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Motivation

Why are we interested in performance, portability
and productivity?



. | Motivation

High-fidelity simulations of the DOE E3SM’s ice sheet model, MALI, on exascale systems

* As part of DOE’s Earth System Model - provide actionable predictions of 215t century
sea-level change (including uncertainty bounds).
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OLCF Summit ALCF Aurora OLCF Frontier NERSC Perlmutter
NVIDIA V100 GPU Intel Xe GPU AMD Instinct GPU NVIDIA A100 GPU

GPUs in open-science are here, need efficient access to computational power




; | Performance portability for exascale computing

Challenges:

AMDZU
I INSTINCT

* Diverse set of HPC vendors and architectures
* Intel, AMD, NVIDIA, IBM, ARM-based

* CPUs with vector processing; GPUs

.....

T
.....
.......

* Software life cycle is much longer than hardware

Different architectures, trend remains the same
* Need algorithms with higher arithmetic intensity (total ops/byte)

* Need fundamental abstractions during code development

Performance portability: A reasonable level of performance is achieved across a wide variety
of computing architectures with the same source code.

Approaches:

* Libraries — High-level abstractions with specified input/output (e.g. BLAS)
* Task-based — Data-centric abstractions for mapping tasks to resources (e.g. Legion)

*  MPI+X — Algorithmic-level abstractions for distributed (MPI) and shared (X) memory
parallelism%e.g. Directives: OpenMP, OpenACC; Frameworks: Kokkos, RAJA, OCCA)



MALI software

What software tools are we using?



MPAS:

Thickness/Temperature evolution

Albany Land Ice:

First-order Stokes velocity solver

Trilinos:

Mesh tools (STK)

Discretization tools (Intrepid?2)
Nonlinear/Linear solver (NOX/Belos)
Distributed memory linear algebra (Tpetra)
Multigrid Preconditioner (Muelu)

Field DAG (Phalanx)

Automatic differentiation (Sacado)

Shared memory parallelism (Kokkos)

Many more...

7‘ MALI (MPAS-Albany Land Ice) software
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https://github.com/MALI-Dev/E3SM / https://github.com/sandialabs/Albany / https://github.com/trilinos/Trilinos



https://github.com/MALI-Dev/E3SM
https://github.com/sandialabs/Albany
https://github.com/trilinos/Trilinos

s | First Order (FO) Stokes/Blatter-Pattyn Model

Ice behaves like a very viscous non-Newtonian shear-thinning fluid (like lava flow) —V-t+Vp=pg i Q
and is modeled quasi-statically using nonlinear incompressible Stokes equations. V-u=20 ’
. Stokes(u, p) in Q € R3
> Fluid velocity vector: u = (uq,u,,u3) > Strain rate tensor: €; = %(? ?)
Xj Xi
» lIsotropic ice pressure: p 1 (i—l)
» Glen’s Law Viscosity*: u = lA(T) n (l ij El-jz) e
> Deviatoric stress tensor: T = 2ue€ (22 2 !
» Flow factor: A(T) = Age RT FO Stokes(u, v) in Q € R3
Hydrostatic approximation + . ds
-V (2 = — _—
scaling argument based on the fact (2u€1) = =pg5, inQ

(Neumann, Stress-Free) : : 7. F ) — 9s
surface boundary T that ice sheets are thin qnd normals V- (2u€;) = —pg 5
v are almost vertical
ce sheet [

/ * Nice “elliptic” approximation to full Stokes.
<— Lateral boundary T _ _
/ : (?\;’gurr?aunnn)ary l * 3D model for two unknowns (u, v) with nonlinear u.

~ Basal boundary T'; (Robin) e Valid for both Greenland and Antarctica and used in
continental scale simulations.



» | MuelLu/Belos — preconditioned iterative

Problem: Ice sheet meshes are thin with high
aspect ratios

Algebraic
Structured MG

Solution: Matrix dependent semi-
coarsening algebraic multigrid (MDSC-AMG)

Algebraic
Structured MG

* First, matrix-dependent structured
multigrid to coarsen vertically

* Second, smoothed aggregation AMG on
single layer

* Implemented in Trilinos — ML/MuelLu %*?5?;!@

aéf“ ) Unstructured
2. P

AMG

Solver: Preconditioned Newton-Krylov
* MDSC-AMG is used as preconditioner for GMRES
* Performance portability through Trilinos/MueLu (multigrid) + Trilinos/Belos (GMRES)

See (Tezaur et al., 2015), (Tuminaro et al., 2016)



10 ‘ Phalanx — directed acyclic graph (DAG)

Advantages:

DAG Example

\

Gather
Parameter

Interpolate

idual
il Parameter

Interpolate Basis
Solution Functions

Gather Gather

Solution erres  DAG provides flexibility; Memoization improves performance

DAG Example (memoization)

Increased flexibility, extensibility, usability

Arbitrary data type support

Potential for task parallelism

Disadvantage:

Performance loss through fragmentation

Extension:

Performance gain through memoization

N
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B SMAssembly
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Haswell KNL

16(MPI+20MP) 68(MPI+40MP)

P100
1(MPI+GPU)

[mprovements
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Field
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+ | Sacado — automatic differentiation (AD)

* AD provides exact derivatives - no Jacobian derivation or hand-coding required

* Allows for advanced analysis capabilities — easily construct any derivative, hessian
* Ex: Optimization, sensitivity analysis

* Sacado data types are used for derivative components via class templates
* DFad (most flexible) — size set at run-time
* SLFad (flexible/efficient) — max size set at compile-time
* SFad (most efficient) — size set at compile-time

AD capability allows for advanced analysis while maintaining performance portability

91 serial-sfad e openmp-sfad e cuda70-sfad
3 serial-slfad ":j openmp-slfad = cuda70-slfad
=, _ = 10 - . £= 200 A o ap
) = gerial-dfad O openmp-dfad O e cuda70-dfad
° 31 : 2
é % 5 _E 100 4
£ 21 g g
1 . : ; | ! - 0 . ‘
108 10 10° 10° 104 10° 10 10
Problem Size (Number of Cells) Problem Size (Number of Cells) Problem Size (Number of Cells)

Fad Type Comparison: Tetrahedral elements (4 nodes), 2 equations, ND = 4*2 = 8



2 | Kokkos — performance portability

* Kokkos is a C++ library that provides
performance portability across multiple shared
memory computing architectures

* Examples: Multicore CPU, NVIDIA GPU, Intel KNL and
much more...

* Abstract data layouts and hardware features for
optimal performance on current and future
architectures

* Allows researchers to focus on application or
algorithmic development instead of architecture
specific programming

With Kokkos, you write an algorithm once for multiple hardware architectures.

https://github.com/kokkos/kokkos/



https://github.com/kokkos/kokkos/

s | Phalanx Evaluator — templated Phalanx node [

A Phalanx node (evaluator) is constructed as a  template<typename EvalT, typename Traits>

void StokesFOResid<EvalT, Traits>::
C}++'C|aSS evaluateFields (typename Traits::EvalData workset) {
. Kokkos::parallel for(
¢ EaCh evaluator IS templatEd on an Kokkos: :RangePolicy<ExeSpace>(0,workset.numCells),
evaluation type (e.g. residual, Jacobian) *this) ;

}

* The evaluation type is used to determine Cemplate<typenane Evall, typenane Traitss

the data type (e.g. double, Sacado data KOKKOS TNLINE FUNCTTON
types) void StokesFOResid<EvalT, Traits>::
operator () (const inté& cell) const{
* Kokkos RangePolicy is used to parallelize for (int node=0; node<numNodes; ++node)
. Residual (cell,node, 0)=0.;
over cells over an Execution Space (e.g. )
Serial, OpenMP, CUDA) for (int node=0; node < numNodes; ++node) {
for (int gp=0; gp < numQPs; ++gp) {
* Inline functors are used as kernels Residual(cell, node,t) +=
Ugrad(cell,qp,0,0)*wGradBF (cell,node,gp,0) +
o MDFleld data |ay0UtS Ugrad(cell,qp,0,1)*wGradBF (cell,node,gp, ) +

force(cell,gp,0) *wBF (cell,node,gp)
* Serial/OpenMP — LayoutRight (row-major) }

* CUDA - LayoutLeft (col-major) } !

Template parameters are used to get hardware specific features.



Performance, portability and
productivity

How well does MALI perform?




s | VWeak Scalability Study

Architectures:

*  NERSC Cori-Haswell (HSW): 32 cores/node

* NERSC Cori-KNL (KNL): 68 cores/node

*  OLCF Summit-POWER9-only (PWR9): 44 cores/node

*  OLCF Summit-POWER9-V100 (V100): 44 cores/node
+ 6 GPU/node

Benchmark:

* First-order Stokes, hexahedral elements

* 16 to 1km structured Antarctica meshes, 20 layers

* 1to 256 compute nodes

]
[
Mesh Example: 16km, structured Antarctica
mesh (2.20E6 DOF - 20 layer, 2 equations)

Benchmark used to assess performance



« | Performance on Cori and Summit

Setup:

* Same input file for all cases
* Performance portable point smoothers
* No architecture specific tuning

Results:

* Performance degrades at higher resolutions
* (645->1798 total linear iterations)
* GPU scaling slightly better

* Speedup on GPU
*  3.2-4.1x speedup Summit over Cori
* 2.1-2.3x speedup V100 over POWER9

Speedup achieved over MPIl-only simulations
without architecture specific tuning

Solver Weak Scaling I
Wall-clock time (s) vs. Nodes
1.00E+03
1.00E+01
4 16 64 256 i
—e—Cori (Haswell) 9.86E+01 9.92E+01 1.25E+02 1.97E+02 3.22E+02
Summit (V100) 3.01E+01 3.08E+01 3.81E+01 5.40E+01 7.78E+01
Speedup 3.27 3.22 3.27 3.65 4.13
DOFs/GPU 367255 367773 368086 368401 368566
1.00E+03
1.00E+02 e
o o—
i
1.00E+01 I
1 4 16 64 256

—e—Summit (POWER9) 6.24E+01 6.31E+01
Summit (V100) 3.01E+01 3.08E+01 3.81E+01 5.40E+01 7.78E+01

Speedup 2.07

DOFs/GPU 367255

2.05
367773

7.96E+01 1.22E+02

2.09 2.26
368086 368401 368566



» | Autotuned performance portable smoothers

Random search used to improve performance of multigrid smoothers on GPU

Smoother parameters: Results:
o * Applied to four cases (Greenland, 3-20km)
* Limited to three levels, two smoothers o giffe)rent architectures (blake: 8 CPU nodes/weaver: I
PU
* Good parameter ranges provided by - Different equations (vel: FOStokes/ent: Enthalpy)
oy B
Trilinos/MueLu team e 100 iterations, random search
type: RELAXATION * Timer: Preconditioner + Linear Solve
ParameterList:
’relaxation: type’: MT Gauss-Seidel : :
S e Sizeps,: positive integer Cases Manual Tuning (sec.) | Autotuning (sec.) | Speedup
’relaxation: damping factor’: positive real number blake vel 3.533972 2.658731 1.33x
— blake_ent 3.07725 2.036044 I51x
ParameterList: weaver_vel 19.13084 16.30672 1.17x
'relaxation: type’: Two-stage Gauss-Seidel weaver_ent 19.76345 15.00014 1.32x
’relaxation: sweeps’: positive integer
’relaxation: inner damping factor’: positive real number | Casos ‘ #Passed Runs | #Failed Runs ‘ ToFailure | I
;YPe’ SHEE‘_{SEFV blake_vel 70 30 30%
’chebyshet;': degree’: positive integer blake—ent 37 63 63%
’chebyshev: ratio eigenvalue’: positive real number weaver_vel 71 29 29%
’chebyshev: eigenvalue max iterations’: positive integer weaver_ent 26 74 T74%

Autotuning framework: Carolyn Kao



Setup:

* Tuned input files
* CPU block preconditioner
* Autotuned GPU point smoothers

* Multiple samples for confidence
Results:
* CPU scales better than GPU

* 16->18 avg. linear iterations on CPU
* 88->194 avg. linear iterations on GPU

* Speedup on GPU
* 1.9->1.2 speedup V100 over POWER9

* Speedup degrades at higher resolutions

Speedup over MPI-only simulations;
Tuned CPU model scales better

+ | Performance on Cori and Summit

§  HSW ¥ KNL PWRY § V1o
(o]
1201 *
]
X
100 1 x
A2 | P— I
—_
E
f; 60 — ]
=
40— x e
o eEe
20 - = g
Resolution 16km 8kim 4km 2km 1km
# Nodes 1 4 16 64 206
V100 Speedup | 1.92 1.85 1.88 L70 1.24
99% CT (191, 1.92) | (1.84, 1.86) |(1.84, 1.92) |(1.65, 1.74) |(1.21, 1.28)




s | Areas to improve

Weak Scaling Efficiency:

Higher is better

Areas of improvement
*  CPU/GPU preconditioner construction
* GPU linear solve (better precond.)

Proportions of total solve time:

Improve assembly on CPU
* 40-60% of total solve time

Improve GPU linear solver
* 80-90% of total solve time

Focus on improving GPU solver

Total Solve

Total Fill

Preconditioner
Construction

Linear Solve

HSW
KNL
PWR9
V100

68.9% (67.0, 70.9

65.1% (63.3, 66.9

)
63.5% (62.3, 64.6)
)
42.2% (42.0, 42.4)

82.2% (81.5, 82.9)
85.3% (84.5, 86.0)
73.1% (70.0, 76.4)
82.9% (80.5, 85.4)

41.2% (38.2,44.5

67.5% (66.2, 68.8

39.5% (39.0, 40.0

)
33.0% (30.8, 35.5)
)
55.2% (54.7, 55.8)

63.0% (62.9, 63.1

( )
61.1% (60.6, 61.6)
( )
31.9% (31.6, 32.2)

1.0

0.8

0.6+

Proportions

0.4

0.21

0.0-

Timers

a: 16km
b: 8k
c: 4km
d: 2km
e: 1km

Resolution

B Total Fill
[ Preconditioner Construction
[ Linear Solve



20 ‘ Changepoint detection for performance testing

Maintaining/improving performance and portability in the presence of active development is essential

* Changepoint detection: process of finding abrupt variations in time series data

* Manual testing and analysis is increasingly infeasible

z Two STDs
400 mean /
""" upper
----- lower

350

300

250

200

Wall-clock Time (s)

150

Oct 2019 Jan 2020 Apr 2020 Jul 2020 Oct 2020 Jan 2021 Apr 2021 Jul 2021 Oct 2021
Simulation Date

Total Time for a 2-t0-20 km resolution Antarctica mesh, executed nightly in Albany Land Ice
Changepoint Detection: Kyle Shan




2 ‘ Detecting performance regressions/improvements

Example: Transition to Kokkos 3.5.0 caused a performance regression but was soon fixed

Regression Improvement
® f{ime
2.1 — mean 21
[l Date: 2021-11-06T00:00:00 TS ° . P =
2.05 Bl Albany commit: e14f44a - lower 2.05 - o O
[ X Trilinos commit: e15c¢f42 ' .
2 i Viean (99% CI): 2.04 (2.02, 2.05) ? .
I Ratio (99% Cl): 1.15 (1.14, 1.1 |- ’
1.9 : Two STDs 1.95
@ 1.9 @ 1.9
[0} (V]
£ S
= 1.85 — 1.85 !
S 5 Date: 2021-12-14T00:00:00
— . S L. Albany commit: 814a3d3
= © ;'U 1.84 Trilinos commit: f975d21
= = Mean (99% CI): 1.78 (1.75, 1.80) [
1.75 175 . Ratio (99% CI): 1.15(1.13, 1.16) ¥
1.78 1.78
Oct 2021 Nov 2021 Dec 2021 Oct 2021 Nov 2021 Dec 2021
Simulation Date Simulation Date

Total Fill time for a 1-to-7 km resolution Greenland mesh, executed nightly in Albany Land Ice




2 ‘ Algorithmic performance comparisons

Example: Memoization comparison (w. & w.0.) shows that relative performance has increased

99% confidence interval
for the mean

Relative Performance (speedup, slowdown)

0
Jan 2020 Apr 2020 Jul 2020 Oct 2020 Jan 2021 Apr 2021 Jul 2021 Oct 2021 Jan 2022

Simulation Date

Speedup of Total Fill time from memoization for a 1-to-7 km resolution Greenland mesh, executed nightly in Albany Land Ice






. | Conclusions

* HPC software/hardware is changing rapidly which poses a significant challenge for
open-science

* Multiple performance portable features exist in the MALI software stack to meet
this challenge

* Performance on next generation computing architectures is a work in progress
*  1.9x speedup of V100 node over POWER9 node in total solve time
* CPU scales better than GPU using best solvers (65.1% vs. 41.2% weak scaling efficiency)

* Maintaining performance and portability is crucial for an active code base
* Change-point detection adds level of confidence to performance regressions/improvements
* Autotuning framework adds level of confidence to optimal parameters for given system

Watkins et al. “Performance portable ice-sheet modeling with MALL.” (Submitted, 2022)
https://arxiv.org/abs/2204.04321



https://arxiv.org/abs/2204.04321
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