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1. Holistic benchmarking

. Volumetric benchmarking

. Algorithmic benchmarks

Many methods sit between these two extremes

One/two-qubit RB!
Cycle benchmarking?

Pauli noise learning’

2. Detailed error characterization

* State and process tomography

* Gate set tomography

Outline

High-level performance assessment

Alms to answer questions like:

What’s this device’s failure rate when
running many-qubit circuits?

What algorithms can this device run?

Is device X or device Y better?

Low-level performance assessment

Aims to answer questions like:

What kinds of errors are occurring?

What’s the error rate of each kind of
fundamental error on each gate?

What’s the process fidelity of this gate?

'E. Magesan et al, , Phys. Rev. Lett. 106, 180504 (2011), 2A. Erhard et al, Nat. Commun. 10, 5347 (2019). °R. Harper et al, Nat. Phys. 16, 1184 (2020).



Recap: what is a quantum circuit?

Circuit Depth
d layers (“cycles”) of logic gates

H

Circuit Width
w qubits

Many methods assume implicit “barriers” between
every layer that prevent compilation, 1.e., collapsing the
circuit to a simpler circuit that implements the same
unitary.
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Arute et al., Nature 574, 505

Holistic benchmarking

Want to buy my quantum
computer?

Can it run random circuit sampling?

Arute et al., Nature 574, 505 (2019)

Quantum error correction?
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Anderson et al., Nat. Phys. 16, 875 (2020)

What applications or algorithms can it run?
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What about QAOA?
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Kandala et al.,Nature 549, 242 (2017)

What about VQE? What about Phase
Estimation? The QFT? Etc... etc...




Noisy quantum computers

My quantum circuit My (imaginary) perfect quantum Distribution over bit strings
computet
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A real quantum computer

Errors occur when circuits are
run on real quantum computers!
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“Success probability” = “Distance between these distributions’




The quantum volume benchmark

* The quantum volume benchmark! is based on a particular family of random circuits:
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The quantum volume benchmark is a “full stack” benchmark: it permits compilation:

you’re only required to implement approximately the same unitary as the circuit.

Therefore quantum volume does not isolate gate performance: it quantities a complex

combination of gate performance, compiler performance, and programmability limitations.

1Cross et al., PRA 100, 032328 (2019)



Beyond square circuits: volumetric benchmarking with quantum
volume’s circuits

Volumetric Benchmarking of 16 Qubits
Scrambling Circuits - Heavy Outcome Probability > 2/3
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Figure 8(a). Volumetric benchmarking of a 16 qubit device using scrambling circuits. If at least 2/3 of the measurement
results are heavy for a given width/depth pair, then the pair passes the test and is marked with a large, solid blue box.
Using linear axes, the quantum volume experiments appear along the diagonal and are outlined with heavy, red lines.
For this example, log, (V) = 8. It is expected that scrambling circuits with both width and depth less than or equal to
the quantum volume should succeed, and we highlight these with a gray background.

Blume-Kohout and Young, Quantum 4, 362 (2020)



Beyond the QYV circuits: general volumetric

~— Typical volumetric benchmarking circuit ~ -
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Almost any family of circuits can be used for volumetric benchmarking!

Blume-Kohout and Young, Quantum 4, 362 (2020)



Holistic benchmarking aims to probe a quantum computer’s
“capability”

* We define a quantum computer’s capability to be a map from the space of circuits to the
circuit’s success rate (quantified, e.g., by fidelity).

——  94% Success probability

* This function is what (most) holistic benchmarks are trying to probe and understand.

* But we can’t just measure £(C) using an experiment...



The long-term challenge: avoiding exponential resource scaling

Computationally Useful Circuit

Instead we must use

The obvious carefully designed,
approach to etficiently verifiable “proxy
benchmarking —— programs”
Slow Experiment  Slow Simulation Proxy Program
(Run Circuit (1 Million Years
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Mirror circuit benchmarks

One solution — converting any circuit C to a set of

“mirror circuits’’:

w qubits

d layers

Proctor et al, Nat. Phys. 18, 75-79 (2022)
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Mirror circuit benchmarks

One solution — converting any circuit C to a set of

“mirror circuits’’:

w qubits

d layers

Proctor et al, Nat. Phys. 18, 75-79 (2022)
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One solution — converting any circuit C to a set of

“mirror circuits’’:

w qubits

d layers

Properties:

1. Every mirror circuit has an efficiently verifiable output.

Mirror circuit benchmarks
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Randomized state preparation and
measurement circuits

Randomized central circuit
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d layers d layers

Minor tweaks to the inversion
layers (“‘quasi-inverse” layers)

2. A processor’s performance on these mirror circuits 1s representative of how well

it will perform on C.

Proctor et al, Nat. Phys. 18, 75-79 (2022)

These circuit’s success probabilities

are related to fidelity of C!



15 Creating scalable and flexible benchmarks using mirror circuits

Circuit mirroring is a mapping that needs input circuit(s) to create a benchmark.

A mirror circuit

A circuit , —— pEia
1 Circuit mirrorin 5 1A — -1 [
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i 9/, layers 9/, layers
Clifford " Layer of Clifford Pauli - Inverse
%h gates | gates gates of []
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What circuits {I U I} create useful benchmarks?

Application-specific benchmarks

Generic benchmarks

* Randomized, unstructured circuits e Repetitive error-amplifying circuits

* An algorithm’s circuit(s).
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Proctor et al, Nat. Phys. 18, 75-79 (2022)
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(d)

Experimental demo

We ran varied width and depth randomized
mirror circuits, with approximately
exponentially spaced widths and

This is volumetric benchmarking;
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Experimental demo

We summarize performance via

“polarization” = (P— 72") / (1 — 72”) where
P is the probability that the correct bit-
string 1s output by circuit, and w s it’s
width.
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Capability regions
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23 ‘ Do we need anything other than randomized benchmarks? Yes!

Observed Failure Probability
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: : Random Circuits — Polarization Circuit Width
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N LU (a) Observations (b) Predictions (c) Prediction Inaccuracy
worse for periodic circuits! _ Structured  Unstructured
z 5] [] v o
* 'This is a symptom of structured € 4[] -
@)
£ 3 HE
errogs glat cannot be modelled by k- am |
stanqard error rates. % 1 -- -lil ;
3 5| O , ’
g« oo
S s M mm
S HEEE ]
Randomized, disordered circuits m 1 ... .E’
) HENEEN v &
-/ INEE 3
g o HENEEE
Z: ANEEEEEE [
- INEEEEEE [ *
% 2 z 5-- EE == =% 0 == Predicted Failure Probability
= 1 O O000OR FEEEEECE
T ii 455 2T EEeaYs

Proctor et al, Nat. Phys. 18, 75-79 (2022)



Algorithmic benchmarks:

* Randomized benchmarks often won’t predict other
kinds of circuit.

* We need bespoke, application-specific benchmarks.

* There’s a growing array of algorithmic benchmarking

suites (e.g., the QED-C benchmarks?). —

* Turning an algorithm into a benchmark is non-trivial:

* Algorithms often have a lot of tunable “parameters”, e.g., the
problem instance.

* Naive benchmarks (just run the algorithms circuits) are often

exponentially expensive to implement — solutions: mirror-circuit -

based methods? (for general circuits) and trap circuits? (for
randomly compiled circuits).

* Simple algorithmic benchmarks don’t measure progress towards

fault-tolerant implementations of algorithms.

1T. Lubinski et al., arXiv:2110.03137, 2T. Proctor et al., arXiv:2204.07568, 3S. Ferracin et al, PRA 104, 042603 (2021)
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How do | run these benchmarks?

Quantum volume

Open source implementation 1n QisKit:

https://qiskit.org/textbook/ch-quantum-hardware/measuring-quantum-volume.html

Volumetric benchmarking & mirror circuit benchmarks

Open source implementation in pyGSTi with a Q1sKit interface:
https://github.com/pyGSTio /pyGSTi

pyGSTi repo contains Jupyter Notebook tutorials!

Algorithmic benchmarks

There are many different algorithmic benchmarking suites!

QED—C benchmarking suite: https://github.com/SRI-International/ QC-App-Oriented-Benchmarks

You can create scalable algorithm benchmarks using mirror circuits via pyGSTi. See:
https://zenodo.org/record/6617686



https://qiskit.org/textbook/ch-quantum-hardware/measuring-quantum-volume.html
https://github.com/pyGSTio/pyGSTi
https://github.com/pyGSTio/pyGSTi/blob/master/jupyter_notebooks/Tutorials/algorithms/MirrorCircuitBenchmarks.ipynb
https://github.com/SRI-International/QC-App-Oriented-Benchmarks
https://zenodo.org/record/6617686

Outline

2. Detailed error characterization

* State and process tomography

* Gate set tomography



Standard tomography: state, process, and measurement tomography

state tomography
process tomography
measurement tomography

. unknown entity

|:| assumed-known informationally complete set

Figure 2: Structure of the circuits required for state, process,
and measurement tomography. Each of these protocols recon-
structs an unknown entity (a state p, process (G, or measure-
ment M) by placing that entity in circuits with an assumed-
known reference frame formed by an informationally complete
set of state preparations or measurements (or both). Primed
symbols (p’ and M) are meant to connote effective state prepa-
rations and measurements, which are often implemented by
applying gate operations after or before a native state prepa-
ration or measurement. A critical problem with these standard
tomographic techniques is that p’ and M’ are in practice never
known exactly.

Nielsen et al, Quantum 5, 557 (2021)

* Tomography means learning all the elements of a vector (state
tomography) or matrix (process tomography).

.l-. . l "
L
- -:- aEm

e

X Y 12 X1 XX XY XZ Yl YX YY YZ ZI ZX ZY ZZ

The normalized Pauli operators

N
E; = Te(PE[P])

ZZ ZY ZX ZI YZ YY YX YI XZ XY XX XI 1Z Iy X 0

* This just requires taking inner products with a known basts,
and then applying a matrix inverse.

* 'This means using informationally complete (1C) measurements
for state tomography, and IC state preparations and
measurements for process tomography:.

But there’s a critical problem: pre-calibrated reference frames don’t really exist!



Gate set tomography — tomography without pre-calibration

GST estimates all the elements of a
Jate set.

Nai,NJ™

G = {{\p@»}fz G { ™I

m=1,2=1

It does so up to a fundamental gauge
freedom:

(B — (BY™ | M
P — M|p®))
Gi — MGZ'M_l.

Nielsen et al, Quantum 5, 557 (2021)
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Gate set tomography — tomography without pre-calibration

GST estimates all the elements of a
Long-sequence gate set tomography

) a) CTHT D
G = {\p<@'>>>}fpl;{c:@-}iﬁ;{<<E§m>\}:”f: - b) T EHEE D

p
o) CHeleleHclcledeHelcHD

|:| native operation |:] informationally complete set

Jate set.

It does so up to a fundamental gauge

freedom: |:] amplificationally complete set
Figure 4: The structure of circuits in the standard GST exper-
(m) (m) 1 iment design, shown in increasing detail. (a) Each GST circuit
<<EZ ‘ — <<EZ |M consists of an effective state preparation p’ (Eq. 52), followed
(Z) (z) by a germ circuit g repeated p times, followed by an effective
|10 >> — M‘p >> measurement M’ = {E;} (Eq. 51). (b) Effective preparations
are often implemented by a native state preparation p followed

-1 )

Gi — MG,LM . by a preparation fiducial circuit F', and similarly effective mea-
surements are often implemented by measurement fiducial cir-
cuit H followed by a native measurement M. (c) Writing the

Repeating “germs” enables Heisenberg—hke fiducials an(.j germ in.terms of native gate operations reveals
how the native operations of a gate set compose to form a GST
estimation error! circuit.

Nielsen et al, Quantum 5, 557 (2021)



Process matrices are mysterious! How can we extract meaning

from GST results?

Impenetrable process matrices can be
turned into rates for each kind of a set 15| I Intrinsic coherent eror

[ Relational coherent error

of elementary error processes .| Stochastic error W Positve
9% o— Infidelity on target qubit(s)
- Total infidelity on both qubits [ Negative
. . . Example effect &y (Error 8, (Error o
Sector Dimension Action = 3 o
(Bloch sphere)  Probability) Amplitude) 8% Entangling Hamiltonian D Zero

on one-qubit gates
Hamiltonian ~ [H] [EAREE Hp[p] = —i[P, p] 0 1 7% \
6% Relational coherent
Stc();l;ﬁﬁ;m S 21 Splp] = PpP — lpll 1 0 d Icrgﬂgf;t error
——
5% H: amplitude
Stochastic 0 N < ntrinsic
(Pauli-correlation) <d2 B 1) Cpalpl = PpQ + QpP — % {{P.Q},p} 0 L 4% - stochastic error
92 J T T 2700 PRy - & S 1 =S | - = =-.-' -« AN
C 1 y | = .. M - .
_ 21 1 3% 1 x
AXe ( ) ) Analdl =i (P2 - QoP + (1010} (S B B B B B Rl " G T W N
0 PI7SEEE S DR DR DN
Blume-Kohout et al., PRX Quantum 3, 020335 (2022) 1o !
-
0% - !— o Q1
Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2
[ [ o [ % |
Xepp®1 Yip®1 1eX, 1®Yy, 1Y o Ccz TG
c
On-target G tor infidelit Intrinsic | Relational Total
. 1 . average enerator infidelity Stochastic | coherent | coherent otal error
ThlS Cnables leldlﬂg the tOtal Cr 1" Ol" 1I1 a Gate gate fidelity | On Q1 Oon Q2 Total error error error On Q1 On Q2 Total — Yn,2 -
. . . Xy2®1 || 99.87(2)% |0.17(3)% | 0.47(5)% | 0.68(6)%| 0.60(6)% |0.34(14)% | 2.8(3)% [|2.0(3)%(0.71(15)%(3.4@)%| B
gate lnto dlfferent klnds Of error — e.g. 5 Ye2® 1 || 99.95(2)% |0.07(3)% | 0.61(6)% | 0.75(6)%| 0.67(6)% | 0.9@)% | 2.6(3)% [1.02)%| 1.24)% [3.4@)%
18X, || 99.48(3)% |2.14(5)% | 0.69(4)% | 2.86(7)% || 2.69(6)% | 3.6(3)% | 2.2(3)% |[5.0(3)%|3.05(17)%|6.9(3)% {v,
b 1Y || 99.41(5)% |2.63(8)% |0.79(6)% [3.44(10)% || 3.36(10)% | 2.3(4)% 1.94)% [4.1(6)%| 2.6)% [6.3(5)% 2
the COherent Crror on qult 1 * 1®Y ., || 99.49(5)% |2.60(13)%] 0.68(7)% [3.54(16)% || 3.18(15)% | 3.1(4% | 5.16)% [4.2)%| 3.20)% [9.15)%| T
Cz (| 99.37(11)% 10.11(10)%|0.66(11)%]0.79(14)%]|| 0.54(13)% | 4.9(3)% 0.73)% |18.2(4)%| 4.1(3)% |5.5(4)%

M. Madzik et al., Nature 601, 348 (2022)



How do | run GST? 000

One- and two-qubit GST

Open source implementation in pyGSTi:
https://github.com /pyGSTio/pvGSTi

4

pyGSTi repo contains Jupyter Notebook tutorials!

https://github.com/pyGSTio/pyGSTi/blob/master/jupyter notebooks/Tutorials/algorithms/GST-Overviewipynb

View on GitHub @

0® pyGSTi

@ A python implementation of Gate Set Tomography

Many-qubit GST
GST on many qubits 1s an in-development technique!


https://github.com/pyGSTio/pyGSTi
https://github.com/pyGSTio/pyGSTi/blob/master/jupyter_notebooks/Tutorials/algorithms/GST-Overview.ipynb

Thanks!

uantu

@ - @ o -0- O ®
Performance Laboratory

https://gpl.sandia.gov/

At the QPL we spend our time developing, understanding and using QCVV+ techniques — from
benchmarks to GST and beyond — and we collaborate with experimentalists across the world to
understand cutting-edge hardware.

The QPL is hiring postdocs!

So 1if you’re excited to work on QCVV+ research now or in the future please get in touch.

tiproct@sandia.gov
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