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Introduction to Neural ODEs

Joshua Hudson mining stiffness in ResNets through interpretation as discretized



Neural Ordinary Differential Equations (Neural ODEs)

Neural ODE
Indexed by layer: n=1,.... N Indexed by time: t € [0, T]
Xp = Xp—1 + anFn(Xn—l) X(t) = F(X(t)7 t)7 X(O) = X0
Fn(x) = 0 (Whax + bn) F(x,t) = o (W(t)x + b(t))
@ As N — oo, ResNet — a Neural ODE. e e o o e e e
o Well-posedness of the Neural ODE depends on smooth
parameterization (interpolation) of weights and biases. < e o o o e e o
o Scaling ResNet layer updates with «, = T /N introduces
the time scale: At =T/N, t=(T/N)n. » o (e o o e e e e
o Infinite depth interpretation
@ Neural ODE discretized with explicit Euler scheme L LV FINTAVFINA S AN AN FINTA S AN AN FiNA
gives a ResNet.
o Fix N >0, ty := £n, Wy = W(ta), by = b(tn): %~ © o e e o

by h
o Output xy ~ x(T) At P

Depiction of ResNet convergence to NODE
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Neural ODE vs ResNet

@ Continuous vs discrete
o Path crossing issue: a well-posed ODE has backward =
uniqueness nh
(x(t) = y(t) = x = yono,t].) .
o Can add an extra dimension to facilitate crossing (Dupont, .. . :
Augmented Neural ODEs, NeurlPS 2019). i .

@ Discretized comparison
o Forward - Explicit Euler discretization of Neural ODE and ResNet are equivalent.

o Backward - gradients are different due to differences in discretize-then-optimize and optimize-then-discretize approaches.

Linear layers with identical weights

Neural ODE: Vl/oss = 2 ((1 + 5tW)hx — y) (1 + stW)tx
ResNet: V/oss = 2 ((1 + 5tW)kx — y) (1 +6tW)t—1x
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Stiffness
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Stiffness in differential equations

Intuitive ldea of Stiffness

The existence of a large gap between the timescales at which coupled states evolve.

o Necessitates the continued use of a much smaller timescale (for stability purposes) to resolve the overall dynamics, even
after the faster evolving processes have become exhausted.

0.75
° L|nea_r system example: 050
o X = Ax
o eigenvalues of A = A1, A2, ..., Ap 025
o real(A) < ... < real(/l\(g\) )< 0 £ 000
. . _ real(\g
o Stiffness ratio: r(A) = real(or) s
. . o, -1 0 _—4
o Case depicted on the right: A= |7 % ] I dt =10 050
initial, dt = 0.03 after exhaustion of fast process (|xy| < 0.01)
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Stiffness in ResNets

o Literature:

o Kim et al, Stiff Neural Ordinary Differential Equations, (2021) arXiv:2103.15341
o Ghosh et al, STEER: Simple Temporal Regularization For Neural ODEs, (2020) arXiv:2006.10711

o Intuition from NODE: nth layer’s rate of change is Z2—"=1 — F(x, 1)
o Jacobian (linear part) of nth layer's rate of change:
Jn(n—1) == Vi, Falstn—1) = 0’ (Waxa—1 + bn) W,

o Compute stiffness of Jacobian for each layer n and sample .
o Stiffness of layer n for sample i: s, ; = r(cr’(W,,x,(,il1 + bp)Whp)
o Sum stiffness across layers: total stiffness of the ResNet: Z; L S

o Reducing stiffness to improve prediction performance

o Penalizing Stiffness
@ Multiply sum by a weight (Lagrange multiplier) and add to MSE as total loss to be minimized.

Joshua Hudson Examining stiffness in ResNets through interpretation as discretized September 19, 2022


https://arxiv.org/abs/2103.15341v2
https://arxiv.org/abs/2006.10711

Measuring Stiffness

— Ml
‘>\n|'

@ Directly compute eigenvalues of Jacobian (J): F(J) [A1] > .. > [Nl

o Analytic formulae for eigenvalues (dimension less than five).
o General eigenvalue solvers not easily differentiable!
o Differentiable proxies for stiffness
o Singular values (symmetric eigenvalue solvers are differentiable)
o o1 > |A1] > [An] > on.
o (Complex) power-method computes the spectral radius (i.e. [A1]).
o lteration: v, < Jvj.

@ v, tends to eigenspace of dominant eigenvalue (may not converge).

1
o Gelfand’s formula for the spectral radius: |A;| = ||J¥|| %

210

@ Implemented with k = using a sequence of 10 squarings and normalizations for numeric stability.
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Test Case

Learning task

@ Alpine 02 test case
@ A benchmark problem to test optimization algorithms

d
faa(x) = H Vil sin(x).
i=1

@ We will use it here as a regression test problem, where we try to learn the mapping x — fax(x) for points
x € [-5,5] € RY.

ResNet Truth

Visual comparison of ResNet approximation of fa, after training.
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Stiffness proxy evolution for test case

@ ResNet architecture "
o Width: 20 64
o Depth: 10 '
e Activation: tanh . {
e Training N ) “,/ RES - spectral radius
© 900 training points 1 I == RES - singular
e 20 mlnf-batches of 45 samples b RES - frob
o 100 test points 54 /2 RES - L2 norms
o 10k epochs /1
o Optimizer: ADAM 2 4 1
@ Adaptive learning rate using pytorch's reduce on plateau. L ittt
@ |Initial learning rate: 1.0e-3. L ,//
)
Model ER GE df  frob  singular 0 2000 4000 6000 5000 10000
Epoch
RES 0.00389 0.00613 2.64 37.5 25.8

Evolution of stiffness proxies
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Stiffness proxy evolution for test case

@ ResNet architecture
o Width: 20
o Depth: 10
e Activation: tanh
@ Training
e 900 training points ‘
@ 20 mini-batches of 45 samples
o 100 test points
o 10k epochs
o Optimizer: ADAM
@ Adaptive learning rate using pytorch's reduce on plateau.
@ Initial learning rate: 1.0e-3.

RES - spectral radius
RES - singular

RES - frob

RES - L2 norms

Model ER GE df frob singular 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Integrated learning rate
RES 0.00389 0.00613 2.64 37.5 25.8

Evolution of stiffness proxies
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Penalizing stiffness - numerical study
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Climate model test case

@ Predict the output of a high-fidelity climate model.
o Input dimension: 15
e Output dimension: 10
o Energy Exascale Earth System Model (E3SM) [Golaz
2022] Land Model (ELM) version 2
o Vegetation dynamics resolved via the Functionally
Assembled Terrestrial Ecosystem Simulator (FATES)

[Koven 2020]
b

o RES: ResNet trained without penalization
o RES L2: ResNet with L2 regularization
o Penalize average of Euclidean/Frobenius norms of all
network parameters.
o Penalty weight: A = 107°
o RES stiff: ResNet trained with stiffness penalization
e Spectral radius used as the stiffness proxy, computed
using Gelfand's formula.

o Penalty weight: A = 1073

ResNet architecture

o Width: 50
o Depth: 16

@ Activation: tanh )

@ 1996 training points
e 100 mini-batches of 20 samples
500 test points
1k epochs
o Optimizer: ADAM
o Adaptive learning rate using pytorch's reduce on
plateau.
o Initial learning rate: 1.0e-3.
Loss: quadratic mean of RMSE and penalty:

E |F(xi) — yil> + Ap?

(xj>y;)ES

Joshua Hudson
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Penalization Reduces Generalization Error in Climate Test Case |

Summary of results for 25 trials (initializations)

Model penalty ER GE  stiffness  wall time (sec)
RES (med) 0.00 5.4e-03 3.9e-02 3.52 17903
RES L2 (med) 25.76  1.2e-02 3.7e-02 2.61 23547
RES stiff (med) 0.05 1.2e-02 3.8e-02 0.05 1848662

—— RES
RES 12
RES stiff

—— RES
RES 12
RES stff

Empirical Risk

Evolution of training error (empirical risk) Evolution of testing error (generalization error)
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Penalization Reduces Generalization Error in Climate Test Case I
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Questions?
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