̂, µ̂, Σ̂)), Jenson-
Shannon divergence between true, approximate GMMs. Obtained by
”symmetrizing” KL-divergence, bounded.

Global sensitivity results

Parameter Distribution S ST

d , dim. U{8, 9, 10} 0.17± 10−3 0.65± 10−2

K , no. components U{3, 4} 0.13± 10−3 0.30± 10−3

ω, weight decay U [1.3, 2] 0.17± 10−2 0.37± 10−2

c , corr. U [0.1, 0.7] 0± 10−9 0.65± 10−2

λ, overlap U [10−4, 10−2] 0± 10−9 0.02± 10−4

Conclusion: Interaction between factors which increase difficulty of
global optimization have the greatest effect.
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Scalability of global optimization, LA method
Can we improve the scalability of VI with high-fidelity GMM surrogate
posteriors using the GMM approximation scheme?

I Carry out scalability analysis in high dimensional setting on toy
problems with non-Gaussian trends.

I Cold start (randomly init. VI) versus warm start (GMM init.)

I Generate non-Gaussian mixture models by applying nonlinear
transformation Y = l + σF (Z , s, t) on standard normal r.v. Z where
s, t control skewness and tail behavior.

0 2000 4000 6000 8000 10000 12000 14000 16000
Runtime (sec)

10 2

10 1

100

JS
D

JSD vs runtime (dimension = 15)
Coldstart
Warmstart

0 10000 20000 30000 40000
Runtime (sec)
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100
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JSD vs runtime (dimension = 30)
Coldstart
Warmstart

0 20000 40000 60000 80000 100000 120000
Runtime (sec)

10 1

100

JS
D

JSD vs runtime (dimension = 60)

Coldstart
Warmstart

Conclusion: Using GMM approx. procedure improves scalability and
achievable accuracy.
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How does the Laplace approximation compare to VI?

Laplace approximation

I Captures peak and local
geometry.

I Approximation away from peak
worsens with increasing
non-Gaussian trends.

VI-refined approximation

I refines support of modes to lie
within high-probability regions
of true distribution.

I Doesn’t capture peaks as
closely.
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How do these approx. differences translate into predictions?
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Structural dynamics problem
I Two-story shear frame

structure.

I Subject 2nd floor to initial
displacement.

I Inverse problem of determining
damping coefficients c1, c2

while observing only the first
floor’s motion.

I Can obtain multimodal
posterior over c1,c2.

Equivalent to mass-spring-damper system:
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Structural dynamics problem
I Equations of motion:

d

dt

[
x
v

]
=

[
0 I

−M−1K −M−1C

] [
x
v

]
I Log likelihood from matrix exponential

1

σ2

ND∑
i=1

(yi −H exp(A(c1, c2)ti )x̄0)2

I Noisy observations of
first floor

I Second floor
displacement
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Posterior and GMM approximation
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Posterior pushforward
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The End

Thank you!
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