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Why do we need thermoresponsive polypeptides?

* Polypeptides can respond to stimuli such as pH, temperature, ionic strength, light, and/or
chemical and biological stimuli.
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* The structure and thermal stability of thermoresponsive biomaterials determine their
viability for applications in nanomedicine.
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Thermoresponsive biopolymers: Collagen-like Peptides
(CLP)

» Collagen-like peptides are biopolymers consisting of repeat units of (X-Y-G) amino acid
triplets, where X and Y are usually proline (P) and hydroxyproline (O), respectively.
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« CLP triple helices exhibit larger-scale
assembly into fibrils and hydrogels.
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Past simulation models for biomacromolecules
Atomistic (AA) models

Raman et al. The Journal of Physical Chemistry B, 2006,

110, 20678-20685.

* AA models capture hydrogen
bonding and chain conformations
but are limited to small length
scales (A-nm) and time scales (ns)

 There is a need for CG models
which capture hierarchical
assembly, phase transitions, and
directional interactions.
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Coarse-grained (CG) models
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Overview

Goal: Use the recently developed coarse-grained model for CLP with molecular dynamics
simulations to design novel CLP heterotrimers with sticky ends and predict their

hierarchical assembly.

Heterotrimer Fibrillar assembly via H-bonds
between intact triple helices

Network




Overview

Goal: Use the recently developed coarse-grained model for CLP with molecular dynamics
simulations to design novel CLP heterotrimers with sticky ends and predict their

hierarchical assembly.

Heterotrimer Fibrillar assembly via H-bonds
between intact triple helices

Network

Objectives:
1. To understand the impact of CLP heterotrimer design (length and number of sticky
ends, (POG) repeats) on the melting transitions of CLP heterotrimeric triple helices
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Overview

Goal: Use the recently developed coarse-grained model for CLP with molecular dynamics
simulations to design novel CLP heterotrimers with sticky ends and predict their

hierarchical assembly.

Heterotrimer Fibrillar assembly via H-bonds
between intact triple helices
Network
——
Objectives:
2. To investigate the higher-order assembly of CLP heterotrimers as a function of
CLP design

* Assembly of intact CLP heterotrimers at low temperatures below T
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Overview

Goal: Use the recently developed coarse-grained model for CLP with molecular dynamics
simulations to design novel CLP heterotrimers with sticky ends and predict their

hierarchical assembly.

Heterotrimer Fibrillar assembly via H-bonds
between intact triple helices

Network

Objectives:
3. To examine the impact of solution conditions (CLP concentration) on the
formation of networks of CLP heterotrimers
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Impact of sequence length, composition, and dispersity on
the melting and assembly of Collagen-like Peptides (CLP)

« Can we achieve hierarchical assembly (helix — fiber — network) by using
heterotrimeric CLP triple helices with sticky ends?

Traditional homotrimeric CLP triple helix CLP heterotrimers with “sticky ends”
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Coarse-grained model validation for CLP

homotrimers
Experimental Melting Computational Melting Triple Helical Diameters
Temperatures Curves
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* Incorporation of charged amino acids destabilize the triple helices compared to
uncharged, (POG) sequences

« Reactive handles (allylyoxycarbonyl functionalized K, Ka) further destabilize the triple
helix compared to charged residues.

National Matter 2021, 17, 1985-1998. 10
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Traditional homotrimeric CLP triple helix CLP heterotrimers with “sticky ends”
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Effect of sticky end length (A) on the melting
transitions of heterotrimeric CLP triple helices

(POG),, family (POG),, family
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* Data shown for a CLP concentration of 0.3 mM

* Increasing sticky end length (A) decreases thermal stability (T,,) of the triple helix.
« Larger shiftin T, observed for (POG),, vs (POG),, family with increasing A.
* This behavior is found in both “One” and “Two” sticky ended CLP designs.
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Impact of sticky end length (A) on CLP assembly:
(POG),, family Assembled (N = 2)

CLP concentration: 1 mM
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Longer sticky ends (A) have a monotonic effect on triple helix sizes (R ) but a

@ Sandia non-monotonic effect on larger CLP clusters for a one sticky ended design.
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Effect of CLP design and concentration on inter-helix
hydrogen bonding: (POG),, family
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Effect of sticky end length (A) on triple helix conformations:
(POG),, family at 0 mM

Proline
Hydroxyproline
One sticky ended design Glycine
(A=2) (A=4) (A = 6)

Two sticky ended design

(A =2) (A =4) (A = 6)
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Effect of sticky end length (A) on triple helix conformations:

(A=2)
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(POG),, family at 0 mM
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Confirmation of loops/turn structures using atomistic simulations
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Effect of sticky end length on CLP assembly: (POG),, family

CLP concentration: 20 mM
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* Percolated networks are observed for long sticky end lengths, A.
@ Sandia o Minimum sticky end length to observe networks: A = 4

i 17
lNaEgIIZII]I'g?[IHIES Taylor, P.A.; Kloxin, A.; Jayaraman, A . Soft Matter 2022, 18, 3177-3192.



Conclusions

Computational design of self-assembling CLPs with sticky ends into fibrillar structures
and supramolecular networks

1. CLP design (length of sticky ends, A, and (POG) family) can be used to tailor the
melting transitions of CLP heterotrimers
1. Long sticky ends (A) result in a lower T,
2. Fewer (POG) repeat units lead to a larger reduction in T, with increasing A.

2. Sticky end length (A) impacts CLP assembly at multiple lengths scales
* Nonmonotonic effect of A on R, oster fOr a 1-sticky ended design at low CLP

concentrations for larger clusters

3. Percolated networks of CLP heterotrimers are observed for long sticky ends (A= 4).
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