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High-level performance assessment
Aims to answer questions like:

• What’s this device’s failure rate when 
running many-qubit circuits?

• What algorithms can this device run?

• Is device X or device Y better?

Low-level performance assessment
Aims to answer questions like:

• What kinds of  errors are occurring?

• What’s the error rate of  each kind of  
fundamental error on each gate?

• What’s the process fidelity of  this gate?

Many methods sit between these two extremes

1E. Magesan et al, , Phys. Rev. Lett. 106, 180504 (2011), 2A. Erhard et al, Nat. Commun. 10, 5347 (2019). 3R. Harper et al, Nat. Phys. 16, 1184 (2020).



Recap: what is a quantum circuit?

w qubits

d layers (“cycles”) of  logic gates

Circuit Width

Circuit Depth

Many methods assume implicit “barriers” between 
every layer that prevent compilation, i.e., collapsing the 
circuit to a simpler circuit that implements the same 
unitary.



Holistic benchmarking

What applications or algorithms can it run? 

Arute et al., Nature 574, 505 (2019) 
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single-qubit gates chosen randomly from X Y W{ , , } on all qubits, 
followed by two-qubit gates on pairs of qubits. The sequences of gates 
which form the ‘supremacy circuits’ are designed to minimize the circuit 
depth required to create a highly entangled state, which is needed for 
computational complexity and classical hardness.

Although we cannot compute FXEB in the supremacy regime, we can 
estimate it using three variations to reduce the complexity of the circuits. 
In ‘patch circuits’, we remove a slice of two-qubit gates (a small fraction 
of the total number of two-qubit gates), splitting the circuit into two 
spatially isolated, non-interacting patches of qubits. We then compute 
the total fidelity as the product of the patch fidelities, each of which can 
be easily calculated. In ‘elided circuits’, we remove only a fraction of the 
initial two-qubit gates along the slice, allowing for entanglement 
between patches, which more closely mimics the full experiment while 
still maintaining simulation feasibility. Finally, we can also run full 
‘verification circuits’, with the same gate counts as our supremacy cir-
cuits, but with a different pattern for the sequence of two-qubit gates, 
which is much easier to simulate classically (see also Supplementary 
Information). Comparison between these three variations allows us to 
track the system fidelity as we approach the supremacy regime.

We first check that the patch and elided versions of the verification 
circuits produce the same fidelity as the full verification circuits up to 
53 qubits, as shown in Fig. 4a. For each data point, we typically collect 
Ns = 5 × 106 total samples over ten circuit instances, where instances 
differ only in the choices of single-qubit gates in each cycle. We also 
show predicted FXEB values, computed by multiplying the no-error prob-
abilities of single- and two-qubit gates and measurement (see also Sup-
plementary Information). The predicted, patch and elided fidelities all 
show good agreement with the fidelities of the corresponding full cir-
cuits, despite the vast differences in computational complexity and 
entanglement. This gives us confidence that elided circuits can be used 
to accurately estimate the fidelity of more-complex circuits.

The largest circuits for which the fidelity can still be directly verified 
have 53 qubits and a simplified gate arrangement. Performing random 
circuit sampling on these at 0.8% fidelity takes one million cores 130 
seconds, corresponding to a million-fold speedup of the quantum pro-
cessor relative to a single core.

We proceed now to benchmark our computationally most difficult 
circuits, which are simply a rearrangement of the two-qubit gates. In 
Fig. 4b, we show the measured FXEB for 53-qubit patch and elided ver-
sions of the full supremacy circuits with increasing depth. For the larg-
est circuit with 53 qubits and 20 cycles, we collected Ns = 30 × 106 samples 
over ten circuit instances, obtaining F = (2.24 ±0.21) × 10XEB

−3  for the 
elided circuits. With 5σ confidence, we assert that the average fidelity 

of running these circuits on the quantum processor is greater than at 
least 0.1%. We expect that the full data for Fig. 4b should have similar 
fidelities, but since the simulation times (red numbers) take too long to 
check, we have archived the data (see ‘Data availability’ section). The 
data is thus in the quantum supremacy regime.

The classical computational cost
We simulate the quantum circuits used in the experiment on classical 
computers for two purposes: (1) verifying our quantum processor and 
benchmarking methods by computing FXEB where possible using sim-
plifiable circuits (Fig. 4a), and (2) estimating FXEB as well as the classical 
cost of sampling our hardest circuits (Fig. 4b). Up to 43 qubits, we use 
a Schrödinger algorithm, which simulates the evolution of the full quan-
tum state; the Jülich supercomputer (with 100,000 cores, 250 terabytes) 
runs the largest cases. Above this size, there is not enough random access 
memory (RAM) to store the quantum state42. For larger qubit numbers, 
we use a hybrid Schrödinger–Feynman algorithm43 running on Google 
data centres to compute the amplitudes of individual bitstrings. This 
algorithm breaks the circuit up into two patches of qubits and efficiently 
simulates each patch using a Schrödinger method, before connecting 
them using an approach reminiscent of the Feynman path-integral. 
Although it is more memory-efficient, the Schrödinger–Feynman algo-
rithm becomes exponentially more computationally expensive with 
increasing circuit depth owing to the exponential growth of paths with 
the number of gates connecting the patches.

To estimate the classical computational cost of the supremacy circuits 
(grey numbers in Fig. 4b), we ran portions of the quantum circuit simu-
lation on both the Summit supercomputer as well as on Google clusters 
and extrapolated to the full cost. In this extrapolation, we account for 
the computation cost of sampling by scaling the verification cost with 
FXEB, for example43,44, a 0.1% fidelity decreases the cost by about 1,000. 
On the Summit supercomputer, which is currently the most powerful 
in the world, we used a method inspired by Feynman path-integrals that 
is most efficient at low depth44–47. At m = 20 the tensors do not reason-
ably fit into node memory, so we can only measure runtimes up to m = 14, 
for which we estimate that sampling three million bitstrings with 1% 
fidelity would require a year.

On Google Cloud servers, we estimate that performing the same task 
for m = 20 with 0.1% fidelity using the Schrödinger–Feynman algorithm 
would cost 50 trillion core-hours and consume one petawatt hour of 
energy. To put this in perspective, it took 600 seconds to sample the 
circuit on the quantum processor three million times, where sampling 
time is limited by control hardware communications; in fact, the net 
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Fig. 3 | Control operations for the quantum supremacy circuits. a, Example 
quantum circuit instance used in our experiment. Every cycle includes a layer 
each of single- and two-qubit gates. The single-qubit gates are chosen randomly 
from X Y W{ , , }, where  W X Y= ( + )/ 2  and gates do not repeat sequentially. 
The sequence of two-qubit gates is chosen according to a tiling pattern, 
coupling each qubit sequentially to its four nearest-neighbour qubits. The 

couplers are divided into four subsets (ABCD), each of which is executed 
simultaneously across the entire array corresponding to shaded colours. Here 
we show an intractable sequence (repeat ABCDCDAB); we also use different 
coupler subsets along with a simplifiable sequence (repeat EFGHEFGH, not 
shown) that can be simulated on a classical computer. b, Waveform of control 
signals for single- and two-qubit gates.

Can it run random circuit sampling?

Arute et al., Nature 574, 505 (2019) 
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What about QAOA?

Kandala et al.,Nature 549, 242 (2017)

Quantum error correction?

Anderson et al., Nat. Phys. 16, 875 (2020) 

What about VQE? What about Phase 
Estimation? The QFT? Etc… etc… 



Noisy quantum computers

My quantum circuit My (imaginary) perfect quantum 
computer

000 001 010 011 100 101 110 111

Distribution over bit strings

A real quantum computer

000 001 010 011 100 101 110 111

Errors occur when circuits are 
run on real quantum computers!

“Success probability” =  “Distance between these distributions”



The quantum volume benchmark

Image from Cross et al., PRA 100, 032328 (2019) 

• The quantum volume benchmark1 is based on a particular family of  random circuits:

• The quantum volume benchmark is a “full stack” benchmark: it permits compilation: 
you’re only required to implement approximately the same unitary as the circuit.

• Therefore quantum volume does not isolate gate performance: it quantifies a complex 
combination of  gate performance, compiler performance, and programmability limitations.

d qubits

1Cross et al., PRA 100, 032328 (2019) 



Beyond square circuits: volumetric benchmarking with quantum 
volume’s circuits

Blume-Kohout and Young, Quantum 4, 362 (2020)



Beyond the QV circuits: general volumetric benchmarking

Almost any family of  circuits can be used for volumetric benchmarking!  

Blume-Kohout and Young, Quantum 4, 362 (2020)



Holistic benchmarking aims to probe a quantum computer’s 
“capability”

94% Success probabilityf ( ) =

• We define a quantum computer’s capability to be a map from the space of  circuits to the 
circuit’s success rate (quantified, e.g., by fidelity).

• This function is what (most) holistic benchmarks are trying to probe and understand.

• But we can’t just measure f(C) using an experiment…



The long-term challenge: avoiding exponential resource scaling

)f ( ) 

The obvious 
approach to 

benchmarking

Instead we must use 
carefully designed, 

efficiently verifiable “proxy 
programs”

)
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One solution – converting any circuit C to a set of  
“mirror circuits”:

Flawed due to error 
cancelation/addition!

Mirror circuit benchmarks

Proctor et al, Nat. Phys. 18, 75-79 (2022)
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One solution – converting any circuit C to a set of  
“mirror circuits”:

Mirror circuit benchmarks

Proctor et al, Nat. Phys. 18, 75-79 (2022)
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Properties:

1. Every mirror circuit has an efficiently verifiable output.

2. A processor’s performance on these mirror circuits is representative of  how well 
it will perform on C.

w
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ts

d layers d layers

Randomized state preparation and 
measurement circuits

Randomized central circuit

These circuit’s success probabilities 
are related to fidelity of  C!
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One solution – converting any circuit C to a set of  
“mirror circuits”:

Mirror circuit benchmarks

Proctor et al, Nat. Phys. 18, 75-79 (2022)



Creating scalable and flexible benchmarks using mirror circuits15

Circuit mirroring is a mapping that needs input circuit(s) to create a benchmark.

• Randomized, unstructured circuits • Repetitive error-amplifying circuits
Generic benchmarks

• An algorithm’s circuit(s).

Application-specific benchmarks
What circuits                create useful benchmarks?

A circuit
Circuit mirroring

A mirror circuit

Proctor et al, Nat. Phys. 18, 75-79 (2022)



Experimental demo
Benchmarking 12 publicly accessible 
processors with randomized mirror 
circuits.

Proctor et al, Nat. Phys. 18, 75-79 (2022)



Experimental demo
The processors are from IBM and 
Rigetti Computing.

Proctor et al, Nat. Phys. 18, 75-79 (2022)



Experimental demo
We ran varied width and depth randomized 
mirror circuits, with approximately 
exponentially spaced widths and depths..

This is volumetric benchmarking.

Proctor et al, Nat. Phys. 18, 75-79 (2022)



Experimental demo
At each (width, depth) pair we sampled 40 
randomized mirror circuits, and we ran 
each one ~1000 times.

Proctor et al, Nat. Phys. 18, 75-79 (2022)



Experimental demo
We summarize performance via 
“polarization” = (P – ½w) / (1 – ½w)  where 
P is the probability that the correct bit-
string is output by circuit, and w is it’s 
width.

Proctor et al, Nat. Phys. 18, 75-79 (2022)



Experimental demo
We plot data for the best and worst 
performing of  the 40 circuits – at each 
width and depth – as well as the mean 
performance.

Proctor et al, Nat. Phys. 18, 75-79 (2022)



Capability regions22

IBM Q London IBM Q Vigo

IBM Q BurlingtonIBM Q YorktownIBM Q Ourense

Rigetti Aspen 4

IBM Q Essex

IBM Q Melbourne All circuits succeed
Some circuits succeed
No circuits succeed

Benchmark Depth

Ci
rc

ui
t W

id
th

Circuit W
idth

• The regions shown here 
include those circuit shapes 
where all / some / none of  
the test circuits within it 
succeeded with a polarization 
of  at least 1/e.

• This can be thought of  as a 
simple representation of  the 
capability function

f ( ) 

Proctor et al, Nat. Phys. 18, 75-79 (2022)
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Do we need anything other than randomized benchmarks? Yes!

Randomized, disordered circuits

Periodic, error-amplifying circuits

Proctor et al, Nat. Phys. 18, 75-79 (2022)



Algorithmic benchmarks

• Randomized benchmarks often won’t predict other 
kinds of  circuit.

• We need bespoke, application-specific benchmarks.

• There’s a growing array of  algorithmic benchmarking 
suites (e.g., the QED-C benchmarks1). 

• Turning an algorithm into a benchmark is non-trivial:

• Algorithms often have a lot of  tunable “parameters”, e.g., the 
problem instance.

• Naïve benchmarks (just run the algorithms circuits) are often 
exponentially expensive to implement – solutions: mirror-circuit 
based methods2 (for general circuits) and trap circuits3 (for 
randomly compiled circuits).

• Simple algorithmic benchmarks don’t measure progress towards 
fault-tolerant implementations of  algorithms.

1T. Lubinski et al., arXiv:2110.03137, 2T. Proctor et al., arXiv:2204.07568, 3S. Ferracin et al, PRA 104, 042603 (2021)



How do I run these benchmarks?

Quantum volume
Open source implementation in QisKit:

https://qiskit.org/textbook/ch-quantum-hardware/measuring-quantum-volume.html

Volumetric benchmarking & mirror circuit benchmarks
Open source implementation in pyGSTi with a QisKit interface:

https://github.com/pyGSTio/pyGSTi

pyGSTi repo contains Jupyter Notebook tutorials!
https://github.com/pyGSTio/pyGSTi/blob/master/jupyter_notebooks/Tutorials/algorithms/MirrorCircuitBenchmarks.ipynb

Algorithmic benchmarks
There are many different algorithmic benchmarking suites!

QED-C benchmarking suite: https://github.com/SRI-International/QC-App-Oriented-Benchmarks

You can create scalable algorithm benchmarks using mirror circuits via pyGSTi. See: 
https://zenodo.org/record/6617686

https://qiskit.org/textbook/ch-quantum-hardware/measuring-quantum-volume.html
https://github.com/pyGSTio/pyGSTi
https://github.com/pyGSTio/pyGSTi/blob/master/jupyter_notebooks/Tutorials/algorithms/MirrorCircuitBenchmarks.ipynb
https://github.com/SRI-International/QC-App-Oriented-Benchmarks
https://zenodo.org/record/6617686
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High-level performance assessment
Aims to answer questions like:

• What’s this device’s failure rate when 
running many-qubit circuits?

• What algorithms can this device run?

• Is device X or device Y better?

Low-level performance assessment
Aims to answer questions like:

• What kinds of  errors are occurring?

• What’s the error rate of  each kind of  
fundamental error on each gate?

• What’s the process fidelity of  this gate?

Many methods sit between these two extremes



Standard tomography: state, process, and measurement tomography

But there’s a critical problem: pre-calibrated reference frames don’t really exist!

Eij = Tr(PjE[Pi])

The normalized Pauli operators

• Tomography means learning all the elements of  a vector (state 
tomography) or matrix (process tomography).

• This just requires taking inner products with a known basis, 
and then applying a matrix inverse.

• This means using informationally complete (IC) measurements 
for state tomography, and IC state preparations and 
measurements for process tomography.

Nielsen et al, Quantum 5, 557 (2021)



Gate set tomography – tomography without pre-calibration

d)

e)

f)

a)

b)

c)

native  operation informationally complete set

e.g. e.g.

e.g. e.g.

Figure 3: Structures of the two types of circuits required by
the LGST algorithm. Upper panel: Each native gate, Gk, is
sandwiched between the elements of informationally complete
sets of e�ective state preparations, {flÕ

i}, and of e�ective mea-
surements, {MÕ

j}. These are the same circuits that process
tomography requires to characterize Gk. Line (a) shows these
circuits in their simplest form, with each informationally com-
plete set displayed as a unit. Line (b) depicts the common case
when the set of e�ective preparations (measurements) is im-
plemented by following (preceding) a single native preparation
(measurement) operation with a fiducial circuit Ff (Hh), see
Eqs. 51 and 52. Line (c) exemplifies that the fiducial circuits
are composed of native gates, and gives the circuit entirely in
terms of native operations. Lower panel: Because LGST does
not assume knowledge of the flÕ

i and MÕ
j , it requires circuits

that sandwich nothing between pairs of fiducials in order to be
self-calibrating. The circuit diagrams in lines (d), (e), and (f)
parallel those in (a)-(c). LGST also requires the circuits that
perform state (measurement) tomography on fl (M), but these
are not explicitly shown. They are similar to (d)-(f) (replacing
flÕ with fl or MÕ with M), and are actually included as a sub-
set of these circuits when the gate set contains only a single
native state preparation (measurement) and one of the prepara-
tion (measurement) fiducial circuits is the empty (do-nothing)
cirucit.

about flÕ
j and EÕ

i, we measure some additional proba-
bilities that correspond to process tomography on the
null operation. We arrange these into a Gram matrix
for the fiducial states/e↵ects:

1̃li,j = ÈÈEÕ
i|flÕ

jÍÍ. (38)

Figure 3d-f depicts the circuits whose outcome proba-
bilities make up 1̃l. This matrix can also be written in
terms of the A and B matrices, as

1̃l = AB. (39)

We assumed that these matrices are square (Nf1 =
Nf2 = d2) and invertible (which follows from informa-
tional completeness). So we can invert the Gram matrix

to get 1̃l≠1 = B≠1A≠1, multiply Eq. 37 on the left by
it,

1̃l≠1

Pk = B≠1GkB, (40)
and solve for Gk to get

Gk = B1̃l≠1

PkB≠1. (41)

This may not look like the solution – there’s still an
unknown B involved – but it is. We’ve reconstructed
Gk up to a similarity transformation by the unknown
B. Moreover, we can do this in exactly the same way
for all the gates Gk, and get estimates of them all up
to the same B.

We also need to reconstruct the native states fl(l) and

measurement e↵ects {E(m)

l } in the gate set. To do so,
we construct the following vectors (denoted by ·̨) of ob-
servable probabilities:

Ë
R̨(l)

È

j
= ÈÈEÕ

j |fl(l)ÍÍ (42)
Ë
Q̨(m)

l

È

j
= ÈÈE(m)

l |flÕ
jÍÍ. (43)

Measuring these probabilities corresponds to perform-
ing state tomography on each native state fl(l), and mea-

surement tomography on every native e↵ect {E(m)

l } –
in the unknown frame defined by the fiducial e↵ects and
states. They can be written using A and B as

R̨(l) = A|fl(l)ÍÍ (44)
Q̨(m)T

l = ÈÈE(m)

l |B, (45)

and by using the identity 1̃l = AB in Eq. 44, we get the
following equations for all the elements of the gate set:

Gk = B1̃l≠1

PkB≠1 (46)
|fl(l)ÍÍ = B1̃l≠1

R̨(l) (47)
ÈÈE(m)

l | = Q̨(m)T
l B≠1. (48)

Perhaps surprisingly, this is the answer – we’ve recov-
ered the original gate set up to a gauge. The unknown

Accepted in Quantum 2021-07-25, click title to verify. Published under CC-BY 4.0. 13

Linear gate set tomography

Process 
tomography 
experiments

Reference 
frame 
experiments

more – it reconstructs the entire gate set up to the global
gauge freedom given in Eq. 15, recapitulated below:

ÈÈE(m)

i | æ ÈÈE(m)

i |M≠1

|fl(i)ÍÍ æ M |fl(i)ÍÍ (34)
Gi æ MGiM

≠1.

Such transformations change the elements of the gate
set, but not any observable probability. So it’s not pos-
sible to distinguish between gauge-equivalent gate sets,
and reconstructing a gate set up to arbitrary M consti-
tutes success.

Since a gate set comprises states, gates, and measure-
ments, it’s tempting to say that LGST characterizes all
of them simultaneously. But this is not quite right. A
gate set is not a collection of unrelated quantum oper-
ations. Quantum operations are usually described rel-
ative to an implicit and absolute reference frame. But
in most experiments, no such reference frame is avail-
able. So GST characterizes all these operations relative
to each other, and estimates every property of a gate set
that can be measured without a reference frame. But
some properties of gate sets can’t be measured, even
in principle, and they correspond to gauge degrees of
freedom.

Gauge freedom makes some familiar properties of
gates unmeasurable. Other properties of gates turn
out to be not associated with a single operation, but
purely relational properties – i.e., they are properties of
the gate set, but not of any individual gate within it.
This awkwardness is the unavoidable price of avoiding
pre-calibrated reference frames. GST outputs a self-
consistent representation of the available states, pro-
cesses, and measurements, but that representation is
generally not unique. If finite-sample errors did not ex-
ist, LGST would be a perfect estimator of the gate set,
and this paper would be much shorter. But real experi-
ments always su↵er from finite sample error. N trials of
an event with probability p does not generally yield ex-
actly pN successes, so estimating p from data generally
yields p̂ = p ± O(1/

Ô
N). As a result, LGST’s estima-

tion error scales as O(1/
Ô

N), just like process tomog-
raphy. So estimating a gate set to within ±10≠5 with
LGST would require repeating each circuit N ¥ 1010

times, which is impractical. The “long-sequence GST”
protocol described in Section 4 is much more e�cient,
and makes standalone LGST preferable only when there
are severe resource constraints. But LGST remains im-
portant both pedagogically and as a key first step in
long-sequence GST’s analysis pipeline.

3.2 The LGST algorithm

In this section, we present the core LGST algorithm.
We focus on (1) what LGST seeks to estimate, (2) what

data is required for LGST, and (3) how to transform
that data into an estimate under ideal circumstances.
At first, we make some idealized simplifying assump-
tions in order to maximize clarity. After presenting the
core algorithm, we return to these assumptions, relax
them, and show how to make this algorithm practical
and robust. The simplifying assumptions are:

1. We assume the ability to create informationally
complete sets of fiducial states

)
|flÕ

jÍÍ
*

and mea-
surement e↵ects {ÈÈEÕ

i|} (see Section 3.3).

2. We ignore finite sample error in estimated proba-
bilities, and its e↵ects (see Section 3.4).

3. We assume that the fiducial states and e↵ects
are exactly informationally complete, not overcom-
plete, so that Nf1 = Nf2 = d2 (see Appendix C).

We use the notation of Eq. 14 to denote the contents
of a generic gate set G:

G =
IÓ

|fl(i)ÍÍ
ÔNfl

i=1

; {Gi}NG
i=1

;
Ó

ÈÈE(m)

i |
ÔNM,N(m)

E

m=1,i=1

J
.

(35)
As in Section 2.1.4, Nfl, NG and NM are the number of
distinct state preparations, gates, and measurements,

and N (m)

E
is the number of possible outcomes for the

m-th distinct measurement.
To perform process tomography on an operation G

in Section 2.2.2, we constructed a matrix P of observ-
able probabilities using informationally complete fidu-
cial states and e↵ects. For LGST, we will do the same
thing. But although we assume the existence and im-
plementability of fiducial sets, we do not assume that
we know them. They still form a reference frame, but
we don’t know what that frame is.
To reconstruct a set of gates (processes) {Gk}, we

will need one such matrix Pk for each gate:

[Pk]i,j = ÈÈEÕ
i|Gk|flÕ

jÍÍ. (36)

These probabilities are directly measurable – we don’t
know what flÕ

j and EÕ
i are, but we can prepare/measure

them. The first line of Figure 3 illustrates the circuit
corresponding to Eq. 36.
We can construct A and B matrices from the fiducial

vectors exactly as for process tomography. The di↵er-
ence, of course, is that although those matrices exist,
their entries are not known to the tomographer. Just
as before, we can write

Pk = AGkB. (37)

Since we do not know A or B, we cannot solve this equa-
tion for Gk. Instead, to compensate for our ignorance
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more – it reconstructs the entire gate set up to the global
gauge freedom given in Eq. 15, recapitulated below:
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Such transformations change the elements of the gate
set, but not any observable probability. So it’s not pos-
sible to distinguish between gauge-equivalent gate sets,
and reconstructing a gate set up to arbitrary M consti-
tutes success.

Since a gate set comprises states, gates, and measure-
ments, it’s tempting to say that LGST characterizes all
of them simultaneously. But this is not quite right. A
gate set is not a collection of unrelated quantum oper-
ations. Quantum operations are usually described rel-
ative to an implicit and absolute reference frame. But
in most experiments, no such reference frame is avail-
able. So GST characterizes all these operations relative
to each other, and estimates every property of a gate set
that can be measured without a reference frame. But
some properties of gate sets can’t be measured, even
in principle, and they correspond to gauge degrees of
freedom.

Gauge freedom makes some familiar properties of
gates unmeasurable. Other properties of gates turn
out to be not associated with a single operation, but
purely relational properties – i.e., they are properties of
the gate set, but not of any individual gate within it.
This awkwardness is the unavoidable price of avoiding
pre-calibrated reference frames. GST outputs a self-
consistent representation of the available states, pro-
cesses, and measurements, but that representation is
generally not unique. If finite-sample errors did not ex-
ist, LGST would be a perfect estimator of the gate set,
and this paper would be much shorter. But real experi-
ments always su↵er from finite sample error. N trials of
an event with probability p does not generally yield ex-
actly pN successes, so estimating p from data generally
yields p̂ = p ± O(1/

Ô
N). As a result, LGST’s estima-

tion error scales as O(1/
Ô

N), just like process tomog-
raphy. So estimating a gate set to within ±10≠5 with
LGST would require repeating each circuit N ¥ 1010

times, which is impractical. The “long-sequence GST”
protocol described in Section 4 is much more e�cient,
and makes standalone LGST preferable only when there
are severe resource constraints. But LGST remains im-
portant both pedagogically and as a key first step in
long-sequence GST’s analysis pipeline.

3.2 The LGST algorithm

In this section, we present the core LGST algorithm.
We focus on (1) what LGST seeks to estimate, (2) what

data is required for LGST, and (3) how to transform
that data into an estimate under ideal circumstances.
At first, we make some idealized simplifying assump-
tions in order to maximize clarity. After presenting the
core algorithm, we return to these assumptions, relax
them, and show how to make this algorithm practical
and robust. The simplifying assumptions are:

1. We assume the ability to create informationally
complete sets of fiducial states

)
|flÕ

jÍÍ
*

and mea-
surement e↵ects {ÈÈEÕ

i|} (see Section 3.3).

2. We ignore finite sample error in estimated proba-
bilities, and its e↵ects (see Section 3.4).

3. We assume that the fiducial states and e↵ects
are exactly informationally complete, not overcom-
plete, so that Nf1 = Nf2 = d2 (see Appendix C).

We use the notation of Eq. 14 to denote the contents
of a generic gate set G:

G =
IÓ

|fl(i)ÍÍ
ÔNfl

i=1

; {Gi}NG
i=1

;
Ó

ÈÈE(m)

i |
ÔNM,N(m)

E

m=1,i=1

J
.

(35)
As in Section 2.1.4, Nfl, NG and NM are the number of
distinct state preparations, gates, and measurements,

and N (m)

E
is the number of possible outcomes for the

m-th distinct measurement.
To perform process tomography on an operation G

in Section 2.2.2, we constructed a matrix P of observ-
able probabilities using informationally complete fidu-
cial states and e↵ects. For LGST, we will do the same
thing. But although we assume the existence and im-
plementability of fiducial sets, we do not assume that
we know them. They still form a reference frame, but
we don’t know what that frame is.
To reconstruct a set of gates (processes) {Gk}, we

will need one such matrix Pk for each gate:

[Pk]i,j = ÈÈEÕ
i|Gk|flÕ

jÍÍ. (36)

These probabilities are directly measurable – we don’t
know what flÕ

j and EÕ
i are, but we can prepare/measure

them. The first line of Figure 3 illustrates the circuit
corresponding to Eq. 36.
We can construct A and B matrices from the fiducial

vectors exactly as for process tomography. The di↵er-
ence, of course, is that although those matrices exist,
their entries are not known to the tomographer. Just
as before, we can write

Pk = AGkB. (37)

Since we do not know A or B, we cannot solve this equa-
tion for Gk. Instead, to compensate for our ignorance
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Gate set tomography – tomography without pre-calibration

Long-sequence gate set tomography

more – it reconstructs the entire gate set up to the global
gauge freedom given in Eq. 15, recapitulated below:

ÈÈE(m)

i | æ ÈÈE(m)

i |M≠1

|fl(i)ÍÍ æ M |fl(i)ÍÍ (34)
Gi æ MGiM

≠1.

Such transformations change the elements of the gate
set, but not any observable probability. So it’s not pos-
sible to distinguish between gauge-equivalent gate sets,
and reconstructing a gate set up to arbitrary M consti-
tutes success.

Since a gate set comprises states, gates, and measure-
ments, it’s tempting to say that LGST characterizes all
of them simultaneously. But this is not quite right. A
gate set is not a collection of unrelated quantum oper-
ations. Quantum operations are usually described rel-
ative to an implicit and absolute reference frame. But
in most experiments, no such reference frame is avail-
able. So GST characterizes all these operations relative
to each other, and estimates every property of a gate set
that can be measured without a reference frame. But
some properties of gate sets can’t be measured, even
in principle, and they correspond to gauge degrees of
freedom.

Gauge freedom makes some familiar properties of
gates unmeasurable. Other properties of gates turn
out to be not associated with a single operation, but
purely relational properties – i.e., they are properties of
the gate set, but not of any individual gate within it.
This awkwardness is the unavoidable price of avoiding
pre-calibrated reference frames. GST outputs a self-
consistent representation of the available states, pro-
cesses, and measurements, but that representation is
generally not unique. If finite-sample errors did not ex-
ist, LGST would be a perfect estimator of the gate set,
and this paper would be much shorter. But real experi-
ments always su↵er from finite sample error. N trials of
an event with probability p does not generally yield ex-
actly pN successes, so estimating p from data generally
yields p̂ = p ± O(1/

Ô
N). As a result, LGST’s estima-

tion error scales as O(1/
Ô

N), just like process tomog-
raphy. So estimating a gate set to within ±10≠5 with
LGST would require repeating each circuit N ¥ 1010

times, which is impractical. The “long-sequence GST”
protocol described in Section 4 is much more e�cient,
and makes standalone LGST preferable only when there
are severe resource constraints. But LGST remains im-
portant both pedagogically and as a key first step in
long-sequence GST’s analysis pipeline.

3.2 The LGST algorithm

In this section, we present the core LGST algorithm.
We focus on (1) what LGST seeks to estimate, (2) what

data is required for LGST, and (3) how to transform
that data into an estimate under ideal circumstances.
At first, we make some idealized simplifying assump-
tions in order to maximize clarity. After presenting the
core algorithm, we return to these assumptions, relax
them, and show how to make this algorithm practical
and robust. The simplifying assumptions are:

1. We assume the ability to create informationally
complete sets of fiducial states

)
|flÕ

jÍÍ
*

and mea-
surement e↵ects {ÈÈEÕ

i|} (see Section 3.3).

2. We ignore finite sample error in estimated proba-
bilities, and its e↵ects (see Section 3.4).

3. We assume that the fiducial states and e↵ects
are exactly informationally complete, not overcom-
plete, so that Nf1 = Nf2 = d2 (see Appendix C).

We use the notation of Eq. 14 to denote the contents
of a generic gate set G:

G =
IÓ

|fl(i)ÍÍ
ÔNfl

i=1

; {Gi}NG
i=1

;
Ó

ÈÈE(m)

i |
ÔNM,N(m)

E

m=1,i=1

J
.

(35)
As in Section 2.1.4, Nfl, NG and NM are the number of
distinct state preparations, gates, and measurements,

and N (m)

E
is the number of possible outcomes for the

m-th distinct measurement.
To perform process tomography on an operation G

in Section 2.2.2, we constructed a matrix P of observ-
able probabilities using informationally complete fidu-
cial states and e↵ects. For LGST, we will do the same
thing. But although we assume the existence and im-
plementability of fiducial sets, we do not assume that
we know them. They still form a reference frame, but
we don’t know what that frame is.
To reconstruct a set of gates (processes) {Gk}, we

will need one such matrix Pk for each gate:

[Pk]i,j = ÈÈEÕ
i|Gk|flÕ

jÍÍ. (36)

These probabilities are directly measurable – we don’t
know what flÕ

j and EÕ
i are, but we can prepare/measure

them. The first line of Figure 3 illustrates the circuit
corresponding to Eq. 36.
We can construct A and B matrices from the fiducial

vectors exactly as for process tomography. The di↵er-
ence, of course, is that although those matrices exist,
their entries are not known to the tomographer. Just
as before, we can write

Pk = AGkB. (37)

Since we do not know A or B, we cannot solve this equa-
tion for Gk. Instead, to compensate for our ignorance
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more – it reconstructs the entire gate set up to the global
gauge freedom given in Eq. 15, recapitulated below:
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Such transformations change the elements of the gate
set, but not any observable probability. So it’s not pos-
sible to distinguish between gauge-equivalent gate sets,
and reconstructing a gate set up to arbitrary M consti-
tutes success.

Since a gate set comprises states, gates, and measure-
ments, it’s tempting to say that LGST characterizes all
of them simultaneously. But this is not quite right. A
gate set is not a collection of unrelated quantum oper-
ations. Quantum operations are usually described rel-
ative to an implicit and absolute reference frame. But
in most experiments, no such reference frame is avail-
able. So GST characterizes all these operations relative
to each other, and estimates every property of a gate set
that can be measured without a reference frame. But
some properties of gate sets can’t be measured, even
in principle, and they correspond to gauge degrees of
freedom.

Gauge freedom makes some familiar properties of
gates unmeasurable. Other properties of gates turn
out to be not associated with a single operation, but
purely relational properties – i.e., they are properties of
the gate set, but not of any individual gate within it.
This awkwardness is the unavoidable price of avoiding
pre-calibrated reference frames. GST outputs a self-
consistent representation of the available states, pro-
cesses, and measurements, but that representation is
generally not unique. If finite-sample errors did not ex-
ist, LGST would be a perfect estimator of the gate set,
and this paper would be much shorter. But real experi-
ments always su↵er from finite sample error. N trials of
an event with probability p does not generally yield ex-
actly pN successes, so estimating p from data generally
yields p̂ = p ± O(1/

Ô
N). As a result, LGST’s estima-

tion error scales as O(1/
Ô

N), just like process tomog-
raphy. So estimating a gate set to within ±10≠5 with
LGST would require repeating each circuit N ¥ 1010

times, which is impractical. The “long-sequence GST”
protocol described in Section 4 is much more e�cient,
and makes standalone LGST preferable only when there
are severe resource constraints. But LGST remains im-
portant both pedagogically and as a key first step in
long-sequence GST’s analysis pipeline.

3.2 The LGST algorithm

In this section, we present the core LGST algorithm.
We focus on (1) what LGST seeks to estimate, (2) what

data is required for LGST, and (3) how to transform
that data into an estimate under ideal circumstances.
At first, we make some idealized simplifying assump-
tions in order to maximize clarity. After presenting the
core algorithm, we return to these assumptions, relax
them, and show how to make this algorithm practical
and robust. The simplifying assumptions are:

1. We assume the ability to create informationally
complete sets of fiducial states

)
|flÕ

jÍÍ
*

and mea-
surement e↵ects {ÈÈEÕ

i|} (see Section 3.3).

2. We ignore finite sample error in estimated proba-
bilities, and its e↵ects (see Section 3.4).

3. We assume that the fiducial states and e↵ects
are exactly informationally complete, not overcom-
plete, so that Nf1 = Nf2 = d2 (see Appendix C).

We use the notation of Eq. 14 to denote the contents
of a generic gate set G:

G =
IÓ

|fl(i)ÍÍ
ÔNfl

i=1

; {Gi}NG
i=1

;
Ó

ÈÈE(m)

i |
ÔNM,N(m)
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m=1,i=1
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(35)
As in Section 2.1.4, Nfl, NG and NM are the number of
distinct state preparations, gates, and measurements,

and N (m)

E
is the number of possible outcomes for the

m-th distinct measurement.
To perform process tomography on an operation G

in Section 2.2.2, we constructed a matrix P of observ-
able probabilities using informationally complete fidu-
cial states and e↵ects. For LGST, we will do the same
thing. But although we assume the existence and im-
plementability of fiducial sets, we do not assume that
we know them. They still form a reference frame, but
we don’t know what that frame is.
To reconstruct a set of gates (processes) {Gk}, we

will need one such matrix Pk for each gate:

[Pk]i,j = ÈÈEÕ
i|Gk|flÕ

jÍÍ. (36)

These probabilities are directly measurable – we don’t
know what flÕ

j and EÕ
i are, but we can prepare/measure

them. The first line of Figure 3 illustrates the circuit
corresponding to Eq. 36.
We can construct A and B matrices from the fiducial

vectors exactly as for process tomography. The di↵er-
ence, of course, is that although those matrices exist,
their entries are not known to the tomographer. Just
as before, we can write

Pk = AGkB. (37)

Since we do not know A or B, we cannot solve this equa-
tion for Gk. Instead, to compensate for our ignorance
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point for local gradient maximization of L(G).
Investigation of this approach revealed two problems.

1. Random circuits provided surprisingly low preci-
sion. Although estimation error decreased with L,
it declined as O(1/

Ô
L), not O(1/L).

2. The lack of structure in the likelihood function
made numerical MLE problematic. Local gradi-
ent optimization worked only unreliably, and was
highly dependent on starting location. We achieved
reasonable success in simulations by starting with
LGST, and then refining this estimate by adding
successively deeper circuits to the likelihood func-
tion. However, this technique proved less reliable in
experiments, where the underlying model was less
valid. Running the optimizer repeatedly with dif-
ferent starting conditions, and incorporating more
global-optimization techniques, often revealed bet-
ter local maxima of the likelihood. This suggested
that even the best estimates we found might not
be global maxima.

We concluded that (1) as the IBM group had observed
earlier, MLE on unstructured GST data was not a sat-
isfactory solution, and (2) we needed to choose circuits
more cleverly (as with LGST) to make the analysis eas-
ier and more reliable.

We developed an approach called extended LGST
(eLGST). It relied on two critical modifications to the
original “unstructured MLE” approach, which impose
additional structure to the experiment design and data
analysis (respectively).

First, instead of performing random circuits, we con-
structed a set of circuits corresponding to performing
LGST – not on the gates Gk themselves, but on a
small set of “base” circuits, {Sl}. We took each Sl and
sandwiched it between fiducial circuits (just as we did
with each Gk for LGST). Originally, the base circuits
were simple repetitions of individual gates, e.g. Gp

k for
p = 1, 2, 4, 8, . . .. We found that this amplified some,
but not all, parameters of the gate set.

This extended-LGST (eLGST), experiment design
eventually evolved into one where the base circuits were
chosen to be a set of short “germ” circuits (gi) repeated
p times (gp

i ). This spawned the “germ selection” pro-
cedure used today in long-sequence GST, which we dis-
cuss in detail in Section 4.2. This structure ensures that
each base circuit amplifies some set of deviations from
the target gates, so that these deviations change the ob-
served probabilities for the circuits based on that base
circuit by O(L). The germs are chosen so that they am-
plify di↵erent deviations, and so that collectively they
amplify all deviations. This careful, non-random ex-
periment design allowed eLGST to achieve consistent,
reliable, and predictable accuracy that scales as 1/L.

a)

b)

c)

native operation informationally complete set

amplificationally complete set

Figure 4: The structure of circuits in the standard GST exper-
iment design, shown in increasing detail. (a) Each GST circuit
consists of an e�ective state preparation flÕ (Eq. 52), followed
by a germ circuit g repeated p times, followed by an e�ective
measurement MÕ = {EÕ

i} (Eq. 51). (b) E�ective preparations
are often implemented by a native state preparation fl followed
by a preparation fiducial circuit F , and similarly e�ective mea-
surements are often implemented by measurement fiducial cir-
cuit H followed by a native measurement M. (c) Writing the
fiducials and germ in terms of native gate operations reveals
how the native operations of a gate set compose to form a GST
circuit.

Second, instead of using MLE to fit a gate set directly
to the data, eLGST fits the gates indirectly via a 2-step
process. In the first step, we estimated the transfer ma-

trix for each base circuit, [·(gp
i ). Then, those estimates

were used to back out a transfer matrix for each gate.
The eLGST protocol is a precursor to the long-sequence
GST we now describe. Appendix B gives a full descrip-
tion of eLGST.

4.2 Experiment design for long-sequence GST

A long-sequence GST experiment is designed to enable
high accuracy with minimal experimental e↵ort. LGST
can estimate a gate set to arbitrary accuracy, but be-
cause uncertainty in the estimated parameters scales as
O(1/

Ô
N) if each circuit is repeated N times, achieving

precision ‘ requires O(1/‘2) repetitions. This makes
precisions of ‘ ¥ 10≠5, as demonstrated in [19], practi-
cally impossible to reach.
Long-sequence GST overcomes this barrier by speci-

fying a di↵erent experiment design – a set of quantum
circuits to be run – containing circuits that amplify er-
rors in the gate set. This experiment design retains the
basic structure of LGST: each of a list of “operations of
interest” is probed by constructing circuits that sand-
wich it between pre- and post-operation fiducial circuits.
But instead of a single gate, the middle of each sand-
wich is a more complicated base circuit that amplifies
certain errors so they can be measured more precisely
by tomography. In this section, we present the long-
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Process matrices are mysterious! How can we extract meaning 
from GST results?
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Remarkably, the infidelity of the CZ gate of 0.79(14)% is almost on par with 
the single-qubit gates—a rare scenario in multi-qubit systems (Fig. 3a, c).

SPAM errors were estimated by GST as 1.05(4)% on average, and as 
low as 0.25(3)% for the | ! state (Extended Data Table 1). This is a 
unique feature of nuclear spin qubits, afforded by the quantum non-
demolition nature of the measurement process21 (Methods and 
Extended Data Fig. 5).

GST provided unambiguous evidence for a surprising relational 
error: weight-2 (entangling) HZZ and/or H ZZ[ ]iG  coherent errors on each 
one-qubit gate Gi, with amplitudes from 1.8–5.0% (Extended Data Fig. 8). 
These errors are consistent with an intermittent ZZ Hamiltonian during 
the gate pulses. After ruling out a wide range of possible error channels, 
we propose that the observed HZZ error arises from the spurious accu-
mulation of geometric phase by the electron spin, caused by 
off-resonance leakage of microwave power near the ESR frequencies 

(Supplementary Information section 9). This observation illustrates 
the diagnostic power of GST, which revealed an error channel we had 
not anticipated. It also shows the ability of GST to unveil correlated 
and entangling errors, the detection and prevention of which is of key 
importance for the realization of fault-tolerant quantum computers35.

Three-qubit entanglement
The nuclear logic gates shown above would not scale beyond a single, 
highly localized cluster of donors. However, adding the hyperfine-coupled 
electron qubit yields a scalable heterogeneous architecture. Electron 
qubits decohere faster (see Extended Data Figs. 3, 4 for a comparison), 
but admit faster control. If high-fidelity entanglement between electron 
and nuclear qubits can be created, electron qubits can enable fast coher-
ent communication between distant nuclei (via electron–electron 

On-target
average

gate !delity
Generator in!delity Stochastic

error

Intrinsic
coherent

error

Relational
coherent

error
Total error

Gate On Q1 On Q2 Total On Q1 On Q2 Total

99.87(2)% 0.17(3)% 0.47(5)% 0.68(6)% 0.60(6)% 0.34(14)% 2.8(3)% 2.0(3)% 0.71(15)% 3.4(3)%
99.95(2)% 0.07(3)% 0.61(6)% 0.75(6)% 0.67(6)% 0.9(3)% 2.6(3)% 1.0(2)% 1.2(4)% 3.4(3)%
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99.37(11)% 0.11(10)% 0.66(11)% 0.79(14)% 0.54(13)% 4.9(3)% 0.7(3)% 3.2(4)% 4.1(3)% 5.5(4)%
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Fig. 3 | Precise tomographic characterization of one- and two-qubit gate 
quality. Process matrices for all six gates were estimated using gate set 
tomography (GST) and represented as error generators with associated rates. 
a, The total error rate of each gate (columns) can be partitioned into coherent 
(blue) and stochastic (orange) components, then further into components 
acting on Q1 (left), Q2 (right), and on both at once (wide). Coherent errors are 
further partitioned into intrinsic (dark) and relational (light), which were 
assigned to specific gates by fixing a gauge. The generator infidelity of each 
gate (see Supplementary Information section 9) is shown, on the whole 
two-qubit system (hollow pins) and on its target qubit(s) only (black pins). The 
total infidelity of the CZ gate is only 0.79(14)%. Single-qubit gates have 
on-target infidelities of 0.07(3)–0.79(6)%, but display significant crosstalk 
errors of 0.47(5) – 2.63(8)% on the spectator qubit and unexpected entangling 

coherent (ZZ) errors. b, An example process matrix is shown for the CZ gate.  
c, Error metrics for each gate are aggregated by type (stochastic, coherent) and 
support (Q1, Q2, total). Uncertainties in parentheses represent 1σ confidence 
intervals. In addition to generator infidelity, each gate’s average gate fidelity 
on its target qubit(s) is shown, to facilitate comparison with literature.  
d, A gauge-invariant representation of relational errors between gates (for 
example, misalignment of rotation axes) that were assigned to individual gates 
in a, c by fixing a gauge. Each gate is labelled with its intrinsic coherent (H) and 
stochastic (S) errors, and edges between two gates show the total amplitude of 
relational coherent error (misalignment) between them. Large gauge-invariant 
relational errors between single-qubit gates confirm that the entangling 
coherent errors observed in a are not an artefact of gauge-fixing.
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Sector Dimension Action Example effect 
(Bloch sphere)

J  (Error 
Probability)

J (Error 
Amplitude)

Hamiltonian 0 1

Stochastic 
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FIG. 1. We represent an imperfect gate by its error generator
(Sec. IV) L = log(GG

−1
), where G is the process matrix describ-

ing the imperfect gate and G is the process matrix for the ideal
gate. We construct (Sec. V) a useful basis of elementary error
generators for the vector space L containing L. This basis defines
a taxonomy of small Markovian errors, dividing generators into
four sectors (subspaces) shown in this table along with their
dimension and their Choi-sum representation. For each sector,
we consider the single-qubit case (Sec. V F) and illustrate how
the error process generated by a single element from that sec-
tor transforms the Bloch sphere. Error metrics that quantify the
amount of incoherent and coherent error (see Sec. VII) produced
by each elementary generator are tabulated for the generators in
each sector and (for CP,Q and AP,Q generators) for the subcases
where P and Q anticommute or commute.

Pauli-correlation sectors, which are invariant under Clif-
ford (but not arbitrary) unitaries. We construct a complete
basis of elementary error generators for each sector, using
one- and two-qubit constructions as constructive examples.
We explain the physical origin and impact of each kind
of error (Sec. V H) and discuss the relationship between
our error generators and the generators of Lindblad master
equations (Sec. VI).

After introducing simple metrics of coherent and inco-
herent error and tabulating them for each elementary error
generator (Sec. VII), we show how to further partition
those four main sectors into subsectors of fixed weight
and support (Sec. VIII). This fine-grained partition of
error generators into physically and logically meaningful
classes is the taxonomy promised in the title. We con-
clude with what we see as the most exciting application of
this framework: the construction of customizable, efficient
reduced models of errors in N -qubit logic operations that
can describe and model specific errors or classes of errors
in a quantum processor while minimizing the amount of
resources wasted on unlikely or physically implausible
errors.

III. SMALL MARKOVIAN ERRORS

We are interested in errors that are (1) small and (2)
Markovian. We begin by stating exactly what we mean
by these terms. Both represent idealized assumptions that
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FIG. 2. A two-qubit CPTP map (a) has 240 free parameters
(16 × 16 minus 16 for the top row, which is constrained by trace
preservation). It can be reparametrized by its error generator (b),
which can be split up into its projections onto H, S, C, and A
sectors. Each of these sectors can be further partitioned (c), fol-
lowing Sec. VIII, into generators with a fixed weight (number of
qubits on which it acts) and support (subset of qubits on which it
acts).

never hold exactly in experiments but can be tested exper-
imentally and are often approximately true. Theorems
and representations derived in the limit of small Marko-
vian errors can provide accurate approximate results in
real-world situations.

A. Definitions
We call a process that changes a system’s state ρ → ρ $

Markovian if, given the nature of the process, ρ $ is com-
pletely determined by ρ. So if the error associated with
a particular gate g is Markovian, then it is described by
some map Gg : ρ → ρ $ that does not depend on the time of
day, other gates performed previously, or any other “con-
text” variable. It then follows from the rules of quantum
theory that Gg must be linear, completely positive, and

020335-2

Impenetrable process matrices can be 
turned into rates for each kind of  a set 
of  elementary error processes

This enables dividing the total error in a 
gate into different kinds of  error – e.g., 
the coherent error on qubit 1.

Blume-Kohout et al., PRX Quantum 3, 020335 (2022)
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How do I run GST?

One- and two-qubit GST
Open source implementation in pyGSTi:

https://github.com/pyGSTio/pyGSTi

pyGSTi repo contains Jupyter Notebook tutorials!
https://github.com/pyGSTio/pyGSTi/blob/master/jupyter_notebooks/Tutorials/algorithms/GST-Overview.ipynb

Many-qubit GST
GST on many qubits is an in-development technique!

https://github.com/pyGSTio/pyGSTi
https://github.com/pyGSTio/pyGSTi/blob/master/jupyter_notebooks/Tutorials/algorithms/GST-Overview.ipynb


Thanks!

https://qpl.sandia.gov/

At the QPL we spend our time developing, understanding and using QCVV+ techniques – from 
benchmarks to GST and beyond – and we collaborate with experimentalists across the world to 

understand cutting-edge hardware.

The QPL is hiring postdocs!
So if  you’re excited to work on QCVV+ research now or in the future please get in touch.

tjproct@sandia.gov
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