Thislpaperldescribeslobiectiveftechnicallresultsfandlanalysis JAnylsubiectivelviewslorfopinionsithatimightibellexpressedfin} SAND2022-12708C!
helpaperfdojnotinecessarilyfrepresentfthejviewsoffthefu.S IDepartmentjoflEnergyjorfthejUnitedfStatesfGovernment.,

Sandia
National
Laboratories

Convolutional neural networks for data
compression and reduced-order modeling

Anthony Gruber

Center for Computing Research, Sandia National Laboratories, Albuquerque, NM

SIAM MDS 2022, San Diego

AmA AR AraEA AN

i~ (‘A‘. i~ A

U.S. DEPARTMENT OF - H H L\A.»—_i» e Lt ,— \—‘L\r\.»'—d»:\ ﬁﬁﬁﬁﬁﬁﬁﬁ A -~ -~ :A—:—‘I Tha~lhimAalam ~A l_’.n . CanmAdi~ 1l 1L 7 aails
) NERGY N S{‘ Sandia National |-aSandla I'Laboratories’is’a multimission’| or\?mana,qedrand‘operatedevTNatlonalQI'echnoquv’&j Engine: ons'of dlafLLC,‘g'Whollv'ownedO|‘y

owned subsidiary of Hcsubsidiary loffHoneywell Internationalfinc., e:U.S [Departmentiof:Energy'siNational\Nuclear SecuritytAdministrationzundericontract DE-NA0003525.A0003525.

Outline

(t,)

ROM Problem

1

2

Graph CNN Approach

I I[”
/' |

B . .
-
ca. b4
Taen_ .

- I

sklpc.omectlm

3

Algorithm and Results

Joint work with Max Gunzburger (UT Austin), Lili Ju (U of SC), and Zhu Wang (U of SC)

See “A comparison of neural network architectures for data-driven reduced-order modeling”, CMAME 2022.

Full-Order Model

= FOM: x(t,p) =f(t, x(t,w),p), x0,u) = xq(1).
= u isvector of parameters.

= dim(x) large: 10* to 10° or more.

= Typically solved with time integrator e.g. Runge-Kutta.

= (Can be expensive. How to reduce cost?

Reduced-Order Models

= High-fidelity PDE simulations are expensive.

= semi-discretization blows up dimensionality.

= (5ood results possible without solving full
PDE?

= Standard is to encode -> solve -> decode.
= [inear: POD, RBM, etc.

= Nonlinear: networks (FCNN and CNN)

https://mpas-dev.github.io/atmosphere/atmosphere.html

i

ldea Behind ROM

= Do we really need all 10? dimensions?
= No, if (t,u) = x(t, p) is unique.
= §S={x(t,n)|t€[0,T], u€ D} cRY,

solution manifold.

= (n, + 1) dimensions enough for loss-

ess representation of §.

= How can we recover § efficiently?

(t,)

ldea Behind ROM

= Considerfinding ¥ =goX sothat ¥ = x.

= g:R"™ - RN a decoder function, n «< N.

« Residual ||% - f@)|" is minimized when:

= 2t =g'®ftg@,w, 20,p) = h(x,@w).

= h:RN > R" left inverse to g.

= ODE of size N converted to ODE of size n.

= Hard part is determining/computing g

Example: Proper Orthogonal Decomposition (POD)

= Do PCA on solution snapshots x(tj,u;), 1 <j <N, .

= Compute SVD § = UZVT,

= First n columns of U (say A) - reduced basis of POD modes.

= x = f(x) replaced with ¥ = A*f(A%).

= Totally linear procedure (good and bad).

ROM Methods

POD works until EWs of £ decay slowly.

"solved” by CNN autoencoder/decoder

= |mproved performance over POD*¥*,

= **(]n some cases)

BUT slower and more difficult to train.

= Also more memory consumptive!

Now often used “by default”.

Solution w

3.0

2.51

2.01

1.5

1.0

0.0

0.2

0.4 0.6
Position x

0.8

1.0

Disadvantages of CNN ROMs

= Standard CNN not well suitedfor irregular data.

= Standard practice: ignore the issue!
= Pad inputs with fake nodes.
= Convolve square-ified input.

= Reassemble at end;
fake nodes ignored!

= Works surprisingly well! O
@0

= But, not very meaningful.

Graph Convolutional Networks

= Alternatively: use a graph convolutional network (GCNN).
= G = (V,€&) undirected graph; adjacency matrix A € RVI*IVI,
= D:degree matrix d;; =X a;;.

= LaplacianofG: L=D—A=UAU".
= Columns of U are Fourier modes of G.

= Discrete FT/IFT: multiply by U / UT.

Graph Convolutional Networks

= P=D+DY2(A+ DD+ I)? (self-loops)
= Simple 1-localized GCNN (Kipf and Welling 2016):

* x4 =0(Px;W,;), W,;€eR%1*% |earnable weights.

= Good for small scale classification, but known for oversmoothing.

= (Chenet. al 2020) proposed GCNZ:

" X411 =0 [((1 —a;)Px; + a’lxo) ((1-pBDI+ ﬁzwz)]-

= Adds skip connection and identity map.

= Equivalent to L-degree polynomial filter (L-localized on G).

GC Autoencoder ROM

Split network idea

(Fresca et al. 2020).
= GCN2 layers (Chen et
al. 2020) encode-
decode.

= Blue layers are fully
connected.

= Purple network :;f

skip connection

simulates low-dim
dynamics.

CNN Architecture

= 5x5 kernels.

= /ero padding

necessary.

= Channels
INcrease x4 at

each layer.

layer | input size | kernel size | stride | padding | output size activation
Samples of size (2145, 1) are zero padded to size (4096,1) and reshaped to size (1, 64, 64).
1-C | (1, 64, 64) 5x5 2 SAME (4, 32, 32) ELU
2-C | (4, 32, 32) Hx5 2 SAME (16, 16, 16) ELU
3-C | (16, 16, 16) Hx5 2 SAME (64, 8, 8) ELU
4-C (64, 8, 8) Hx5 2 SAME (256, 4, 4) ELU
Samples of size (2566, 4, 4) are flattened to size (4096).
1-FC 4096 n ELU
End of encoding layers. Beginning of decoding layers.
2-FC n 4096 ELU
Samples of size (4096) are reshaped to size (256, 4, 4).
1-TC | (256, 4, 4) HxH 2 SAME (64, 8, 8) ELU
2-TC | (64, 8, 8) Hx5 2 SAME (16, 16, 16) ELU
3-TC | (16, 16, 16) HX5 2 SAME (4, 32, 32) ELU
4-TC | (4, 32, 32) 5x5 2 SAME (1, 64, 64) ELU

Samples of size (1, 64, 64) are reshaped to size (4096, 1) and truncated to size (2145, 1).

i

|13

2-D Parameterized Heat Equation

= Consideru = u(x,y,t,n),

W A A A A

ue[OOSOS]x[n]

B 4 4 4 4

u(0,y,t) = —0.5

u(l,y,t) = py cos(uzy), ‘ ‘ ‘ ‘
u(x,y,0) = 0. \J \) \J \J

|i|-||14

2-D Parameterized Heat Equation: Results

o ma

Errors

Exact

= Results shown for |
/ ¥
N = 4096, n = 10. \)

= GCNN has lowest error

0.04

and least memory

requirement (by >10x). 003

= (NN Is worst... 0.02

= (Cheap hacks have a 0.01

cost! 000

0.07
0.06
0.05
0.04
0.03
0.02
0.01
0.00

Unsteady Navier-Stokes Equations

= Schafer-Turek benchmark:

u—vAu+Vv,u+Vp =f, b2

V-u=090,
0.21

Uli=o = Uy. . 005 ['s

. 02| | .. >
= |mpose 0 boundary conditions L2

0.41

on I, Iy, I's. Do nothing ' 2.2

on I';. Parabolic inflow on I}.

Unsteady NSE: ROM Results

= N =10208,
n = 32.

Speed |u|: Exact, Reconstructed, Pointwise Err

M
i
B

= Reynolds # 185

= FCNN best
result.

= GCNN still
beats CNN.

Unsteady NSE: Enc/Dec Results

GCNN as
accurate as
FCNN.

Speed |u|: Exact, Reconstructed, Pointwise Error

GCNN memory
cost >50x less
than FCNN.

CNN still worst.

Unsteady NSE: Results

= ADAM

optimized.

= GCNN slightly
overfits on
ROM.

10t

1077

1073

107

10t

-2

—
=

1073

10!

1078

| GCMM train
! === GCNN valid

]
u._\-‘y.".'-q.'.-“"-m,...*ld.'-'ﬂa-l e st -A...LM‘AQ_ '\,_JW f
¥ Lf . 4
[ol -.'H _:;i J'.‘.“},\u.."‘,':' .“i:;_‘_'l_\ IV-’.‘:,I“{ ‘|.n:\r|.|:

0 100 200 300 400
CMM train
l === CNM valkd
1
“-..‘
—

B P
~ P, o, a .
A el et e PN e = i

0 s0 100 150 200

| FCMM train
1 === FCMNM valid

M'%“":“-W«J.— . s
Mt b)

|
bl AL A

¥

|

L

v T T T
o oo 200 300 400 500

Epoch

Loss

| GLCMN train
1071 l === GCNN valid
.
h
-2
10 .,
x ,fy,a.-_.“. -
-3 N g
10 e T, e sl e X I
- h"h"‘-d\-mn
107
T T T
0 100 200 300 400 s00
CHN train
10711 '.l ~== CHN valid
R,
—
10-2 e)
- abauq--b..,_.-.a_\.-r‘.—_..-'—w-a-A..-f-_n.h.:-—'-'-—u-_.-a.;‘_adu-‘.u,»_____..._“__
1073
1074 4
T v ! !
il 50 100 150 200
\ FCMN train
1071 4 | === FCHN valid
‘|
10-% 1
[}
¥
N,
1073 Vg F P A
o f - A
-A..,\.,mn.&,_n,a\x;.,_,__,.’-ﬂﬁ_#J- Vond W [, r "ﬁ.f.‘ g
- = BT i -
1074 4 »
o 50 100 150 200

Epoch

FI1GURE 10. Training and validation losses incurred during neural network training for the
Navier-Stokes example. Left: prediction problem with n = 32. Right: compression problem

with n = 32.

|i|-||19

Challenges with NN methods

POD always
improves with n.

NNs break “curse
of dimensionality”,
but at high cost.

POD has inherent
advantage:
knowledge of
equations.

Encoder/Decoder + Prediction

Encoder/Decoder only

Network | n | R6:% | Rt:% | Size (MB) E;‘;fhpg) n | R,% | Res% | Size (MB) gl‘jgghpg)
POD 0.0 | 1585 | 0323 |N/A 675 | 10.0 | 0323 | N/A
GON | , | 907 | 146 | 0476 |33 , | 767 | 122 | o040 |32
CNN 712 | 111 | 224 | 210 1.2 | 176 | 224|190
FCNN 162 | 287 | 330 |38 162 | 270 | 330 |38
POD 270 | 3.97 | 517 | NJ/A 0428 | 0.674 | 517 | N/A
GON |, | 297 | 514 | 533 |32 1| 0825 | 149 | 526 |32
CNN 457 | 700 | 232|230 461 | 724 | 232 | 220
FCNN 139 | 264 | 330 |38 0680 | 1.12 | 330 |38
POD 280 | 436 | 103 | N/A 0191 | 0318 | 103 | N/A
GON | | 288 | 496 | 105 |33 oy | 0450 [0791 | 104 |33
CNN 342 | 533 | 241 | 270 242 | 357 | 241 | 260
FCNN 145 | 264 | 330 |38 0.704 | 1.19 | 330 |37

Thank you!

Contact: adgrube@sandia.gov

