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Motivation

Why are we interested in performance, por tability 
and productivity?



Motivation4

High-fidelity simulations of the DOE E3SM’s ice sheet model, MALI, on exascale systems

• As part of DOE’s Earth System Model - provide actionable predictions of 21st century 
sea-level change (including uncertainty bounds).

Target systems:

OLCF Summit
NVIDIA V100 GPU

ALCF Aurora
Intel Xe GPU

OLCF Frontier 
AMD Instinct GPU

NERSC Perlmutter
NVIDIA A100 GPU

GPUs in open-science are here, need efficient access to computational power



Performance portability for exascale computing5

Challenges:

• Diverse set of HPC vendors and architectures
• Intel, AMD, NVIDIA, IBM, ARM-based
• CPUs with vector processing; GPUs

• Software life cycle is much longer than hardware

Different architectures, trend remains the same

• Need algorithms with higher arithmetic intensity (total ops/byte)

• Need fundamental abstractions during code development

Performance portability: A reasonable level of performance is achieved across a wide variety 
of computing architectures with the same source code.

Approaches:

• Libraries – High-level abstractions with specified input/output (e.g. BLAS)

• Task-based – Data-centric abstractions for mapping tasks to resources (e.g. Legion)

• MPI+X – Algorithmic-level abstractions for distributed (MPI) and shared (X) memory 
parallelism (e.g. Directives: OpenMP, OpenACC; Frameworks: Kokkos, RAJA, OCCA)

Different architectures, trend remains the same



MALI software

What software tools are we using?



MALI (MPAS-Albany Land Ice) software7

MPAS:

• Thickness/Temperature evolution

Albany Land Ice:

• First-order Stokes velocity solver

Trilinos:

• Mesh tools (STK)

• Discretization tools (Intrepid2)

• Nonlinear/Linear solver (NOX/Belos)

• Distributed memory linear algebra (Tpetra)

• Multigrid Preconditioner (MueLu)

• Field DAG (Phalanx)

• Automatic differentiation (Sacado)

• Shared memory parallelism (Kokkos)

• Many more…

https://github.com/MALI-Dev/E3SM / https://github.com/sandialabs/Albany / https://github.com/trilinos/Trilinos

https://github.com/MALI-Dev/E3SM
https://github.com/sandialabs/Albany
https://github.com/trilinos/Trilinos


First Order (FO) Stokes/Blatter-Pattyn Model8

Stokes(𝒖, 𝑝) in Ω ∈ ℝ3

FO Stokes(𝑢, 𝑣) in Ω ∈ ℝ3

Hydrostatic approximation + 
scaling argument based on the fact 
that ice sheets are thin and normals

are almost vertical

Discussion:

• Nice “elliptic” approximation to full Stokes.

• 3D model for two unknowns (𝑢, 𝑣) with nonlinear 𝜇. 

• Valid for both Greenland and Antarctica and used in 
continental scale simulations.
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Ice behaves like a very viscous non-Newtonian shear-thinning fluid (like lava flow) 
and is modeled quasi-statically using nonlinear incompressible Stokes equations.
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Lateral boundary Γ𝑙

Ice sheet

Surface boundary Γ𝑠

(Neumann)

(Neumann, Stress-Free)

(Robin)



MueLu/Belos – preconditioned iterative solver9

Problem: Ice sheet meshes are thin with high 
aspect ratios

• First, matrix-dependent structured
multigrid to coarsen vertically

• Second, smoothed aggregation AMG on 
single layer

• Implemented in Trilinos – ML/MueLu

Algebraic 
Structured MG

Unstructured 
AMG 

Algebraic 
Structured MG

Solver: Preconditioned Newton-Krylov

• MDSC-AMG is used as preconditioner for GMRES

• Performance portability through Trilinos/MueLu (multigrid) + Trilinos/Belos (GMRES)

See (Tezaur et al., 2015), (Tuminaro et al., 2016)

Solution: Matrix dependent semi-
coarsening algebraic multigrid (MDSC-AMG)



Phalanx – directed acyclic graph (DAG)10

Advantages:

• Increased flexibility, extensibility, usability

• Arbitrary data type support

• Potential for task parallelism

Disadvantage:

• Performance loss through fragmentation

Extension:

• Performance gain through memoization

DAG Example (memoization)DAG Example

Single CPU 

or GPU

DAG provides flexibility; Memoization improves performance



Sacado – automatic differentiation (AD)11

• AD provides exact derivatives - no Jacobian derivation or hand-coding required

• Allows for advanced analysis capabilities – easily construct any derivative, hessian
• Ex: Optimization, sensitivity analysis

• Sacado data types are used for derivative components via class templates
• DFad (most flexible) – size set at run-time

• SLFad (flexible/efficient) – max size set at compile-time

• SFad (most efficient) – size set at compile-time

Fad Type Comparison: Tetrahedral elements (4 nodes), 2 equations, ND = 4*2 = 8

AD capability allows for advanced analysis while maintaining performance portability



Kokkos – performance portability12

• Kokkos is a C++ library that provides 
performance portability across multiple shared 
memory computing architectures
• Examples: Multicore CPU, NVIDIA GPU, Intel KNL and 

much more…

• Abstract data layouts and hardware features for 
optimal performance on current and future
architectures

• Allows researchers to focus on application or
algorithmic development instead of architecture 
specific programming

With Kokkos, you write an algorithm once for multiple hardware architectures.

https://github.com/kokkos/kokkos/

https://github.com/kokkos/kokkos/


Phalanx Evaluator – templated Phalanx node 13

A Phalanx node (evaluator) is constructed as a 
C++ class

• Each evaluator is templated on an 
evaluation type (e.g. residual, Jacobian)

• The evaluation type is used to determine 
the data type (e.g. double, Sacado data 
types)

• Kokkos RangePolicy is used to parallelize 
over cells over an Execution Space (e.g. 
Serial, OpenMP, CUDA)

• Inline functors are used as kernels

• MDField data layouts
• Serial/OpenMP – LayoutRight (row-major)

• CUDA – LayoutLeft (col-major)

template<typename EvalT, typename Traits>

void StokesFOResid<EvalT, Traits>::

evaluateFields(typename Traits::EvalData workset) {

Kokkos::parallel_for(

Kokkos::RangePolicy<ExeSpace>(0,workset.numCells),

*this);

}

template<typename EvalT, typename Traits>

KOKKOS_INLINE_FUNCTION 

void StokesFOResid<EvalT, Traits>::

operator() (const int& cell) const{

for (int node=0; node<numNodes; ++node){

Residual(cell,node,0)=0.;

}

for (int node=0; node < numNodes; ++node) {

for (int qp=0; qp < numQPs; ++qp) {

Residual(cell,node,0) +=

Ugrad(cell,qp,0,0)*wGradBF(cell,node,qp,0) +

Ugrad(cell,qp,0,1)*wGradBF(cell,node,qp,1) +

force(cell,qp,0)*wBF(cell,node,qp);

}

}

}

Template parameters are used to get hardware specific features.



Performance, portability and 
productivity

How well does MALI perform?



Weak Scalability Study15

Architectures:

• NERSC Cori-Haswell (HSW): 32 cores/node

• NERSC Cori-KNL (KNL): 68 cores/node

• OLCF Summit-POWER9-only (PWR9): 44 cores/node

• OLCF Summit-POWER9-V100 (V100): 44 cores/node 
+ 6 GPU/node

Benchmark:

• First-order Stokes, hexahedral elements

• 16 to 1km structured Antarctica meshes, 20 layers

• 1 to 256 compute nodes
Mesh Example: 16km, structured Antarctica 

mesh (2.20E6 DOF - 20 layer, 2 equations)
Benchmark used to assess performance



Performance on Cori and Summit16

Setup:

• Same input file for all cases
• Performance portable point smoothers

• No architecture specific tuning

Results:

• Performance degrades at higher resolutions
• (645->1798 total linear iterations)

• GPU scaling slightly better

• Speedup on GPU
• 3.2-4.1x speedup Summit over Cori

• 2.1-2.3x speedup V100 over POWER9

Speedup achieved over MPI-only simulations 
without architecture specific tuning



Autotuned performance portable smoothers17

Smoother parameters:

• Limited to three levels, two smoothers

• Good parameter ranges provided by 
Trilinos/MueLu team

Results:

• Applied to four cases (Greenland, 3-20km)
• Different architectures (blake: 8 CPU nodes/weaver: 

GPU)
• Different equations (vel: FOStokes/ent: Enthalpy)

• 100 iterations, random search

• Timer: Preconditioner + Linear Solve

Autotuning framework: Carolyn Kao

Random search used to improve performance of multigrid smoothers on GPU



Performance on Cori and Summit18

Setup:

• Tuned input files
• CPU block preconditioner

• Autotuned GPU point smoothers

• Multiple samples for confidence

Results:

• CPU scales better than GPU
• 16->18 avg. linear iterations on CPU

• 88->194 avg. linear iterations on GPU

• Speedup on GPU
• 1.9->1.2 speedup V100 over POWER9

• Speedup degrades at higher resolutions

Speedup over MPI-only simulations; 
Tuned CPU model scales better



Areas to improve19

Weak Scaling Efficiency:

• Higher is better

• Areas of improvement
• CPU/GPU preconditioner construction

• GPU linear solve (better precond.)

Proportions of total solve time:

• Improve assembly on CPU
• 40-60% of total solve time

• Improve GPU linear solver
• 80-90% of total solve time

Focus on improving GPU solver



Changepoint detection for performance testing20

• Changepoint detection: process of finding abrupt variations in time series data

• Manual testing and analysis is increasingly infeasible

Total Time for a 2-to-20 km resolution Antarctica mesh, executed nightly in Albany Land Ice

Two STDs

Changepoint Detection: Kyle Shan

Maintaining/improving performance and portability in the presence of active development is essential



Detecting performance regressions/improvements21

Total Fill time for a 1-to-7 km resolution Greenland mesh, executed nightly in Albany Land Ice

Example: Transition to Kokkos 3.5.0 caused a performance regression but was soon fixed

Regression Improvement

Two STDs



Algorithmic performance comparisons22

Speedup of Total Fill time from memoization for a 1-to-7 km resolution Greenland mesh, executed nightly in Albany Land Ice

Example: Memoization comparison (w. & w.o.) shows that relative performance has increased

99% confidence interval 
for the mean



Conclusions



Conclusions24

• HPC software/hardware is changing rapidly which poses a significant challenge for 
open-science

• Multiple performance portable features exist in the MALI software stack to meet 
this challenge

• Performance on next generation computing architectures is a work in progress
• 1.9x speedup of V100 node over POWER9 node in total solve time

• CPU scales better than GPU using best solvers (65.1% vs. 41.2% weak scaling efficiency)

• Maintaining performance and portability is crucial for an active code base
• Change-point detection adds level of confidence to performance regressions/improvements

• Autotuning framework adds level of confidence to optimal parameters for given system

Watkins et al. “Performance portable ice-sheet modeling with MALI.” (Submitted, 2022)
https://arxiv.org/abs/2204.04321

https://arxiv.org/abs/2204.04321
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