
Examining stiffness in ResNets through interpretation as discretized Neural ODEs.

Joshua Hudson (PI) Khachik Sargsyan Marta D’Elia Habib Najm

LDRD Project #21-0528 FY21 – FY24

Sandia National Laboratories

¶

Sandia National Laboratories is a multimission laboratory managed and operated
by National Technology and Engineering Solutions of Sandia LLC, a wholly owned
subsidiary of Honeywell International Inc. for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-NA0003525.

September 19, 2022

Joshua Hudson Examining stiffness in ResNets through interpretation as discretized Neural ODEs. September 19, 2022 1 / 15

SAND2022-12733CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.



Introduction to Neural ODEs
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Neural Ordinary Differential Equations (Neural ODEs)

ResNet
Indexed by layer: n = 1, ..., N
xn = xn−1 + αnFn(xn−1)
Fn(x) = σ (Wnx + bn)

Neural ODE
Indexed by time: t ∈ [0, T ]
ẋ(t) = F (x(t), t), x(0) = x0

F (x , t) = σ (W (t)x + b(t))

As N → ∞, ResNet → a Neural ODE.
Well-posedness of the Neural ODE depends on smooth
parameterization (interpolation) of weights and biases.
Scaling ResNet layer updates with αn = T/N introduces
the time scale: ∆t = T/N, t = (T/N)n.
Infinite depth interpretation

Neural ODE discretized with explicit Euler scheme
gives a ResNet.

Fix N > 0, tn := T
N n, Wn = W (tn), bn = b(tn):

Output xN ≈ x(T )

Depiction of ResNet convergence to NODE
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Neural ODE vs ResNet

Continuous vs discrete
Path crossing issue: a well-posed ODE has backward
uniqueness
(x(t) = y(t) =⇒ x ≡ y on [0, t].)
Can add an extra dimension to facilitate crossing (Dupont,
Augmented Neural ODEs, NeurIPS 2019).

Discretized comparison
Forward - Explicit Euler discretization of Neural ODE and ResNet are equivalent.

Backward - gradients are different due to differences in discretize-then-optimize and optimize-then-discretize approaches.

Linear layers with identical weights
Neural ODE: ∇loss = 2

(
(1 + δtW )Lx − y

�
(1 + δtW )Lx

ResNet: ∇loss = 2
(

(1 + δtW )Lx − y
�

(1 + δtW )L−1x
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Stiffness
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Stiffness in differential equations

Intuitive Idea of Stiffness
The existence of a large gap between the timescales at which coupled states evolve.

Necessitates the continued use of a much smaller timescale (for stability purposes) to resolve the overall dynamics, even
after the faster evolving processes have become exhausted.

Linear system example:
ẋ = Ax
eigenvalues of A = λ1, λ2, ..., λn

real(λ1) < ... < real(λn) < 0
Stiffness ratio: r(A) = real(λ1)

real(λn)

Case depicted on the right: A =
�

−1 0
0 −100

�
, dt = 10−4

initial, dt = 0.03 after exhaustion of fast process (|x2| < 0.01)
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Stiffness in ResNets

Literature:
Kim et al, Stiff Neural Ordinary Differential Equations, (2021) arXiv:2103.15341
Ghosh et al, STEER: Simple Temporal Regularization For Neural ODEs, (2020) arXiv:2006.10711

Intuition from NODE: nth layer’s rate of change is xn−xn−1
αn

= Fn(xn−1)

Jacobian (linear part) of nth layer’s rate of change:

Jn(xn−1) := ∇xn−1 Fn(xn−1) = σ
′(Wnxn−1 + bn)Wn

Compute stiffness of Jacobian for each layer n and sample i .

Stiffness of layer n for sample i : sn,i = r(σ′(Wnx(i)
n−1 + bn)Wn)

Sum stiffness across layers: total stiffness of the ResNet:
P

i,n
sn,i

Reducing stiffness to improve prediction performance
Penalizing Stiffness

Multiply sum by a weight (Lagrange multiplier) and add to MSE as total loss to be minimized.
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Measuring Stiffness

Directly compute eigenvalues of Jacobian (J): r̃(J) = |λ1|
|λn|

, |λ1| > ... > |λn|

Analytic formulae for eigenvalues (dimension less than five).

General eigenvalue solvers not easily differentiable!

Differentiable proxies for stiffness
Singular values (symmetric eigenvalue solvers are differentiable)

σ1 > |λ1| > |λn| > σn .

(Complex) power-method computes the spectral radius (i.e. |λ1|).
Iteration: vn+1 ← Jvn .

vn tends to eigenspace of dominant eigenvalue (may not converge).

Gelfand’s formula for the spectral radius: |λ1| ≈ ∥Jk ∥
1
k

Implemented with k = 210 using a sequence of 10 squarings and normalizations for numeric stability.
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Test Case

Learning task
Alpine 02 test case
A benchmark problem to test optimization algorithms

fA2(x) =
dY

i=1

p
|xi | sin(xi ).

We will use it here as a regression test problem, where we try to learn the mapping x 7→ fA2(x) for points
x ∈ [−5, 5]d ∈ Rd .

Visual comparison of ResNet approximation of fA2 after training.
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Stiffness proxy evolution for test case

ResNet architecture
Width: 20
Depth: 10
Activation: tanh

Training
900 training points

20 mini-batches of 45 samples
100 test points
10k epochs
Optimizer: ADAM

Adaptive learning rate using pytorch’s reduce on plateau.
Initial learning rate: 1.0e-3.

Model ER GE df frob singular
RES 0.00389 0.00613 2.64 37.5 25.8

Evolution of stiffness proxies
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Penalizing stiffness - numerical study
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Climate model test case

Learning task
Predict the output of a high-fidelity climate model.

Input dimension: 15
Output dimension: 10
Energy Exascale Earth System Model (E3SM) [Golaz
2022] Land Model (ELM) version 2
Vegetation dynamics resolved via the Functionally
Assembled Terrestrial Ecosystem Simulator (FATES)
[Koven 2020]

Models
RES: ResNet trained without penalization
RES L2: ResNet with L2 regularization

Penalize average of Euclidean/Frobenius norms of all
network parameters.
Penalty weight: λ = 10−5

RES stiff: ResNet trained with stiffness penalization
Spectral radius used as the stiffness proxy, computed
using Gelfand’s formula.
Penalty weight: λ = 10−3

ResNet architecture
Width: 50
Depth: 16
Activation: tanh

Training
1996 training points

100 mini-batches of 20 samples
500 test points
1k epochs
Optimizer: ADAM

Adaptive learning rate using pytorch’s reduce on
plateau.
Initial learning rate: 1.0e-3.

Loss: quadratic mean of RMSE and penalty:s X
(xi ,yi )∈S

|F (xi ) − yi |2 + λp2
i
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Penalization Reduces Generalization Error in Climate Test Case I

Summary of results for 25 trials (initializations)

Model penalty ER GE stiffness wall time (sec)
RES (med) 0.00 5.4e-03 3.9e-02 3.52 17903
RES L2 (med) 25.76 1.2e-02 3.7e-02 2.61 23547
RES stiff (med) 0.05 1.2e-02 3.8e-02 0.05 1848662

Evolution of training error (empirical risk) Evolution of testing error (generalization error)
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Penalization Reduces Generalization Error in Climate Test Case II

Evolution of L2 norms Evolution of stiffness
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Questions?
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