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Abstract—Using neural networks to solve variational problems,
and other scientific machine learning tasks, has been limited
by a lack of consistency and an inability to exactly integrate
expressions involving neural network architectures. We address
these limitations by formulating a polynomial-spline network, a
novel shallow multilinear perceptron (MLP) architecture incor-
porating free knot B-spline basis functions into a polynomial
mixture-of-experts model. Effectively, our architecture performs
piecewise polynomial approximation on each cell of a trainable
partition of unity while ensuring the MLP and its derivatives
can be integrated exactly, obviating a reliance on sampling or
quadrature and enabling error-free computation of variational
forms. We demonstrate hp-convergence for regression problems
at convergence rates expected from approximation theory and
solve elliptic problems in one and two dimensions, with a
favorable comparison to adaptive finite elements.

Index Terms—Constructive approximation; mixture of experts;
splines; integration; quadrature; scientific machine learning

I. INTRODUCTION

Exact integration of neural networks is useful in many
contexts, such as computing statistical moments of estimators,
operator regression, Bayesian machine learning techniques,
and scientific machine learning. Specifically concerning this
last task, while deep neural networks (DNNs) have been
proposed for solving partial differential equations (PDEs) and
scientific machine learning, such methods fail to converge
to PDE solutions in practical settings [1], [2]. While other
machine learning (ML) methods (such as [3]) demonstrate
hp− convergence for regression problems, in terms of spatial
resolution h and polynomial degree p, error analysis of these
methods is complicated due to the variational crime [4] of
using inexact quadrature. Such issues have led to the popu-
larity of simpler to implement but more difficult to analyze
collocation schemes [5], [6].
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In this work, we introduce polynomial-spline networks,
a mixture-of-experts (MOE) shallow multilinear perceptron
(MLP) model that combines gating functions composed of
convex combinations of B-spline basis functions, with polyno-
mial experts localized to each cell of the partition. The spline
gating functions lead to a piecewise polynomial approximation
with explicitly parameterized support, creating closed-form
expressions for the integral of both our polynomial-spline
model and its derivatives. As such, this provides a founda-
tion for other problems requiring integration, e.g. estimation
of statistical moments for probability measures, or novel
loss functions and regularizers. Concurrently, our polynomial-
spline networks obtain the theoretical hp− convergence rates
provided by classical approximation theory methods, guaran-
teeing convergence for practical ML and scientific machine
learning problems. In Section II, we describe the construc-
tion of our polynomial-spline networks, outlining the theory
of how our approach preserves hp−convergence and exact
integration, while in Section III, we demonstrate that our
proposed approach, unlike many other ML methods, achieves
these proposed properties and convergence rates.

A. Related Work

Our approach admits interpretation as a mixture of experts
(MOE) shallow MLP network with a gating layer constructed
from a convex combination of B-spline basis functions, instead
of a softmax activation. Extensive literature (and additional
nomenclature) discusses such MOE models, both separately
and in conjunction with MLPs [7]–[9]. Like MLPs and other
neural networks, our architecture is parameterized by trainable
variables in hidden layers, composing linear and nonlinear
operations, where the hidden activation functions are built
using a trainable piecewise-linear feature space akin to free-
spline interpolation [10]. However, we explicitly enforce that
our piecewise-linear encodings build a partition of unity,
which in turn feeds into the final nonlinear activation function
which, in our case, is multiplication and evaluation of a
polynomial. Instead of using multiple layers with rectified
linear units (ReLUs) to build such an intermediate piecewise
linear feature space, like in a traditional deep neural network
(DNN) architecture, we proceed directly using a single hidden
layer of splines, as in shallow MLPs.
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Other classes of MOE models using partitions of unity, such
as partition of unity networks (POUNets) [3], have attempted
to build hp−convergent solutions to regression or variational
PDE problems, instead of e.g. performing kernel density
estimation. The provided hp-convergence rates of POUNets
are desirable, in that they are comparable to error rates from
other approximation methods such as finite element analysis.
Our approach differs from that of POUNets in that we build
expert models out of convex combinations of B-spline basis
functions, instead of the MLP or radial basis function network
considered in [3]. By working with convex combinations of B-
splines, our approach admits closed form expressions for inte-
grals in terms of the B-spline knots. We thus preserve the hp−
convergence of POUNets while enabling exact integration,
even in high-dimensional settings. Compared to traditional
B-spline bases the convex combination identifies an optimal
compressed subspace for nonlinear approximation.

Additionally, our convex combinations of B-splines provide
natural extensions of well-known results interpreting ReLU
networks as continuous piecewise linear (CPWL) functions
[11]. Previous works use splines to study approximation prop-
erties of DNNs, treating e.g. ReLU networks as max-affine
splines [12] or as P1 finite elements [13]. In high-dimensions,
the CPWL interpretation of ReLU networks is not tractable
for quadrature, as the geometrically complex piecewise linear
regions form non-convex polyhedral domains and do not admit
a closed-form description of their support. Additionally, while
approximation rates for ReLU networks have been derived
[14], [15], such rates are rarely achieved in practice, especially
for data-driven problems.

Relatedly, training ReLU DNNs is similar in scope to the
NP-hard problem of finding an optimal spline interpolant
with trainable knots [12], [16], and the similar problem of
adaptively finding an optimal mesh for discretizing PDEs. In
such mesh adaptivity problems, the mesh adaptivity is guided
by an energy functional relating to the discretization points,
whose minimizer is the optimal adaptive mesh. Such an energy
function again necessitates integrating over the variational
form of the PDE [17]–[19], which precludes their use in
training DNNs, unless one is able and willing to commit a
variational crime.

Some DNN-based approaches for solving PDEs skirt the
issue of integration by adapting a collocation PDE residual
(e.g.physics-informed neural networks (PINNs) [5] and related
methods). While effective, this approach requires strong regu-
larity requirements and more involved mathematical analysis
beyond the standard Lax-Milgram theory [20]. Alternatively,
the Deep Ritz method uses as a loss the Euler-Lagrange
functional of the relevant variational problem, but ultimately
resorts to sampling-based methods for integration [21]. As a
result, the convergence of the loss function is dominated by
the error in Monte Carlo integration, and variational crimes
complicate the already complex landscape of approximation
error, optimization error, and stability theory. An important
practical feature of preserving the variational form is that
training evolves along the manifold of optimal fits to data,

similar to the least-squares gradient descent optimizer [22].

II. FORMULATION

Let Ω ⊂ Rd be a closed, compact domain, where d is the
spatial dimension; assume for simplicity that Ω = [0, 1]d. Let
PB(Ω) be the space of polynomials of degree up to B on Ω,
with basis {pβ}β=1,...,dP=dim(PB(Ω)). We define a polynomial-
spline network y : Ω → R via the expression

y(x) =

NcellsX
α=1

NsplinesX
γ=0

wα,γϕγ(x)

 dPX
β=1

cα,βpβ(x)

 . (1)

In this expression, the functions ϕγ : Ω → R are B-spline
basis functions, parameterized by a set of knots {tγ} ⊂ Ω.
Additionally the coefficients wα,γ are constrained so that for
all γ,

PNsplines
α=1 wα,γ = 1 and wα,γ ≥ 0. The coefficients cα,β

are unconstrained. When clear, the bounds for the summations
in Equation (1) are dropped for convenience.

The functions φα(x) =
PNsplines

γ=1 wα,γϕγ(x) form a partition
of unity (POU) of Ncells partitions, following from convexity
of wα,γ and the fact that B-spline basis functions form a
partition of unity [23]. Thus, polynomial-spline networks are
MOE models, where convex combinations of B-splines serve
as gating functions for Bth− order polynomial experts. In
the case that Ncells = 1, training this architecture reduces to
polynomial approximation, as the polynomial-spline network
becomes

y(x) =

 X
γ

wγϕγ(x)

!X
β

cβpβ(x)


= 1 ·

X
β

cβpβ(x)


=
X
β

cβpβ(x).

Similarly, in the case B = 0 and Ncells = Nsplines, training this
architecture reduces to free-knot spline approximation, since
the network becomes

y(x) =
X
α

 X
γ

wα,γϕγ(x)

!
(cα)

=
X
α

X
γ

cαwα,γϕγ(x),

and setting wα,γ = δαγ reduces the architecture to

y(x) =
X
α

cαϕα(x).

Therefore, we expect our polynomial-spline network to exhibit
some form of both h− and p− refinement, as the number
of partitions and polynomial degree increase, respectively,
following the convergence rates established via numerical
analysis; formal proofs of these convergence rates are identical
to the proofs for polynomial and spline approximants, respec-
tively, and can be found in most numerical analysis textbooks,
such as [23].



In practice, we limit ourselves to only using B1-splines. In
doing so, we make the max-affine spline interpretation of deep
ReLU networks [12] and free-spline interpolation [10] con-
nections explicit, in that we directly construct the underlying
spline to partition Ω. Doing so allows us to construct closed-
form expressions for the integrals (and integrals of derivatives)
of the polynomial-spline network; deriving such expressions
is tedious but feasible for higher-order splines.

We outline how to construct analytic expressions for the
integral of y in the case of the functions ϕγ being B1-spline
basis functions and our domain Ω = [0, 1]. First, note that
the B1-spline basis functions are described entirely by the set
of knots {tγ}γ=0,...,Nsplines , with t0 = 0 and tNsplines = 1, with
relation to ϕγ in that ϕγ(tγ) = 1 and ϕγ(tβ) = 0 for all β ̸= γ.
By construction, when restricted to the interval [tγ−1, tγ ], the
polynomial-spline network y is a polynomial of degree B+1.
Letting {qi}i=1,...,dP+1 be a basis for PB+1([tγ−1, tγ ]), we
express y restricted to our interval in this basis, i.e.

y(x) =
X
α

(wα,γ−1ϕγ−1(x) + wα,γϕγ(x))

X
β

cαβpβ(x)


: =

dP+1X
i=1

diqi(x)

for coefficients di, which are closed-form expressions of the
coefficients wα,γ , tγ , and cαβ . Therefore, our integral becomesZ

Ω

y(x)dx =

NsplinesX
γ=1

Z tγ

tγ−1

y(x)dx

=

NsplinesX
γ=1

dP+1X
i=1

di

Z tγ

tγ−1

qi(x)dx.

Choosing the monomial basis qi(x) = xi−1,Z
Ω

y(x)dx =

NsplinesX
γ=1

dP+1X
i=1

di

Z tγ

tγ−1

xi−1dx

=

NsplinesX
γ=1

dP+1X
i=1

di
i

(
tiγ − tiγ−1

�
.

Since we can explicitly calculate expressions for di, and all
other values are known weights in our network, we can use
the above formula to directly integrate y. Similar expressions
are derived in the same way for ∇y, or for the calculation of
moments involving y to a power, by expressing the integrand in
terms of a polynomial expansion in terms of the polynomials
qi and then integrating separately upon the support of each
B1-spline basis function.

III. EXPERIMENTS

We demonstrate the effectiveness of our architecture on two
sets of problems: regression problems and variational prob-
lems. We choose these sets of problems as to demonstrate the
hp−convergence properties of our approach, and to highlight
the capabilities of having a network possessing exact inte-
gration properties. Our implementation of polynomial-spline
neural networks uses TensorFlow [24], with FEM comparisons
in FEniCS [25].

A. Construction and Training

To build our polynomial-spline network, we build B1-spline
basis functions for Ω as a tensor product of 1D B1-spline
basis functions along each dimension. For each dimension,
we construct a B1-spline layer, whose knots are parameterized
to accommodate TensorFlow backwards differentiation during
training. The general expression for a hat function built via
ReLU functions is given in [13]. During training however,
knots may become unordered, leading to a problematic inver-
sion of elements. To prevent this concern, we track the relative
position between knots rather than the locations themselves,
constraining them to span the extant Ω.

For the regression problems, we train on a random uniform
set of 1000 points, and we validate our model on a separate
random uniform set of the same size. For the variational
problems, there are no data sites involved, with the loss
defined via the closed form expression for the energy. For
all problems we use the Adam optimizer [26]. Our loss for
the regression problems is mean squared error (MSE), while
for the variational problems our loss is the Euler-Lagrange
functional i.e. the Ritz energy. More details are available in
Appendix A. All code is run on a 64-core Intel Xeon Gold
CPU using 1 NVIDIA Tesla V100 GPU with 10GB memory.

We expedite the training of our models by using the least-
squares gradient descent optimizer (LSGD) [22]. We define
the function Φ : Rd → RNcellsdP with each output component
given as Φαβ : x 7→

�P
γ wα,γϕγ(x)

�
pβ(x); Equation 1 is

then written as

y(x) = cTΦ(x)

for a vector of coefficients c ∈ RNcellsdP . For regression
problems, the LSGD solver adds a least-squares solve for c
between each gradient step of the first-order optimizer. We
wrap this least-squares solve call into a custom TensorFlow
layer so that the operation is embedded in the network’s
TensorFlow graph directly, enforcing that all outputs of the
network lie on the manifold of best-fit solutions regarding the
coefficients of the outermost layer.

For regression, LSGD solves the least-squares problem,
given batch data {xi, yi}i=1,...,batch size the problem

min
c



y − cTΦ(x)


2
F
.

For variational problems, the least-squares problem that we
solve is the variational problem that corresponds to the Euler-
Lagrange functional; see the discussion below about our
variational problems for more details.

B. Problems

To demonstrate the effectiveness of our architecture, we
pose two sets of problems. First, we deploy our architecture on
regression problems to evaluate consistency. After, we progress
to solving variational problems.



1) Regression: We test our architecture on two 1D regres-
sion problems:

1) f(x) = sin(2πx) for x ∈ [0, 1]
2) f(x) =

��sin(3πx2)
��+ ��cos(5πx2)

�� for x ∈ [0, 1]

In Problem 1, we expect to see both h− and p− refinement,
i.e. increasing the number of partitions or increasing the degree
of polynomial approximation, respectively, should improve the
approximation. In Problem 2, we expect h− refinement to
improve our approximation but p− refinement to not, since
the function f in this case is only piecewise smooth. However,
if we have a sufficient number of knots (i.e. at least one per
piece of f ), our POU cells should adaptively during training
recover the locations where the sin or cos terms change sign,
and that on each piece, we expect p− refinement to improve
our approximation.

a) Problem 1.: We perform three experiments to demon-
strate the hp− refinement properties of our network. First, we
fix Ncells = 1 to verify that our model compares favorably
to polynomial approximation with regards to p− refinement.
Second, we fix the polynomial degree B = 0 to verify
that our model compares favorably to spline approximation
with regards to h− refinement. Third, we test our model for
a variety of parameters for polynomial degree, number of
cells, and number of spline knots, to verify simultaneous hp−
refinement and to test that our model can capture the solution
to this regression problem up to machine precision.

First, we consider Problem 1 with Ncells = 1; in this case,
we expect our model to return the best polynomial approxima-
tion of the specified degree. Results are shown in Figure 1; all
three lines plotted in the figure nearly coincide, showing that in
this limit our model maintains the p− refinement properties of
polynomial approximation. The staircase phenomenon is due
to the function f(x) = sin(2πx) being an odd function, and as
such the best polynomial approximation (and our model) only
improves when the polynomial degree is increased to an odd
power. Second, to verify the h− refinement properties of our
architecture, we set the polynomial degree B = 0 and compare
our results to a piecewise linear spline approximation with
uniform knots. Error plots are shown in Figure 1. In this case,
we see the roughly the same rate at which the error decreases
as we increase the number of knots in the network and in
our spline approximation, until our model plateaus due to the
instability of the backwards differentiation in the LSGD layer.
Finally, when using h− and p− refinement simultaneously the
polynomial-spline network is capable of achieving machine
precision accuracy. Results are shown in Figure 2. We see
that for sufficient spatial resolution and polynomial degree,
we achieve mean-squared errors of order 10−8 or better using
our proposed network, which is the precision limit given by
our least-squares implementation in the LSGD layer.

b) Problem 2.: We perform two sets of experiments for
Problem 2. First, we perform the same experiment as for
Problem 1 to test h− refinement even in the case of a non-
smooth target function. Second, we test whether our network
can find the discontinuities in the derivative of f in a way that
is comparable to piecewise polynomial approximation. As in

Fig. 1. Results of p− refinement (top) and h− refinement (bottom) for
regression Problem 1. p-refinement is performed with Nspline = 4 and
Ncells = 1, while h-refinement is performed with Ncells = Nspline and
polynomial degree B = 0. The errors for the training and validation sets
coincide with the error for the best polynomial approximation on the p-
refinement plot; the x-axis for the h−refinement plot maintains a logarithmic
scale.

the previous problem, the training and validation error curves
are extremely similar, so we only plot validation errors in the
rest of the figures in this section.

First, as before, we compare our network’s performance
when the polynomial degree B = 0 and compare to a spline
approximation with the same number of knots. In Figure 3,
we see the error in our approximations for increasingly larger
numbers of knots; we observe a roughly log-linear decrease
in mean squared error as we double the number of knots (and



Fig. 2. Results for hp− refinement on regression Problem 1. The color bar
maps the log10 of the mean squared error for the specified number of POU
cells and polynomial degree.

POU basis functions) in our network, as expected.
Second, we compare the results of our model with compara-

ble piecewise polynomial approximation problems. We specif-
ically compare to two piecewise polynomial approximations,
one where polynomials are fit upon uniform pieces, and the
other fit to pieces where the derivative of f is discontinuous.
As both of these piecewise polynomial approximants fit a total
of 8 polynomials, we compare these results to our model with
Ncells = 8, which fits 8 polynomials in the LSGD layer. Results
are shown in Figure 3.

Our polynomial-spline network outperforms these models
for all polynomial degrees, efficiently capturing the discon-
tinuous derivatives in the target function. The success of
the polynomial-spline network plateaus at an accuracy of
O(10−6) due to the limitations of the numerical stability in the
automatic differentiation of the least-squares solve operation
in the LSGD layer.

2) Variational Problems: We test our architecture on two
variational problems:

3) 1D Poisson problem with Dirichlet boundary conditions:

−d2u = 2 on Ω = [0, 1]
u = 0 at ∂Ω = {0, 1}. (2)

4) 2D Poisson problem on a slit domain:

−∆u = 0 on Ω = [−1, 1]2

u = g(r, θ) on Γ = ∂Ω ∪ [0, 1]× {0},
(3)

where g(r, θ) =
√
r sin

(
θ
2

�
is given in polar coordi-

nates.

Fig. 3. Results of using h-refinement (top) and p-refinement (bottom) for
Problem 2. h−refinement performs approximation with B = 0 i.e. spline
approximation, with Nspline = Ncells plotted against the achieved mean
squared error. p− refinement uses Ncells = 8

In Problem 3, we expect to recover the true solution u(x) =
x(1−x) exactly (up to machine precision), assuming on each
POU cell we are fitting a polynomial of sufficient degree.
In Problem 4 we expect our problem to recover the known
singularity at the origin similar to adaptive mesh refinement
methods [17]–[19]; the true solution to this problem is known
to be u = g(r, θ).

For each of these variational problems, we minimize the
associated Euler-Lagrange functional [27]. For example, Prob-



lem 3 is solved by minimizing the Euler-Lagrangian “loss”

L(u) =

Z
Ω

1

2
∥∇u∥2 dx+ β

(
u(0)2 + u(1)2

�
, (4)

where β > 0 is a penalty parameter to enforce our solutions
satisfy our boundary conditions. For Problem 4, the Euler-
Lagrange functional is

L(u) =

Z
Ω

1

2
∥∇u∥2 dx+ β

Z
Γ

(u− g(r, θ))2ds. (5)

Instead of relying on Monte Carlo or sampling-based meth-
ods to evaluate these integral (e.g. [21]), we compute these
integrals exactly by virtue of our architecture construction.
Rather than using the analytic expressions for the integral,
we employ Gaussian quadrature of degree B + d + 1, which
computes the integrals exactly for polynomials of degree up
to 2(B + d) + 1, which is sufficient for exactly computing
the integrals of u, u2, and ∥∇u∥2 on the support of each B1
basis function; using quadrature allows us to exploit hardware
acceleration during computation, since the model evaluation
at the quadrature points can more efficiently use the GPUs.
We note that since the location of the knots change over the
course of training, the quadrature points change as well.

a) Problem 3: 1D Poisson Boundary Value Problem:
For this problem, the LSGD layer solves the linear system
corresponding to the weak form of Problem 3, which is given
as follows. We define the matrix A and vector b by substituting
u(x) = cTΦ(x) into Equation 4, taking the derivative of
Equation 4 with respect to c, and then setting the resulting
expression to zero. In doing so, we arrive at the linear problem
Ac = b, where

A =

Z
Ω

dΦdΦT + β
(
Φ(0)Φ(0)T +Φ(1)Φ(1)T

�
dx

b =

Z
Ω

2Φ dx.

The integrals in the linear problem can be calculated exactly
for a given set of knots, since upon each component of the
B1-spline functions, Φ(x) is a polynomial of degree B+d i.e.
B+1. We can do so by deriving the closed-form solutions for
the integrands of each interval between spline knots, or (more
efficiently) by using Gaussian quadrature of degree B+ d+1
as specified earlier.

When we use the training methods described earlier, we
successfully solve our problem up to machine precision (or
the limits of the accuracy of the least-squares backwards
differentiability) nearly immediately when B ≥ 1, which
matches our expectation, since the true solution to our problem
is a polynomial of degree 2. In the case B = 0, we recover
the best P1-finite element solution to our problem, as seen in
Figure 4.

b) Problem 4: 2D Poisson Slit Domain: By symmetry,
it suffices to solve this problem on a reduced domain Ω′ that
is half the size of Ω: note that the solution to Problem 4 is

symmetric about the x-axis. As a result, we solve the following
equivalent problem:

−∆u = 0 on Ω′ = [−1, 1]× [0, 1]
∂nu = 0 on ΓN = [−1, 0]× {0}

u = g(r, θ) on ΓD = ∂Ω′\ΓN .
(6)

This formulation ensures that the slit in the domain aligns with
the exterior of Ω′.

For this problem, the LSGD layer solves the linear system
corresponding to the weak formulation of Problem 4, which
by the same process as described for Problem 3, yields the
linear problem of solving Ac = b, where

A =

Z
Ω′

DΦDΦT dx+ β

Z
ΓD

ΦΦT ds, b = β

Z
ΓD

gΦ ds.

Note that the matrix A can be significantly smaller than the
linear system involved in other scientific computing methods
e.g. the finite element method. For P1 finite elements, the
linear system would be of size dP (Nsplines)

d × dP (Nsplines)
d,

whereas in our case A is only of size dPNcells × dP ×Ncells.
This reduction in size (and in the cost to solve such problems)
arises since we fit polynomials on each partition and not
upon each B1-spline basis function. This highlights that our
approach provides a nonlinear construction of a reduced finite
element space providing an optimal representation of the
solution.

The integrals corresponding to A can be calculated via
closed-form expressions, as before. However, since g is not a
polynomial, we cannot expect exact integration for the integral
that defines the vector b, and we either can project g into the
correct polynomial space, or over-integrate with quadrature of
a higher degree to maintain sufficient accuracy.

We compare our solution to results of solving this vari-
ational problem using P1 finite elements on three different
meshes: two uniform tetrahedral meshes, and an adaptive
tetrahedral mesh. The first uniform mesh (FEM U3) is a 3×3
mesh, chosen so that there are 16 degrees of freedom and 18
elements, which most closely matches our polynomial-spline
construction by fitting linear functions on Ncells = 16 cells.
The second uniform mesh (FEM U6) is 6 × 6, which is the
closest match to the size of the linear system that our LSGD
layer solves. The adaptive mesh (FEM A) is constructed by
an adaptive solver, starting with the 3× 3 uniform mesh and
proceeding to adaptively refine the mesh until the number of
degrees of freedom is closest to the size of our linear system.
Near the singularity at r = 0, the optimal adaptive mesh’s
cells should shrink at a rate of approximately

√
r, where r is

their distance to the origin [19]. Finite element comparisons
are computed using FEniCS [25].

The results of our method are shown in Figure 5, with the
L2 error listed in Table I. We outperform the finite element
solver on all of the comparable meshes. The plots in Figure 5
re-scale and translate our domain of interest Ω′ from [−1, 1]×
[0, 1] to [0, 1]2, with the slit occurring along the line segment
[0.5, 1]× {0} along the x-axis.



Fig. 4. Recovered solution to Problem 3 with Ncells = 3, Nspline = 8, and B = 0. We recover the best FEM approximation on a mesh with eight nodes i.e.
7 intervals, as seen in the plot of the derivative of the approximation in the center panel.

Fig. 5. Pointwise error of our model vs. finite element approximations on various meshes. From left to right: 1. Poly-Spline network; 2. FEM with uniform
mesh (U3); 3. FEM with uniform mesh (U6); 4. FEM with adaptive mesh (A). Note the differences in scale for each plot.

Method Mesh Type # Cells Solve Size L2 Error
Poly-Spline Network Adaptive 16 48× 48 0.0262
FEM U3 Uniform 18 16× 16 0.0362
FEM U6 Uniform 72 49× 49 0.0231
FEM A Adaptive 120 72× 72 0.0242

TABLE I
COMPARING OUR NETWORK VS. ADAPTIVE AND UNIFORM FINITE ELEMENT SOLUTIONS FOR PROBLEM 4.

The errors that arise in our solution accumulate near the
boundary, whereas in the finite element approximations, the
errors lie in the interior and near the singularity. This is
because our Ritz loss enforcing the boundary condition via
penalty, while the finite element method enforces Dirichlet
conditions variationally. Still, L2 error of our solution is
lower than comparable finite element method solutions, though
one could obtain better results working with a boundary
conforming Galerkin framework.

IV. DISCUSSION

Our polynomial-spline network compares favorably to tra-
ditional approximation methods, preserving the convergence
rates of spline interpolation and polynomial regression. Our
ability to learn the spline knots and perform free-knot spline
interpolation, like MLPs and other deep learning methods,
allows for adaptivity similar to adaptive mesh refinement
methods. However, we obtain a reduced partition of space from
the overparameterized fine B-spline grid allowing one to work
with polynomials on each adaptively coarsened partition of

unity; in this sense we obtain reduced-order model for the
adaptive B-spline basis. As a result, the size of the linear
system involved in the LSGD optimization step is smaller
than if we were to depend on the spline basis functions
directly. This reduction is particularly effective when d > 1,
to avoid the curse of dimensionality. Additionally, the number
of parameters in our model does not depend on the degree of
the polynomial approximation, since the coefficient values for
cα,β are tabulated via LSGD. We thus obtain an hp-convergent
variational framework for solving PDEs that circumvents
variational crimes due to inexact quadrature.

REFERENCES

[1] C. Beck, A. Jentzen, and B. Kuckuck, “Full error analysis for the training
of deep neural networks,” 2020.

[2] J. Han, A. Jentzen, and E. Weinan, “Solving high-dimensional partial
differential equations using deep learning,” Proceedings of the National
Academy of Sciences, vol. 115, no. 34, pp. 8505–8510, 2018.

[3] K. Lee, N. A. Trask, R. G. Patel, M. A. Gulian, and E. C. Cyr, “Partition
of unity networks: Deep hp-approximation,” 2021.



[4] G. Strang, “Variational crimes in the finite element method,” in The
Mathematical Foundations of the Finite Element Method with Applica-
tions to Partial Differential Equations. Elsevier, 1972, pp. 689–710.

[5] M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-informed
neural networks: A deep learning framework for solving forward and
inverse problems involving nonlinear partial differential equations,”
Journal of Computational Physics, vol. 378, pp. 686–707, 2019.

[6] S. Wang, Y. Teng, and P. Perdikaris, “Understanding and mitigating
gradient pathologies in physics-informed neural networks,” 2020.

[7] S. E. Yuksel, J. N. Wilson, and P. D. Gader, “Twenty years of mixture of
experts,” IEEE Transactions on Neural Networks and Learning Systems,
vol. 23, no. 8, pp. 1177–1193, 2012.

[8] M. I. Jordan and R. A. Jacobs, “Hierarchical mixtures of experts and the
em algorithm,” Neural computation, vol. 6, no. 2, pp. 181–214, 1994.

[9] S. Masoudnia and R. Ebrahimpour, “Mixture of experts: a literature
survey,” Artificial Intelligence Review, vol. 42, no. 2, pp. 275–293, 2014.

[10] J. W. Siegel and J. Xu, “Approximation rates for neural networks with
general activation functions,” Neural Networks, vol. 128, pp. 313–321,
2020.

[11] R. Arora, A. Basu, P. Mianjy, and A. Mukherjee, “Understanding deep
neural networks with rectified linear units,” in International Conference
on Learning Representations, 2018.

[12] R. Balestriero and R. G. Baraniuk, “Mad max: Affine spline insights into
deep learning,” Proceedings of the IEEE, vol. 109, no. 5, pp. 704–727,
2020.

[13] J. He, L. Li, J. Xu, and C. Zheng, “Relu deep neural networks and linear
finite elements,” Journal of Computational Mathematics, vol. 38, no. 3,
pp. 502–527, 2020.

[14] R. DeVore, B. Hanin, and G. Petrova, “Neural network approximation,”
Acta Numerica, vol. 30, pp. 327–444, 2021.

[15] J. A. Opschoor, P. C. Petersen, and C. Schwab, “Deep relu networks and
high-order finite element methods,” Analysis and Applications, vol. 18,
no. 05, pp. 715–770, 2020.

[16] D. L. Jupp, “Approximation to data by splines with free knots,” SIAM
Journal on Numerical Analysis, vol. 15, no. 2, pp. 328–343, 1978.
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APPENDIX

Training parameters and hyperparameters for each of the
four problems are described below. For all problems, random
NumPy calls are seeded by using a NumPy random number

generator with a fixed seed of seed=1234. TensorFlow
randomness is set via a global random seed of seed=1235,
which is independent of the NumPy generator and is restarted
each time a new network is trained. All problems use the Adam
[26] optimizer, paired with LSGD.

A. Problem 1

Our polynomial-spline networks are constructed with spatial
dimension d = 1, polynomial degrees B ∈ {0, 1, . . . , 6},
and number of splines in the spline layer Nsplines ∈
{4, 8, 16, 32, 64}. For each value of Nsplines, we test with the
number of POU cells Ncells = {1, 2, 4, 8, . . . , Nsplines}. The
LSGD layer uses an L2 regularizer of 10−10 as part of the
least-squares solve, to protect against numerical instability in
TensorFlow’s backwards differentiation of the least squares
function call. Optimization uses a learning rate of 5 × 10−3,
with a batch size of 1000, for 500 epochs, with MSE as the
loss function.

B. Problem 2

Our polynomial-spline networks are constructed with spatial
dimension d = 1, polynomial degrees B ∈ {0, 1, 2, 3},
and number of splines in the spline layer Nsplines ∈
{4, 8, 16, 32, 64}. For each value of Nsplines, we test with
the number of POU cells Ncells = {2, 4, 8, . . . , Nsplines}. The
LSGD layer uses an L2 regularizer of 10−12 as part of the
least-squares solve, to protect against numerical instability in
TensorFlow’s backwards differentiation of the least squares
function call. All other parameter and hyperparameter choices
are identical to those listed in Problem 1.

C. Problem 3

In Problem 3, we minimize the Euler-Lagrange loss

L(u) =

Z
Ω

1

2
∥∇u∥2 dx+ β

(
u(0)2 + u(1)2

�
. (7)

The penalty parameter β in the Euler-Lagrange loss is set to
β = 1000. For B = 0, we use a polynomial-spline network
with Nsplines ∈ {4, 8, . . . , 64} and with fixed Ncells = 3. We
train for 1000 epochs with an initial learning rate of 0.01,
reducing to 0.005 halfway through training.

D. Problem 4

In Problem 4, we minimize the Euler-Lagrange loss

L(u) =

Z
Ω

1

2
∥∇u∥2 dx+ β

Z
Γ

(u− g(r, θ))2ds. (8)

We use a polynomial-spline network with B = 1, with
Nsplines = 9 for both the x-axis splines and y-axis splines
(recall our spline basis for d > 1 is formed via a tensor
product of 1D splines), and with fixed Ncells = 16. We train
for 3000 epochs with an initial learning rate of 0.01, reducing
to 0.005 halfway through training and reinitialized after every
500 epochs. Otherwise, the optimizer parameters are the same
as in Problem 3.

http://dx.doi.org/10.4208/cicp.OA-2020-0193
https://www.tensorflow.org/
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