This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in

the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Metrics for Packing Efficiency and Fairness of HPC
Cluster Batch Job Scheduling

Alexander V. Goponenko®*, Kenneth Lamar*, Christina Peterson*,
Benjamin A. Allanf, Jim M. Brandt!, and Damian Dechev*

* University of Central Florida, Department of Computer Science,
211 Harris Center (Building 116), 4000 Central Florida Boulevard, Orlando, FL 32816
Email: (agoponenko,kenneth,clp8199)@knights.ucf.edu, damian.dechev@ucf.edu
t Sandia National Laboratories, PO Box 5800, MS 0823, Albuquerque, NM 87185
Email: (baallan,brandt) @sandia.gov

Abstract—Development of job scheduling algorithms, which
directly influence High-Performance Computing (HPC) clusters
performance, is hindered because popular scheduling quality
metrics, such as Bounded Slowdown, poorly correlate with global
scheduling objectives that include job packing efficiency and
fairness. This report proposes Area Weighted Response Time,
a metric that offers an unbiased representation of job packing
efficiency, and presents a class of new metrics, Priority Weighted
Specific Response Time, that assess both packing efficiency and
fairness of schedules. The provided examples of simulation of
scheduling of real workload traces and analysis of the resulting
schedules with the help of these metrics and conventional metrics,
demonstrate that although values of Bounded Slowdown obtained
with a standard First Come First Served backfilling algorithm
can be readily improved with modifications of the algorithm
and with existing techniques of estimating job runtime, these
improvements are accompanied by significant degradation of job
packing efficiency and fairness. On the other hand, improving
job packing efficiency and fairness over the standard backfilling
algorithm, which is designed to target those objectives, is difficult.
It requires further development of the algorithms and more
accurate runtime estimation techniques that reduce frequency
of underpredictions.

Index Terms—high performance computing, parallel job
scheduling, performance metrics, schedule quality, runtime esti-
mates, packing efficiency, fairness, weighted flow time, weighted
response time

I. INTRODUCTION

HPC clusters remain an important segment of comput-
ing infrastructure for their unique capabilities of processing
large computationally-intensive problems that require many
CPUs to work together on a same job and regularly ex-
change information. The number of such tasks keeps rising
due to sustained interest in machine learning and numerical
simulations. The growing HPC industry constantly demands
better scheduling algorithms because they directly influence
HPC clusters performance. These algorithms are employed

Sandia National Laboratories is a multi-mission laboratory managed and
operated by National Technology and Engineering Solutions of Sandia, LLC.,
a wholly owned subsidiary of Honeywell International, Inc., for the U.S.
Department of Energy’s National Nuclear Security Administration under
contract DE-NA-0003525. SAND #: TODO

to determine the order of processing the jobs, which are
continuously submitted by users and remain in a waiting queue
until dispatched. The main goal of scheduling is to maximize
overall value output without wasting resources. This goal,
which grows more important given the rapid increase of the
volume of computations and its environmental impact [1], is
deemed equivalent to achieving good job “packing efficiency,”
although exact measurement of “packing efficiency” has not
been established yet [2]. Another goal is maintaining fairness.
To increase utilization of these expensive resources, managers
of HPC clusters often allow jobs from a broad user base,
usually for unrelated projects. Therefore, a fair usage, such
as ensuring that later requests do not unreasonably delay an
earlier request is a matter of social justice [3]. One more goal
is to optimize performance perceived by an individual user.
Existing scheduling quality metrics, such as Average Re-
sponse Time and Slowdown (more details in Section II) assess
achievement of the last goal, that is performance perceived
by a user. However, because of low awareness of means
to measure job packing efficiency and fairness, the ongoing
efforts to improve the scheduling poorly address the first two
goals, focusing predominately on reducing Slowdown only.
As a result, adopting the scheduling innovations is hindered
by limited information related to their effects on job packing
efficiency and fairness. Further, development also slows down
due to difficulty analyzing and comparing alternative solutions.

A. Contributions

In this paper, we propose metrics that allow to evaluate job
packing efficiency and fairness, the two important aspects of
scheduling that are poorly covered in recent studies. Through
practical examples, we demonstrate that these metrics substan-
tially boost capabilities of analyzing and comparing schedules
and enable discovering trends not observable otherwise.

In Section III we show that Area-Weighted Response Time,
a metric that is virtually unknown, directly corresponds to
the overall delay of the computation of the workload, is not
influenced by job sizes, and therefore closely matches the
idea of job packing efficiency. We also develop in Section

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

SAND2022-12693C

—
f

F .
. response time .
g e

»

Cluster-wide resource utilization

wait time runtime

S; b; ¢)
J J / Time
User submits job j Job j completes

Fig. 1: Diagram of job lifetime showing the notation used
herein.

IV a new metric that, while still uninfluenced by job sizes,
simultaneously reflects job packing efficiency and the common
idea of fairness as giving higher priority to jobs waited longer.

Using these metrics along with conventional metrics, we
conduct first all-around analyses of effect of several scheduling
improvement approaches on different aspects of scheduling
quality. Thus, in Section V we present thorough evaluation of
fundamental variants of common scheduling algorithms. This
evaluation reveals degradation of the packing efficiency and
fairness caused by the variants that improve Slowdown and
allows to quantify this trade-off. In Section VI we evaluate
effects of job runtime estimations on Slowdown, job packing
efficiency, and fairness. In this example, we discover that more
accurate estimates and control of underestimation are needed
to improve the packing efficiency and fairness. We also outline
directions toward achieving it.

In order to clearly demonstrate the use of the proposed
metrics and new insights that can be attained with their
help, we do not consider HPC clusters with multiple and
heterogeneous resources and limit our analysis to only basic
popular scheduling techniques. Although creating suitable for
practical use scheduling improvements is outside the scope of
this work, we uncover trends that offer new ideas and aims
for future development of advanced scheduling methods.

II. BACKGROUND

The scheduling algorithms for HPC clusters must operate
in an “online” mode [4]. That is, jobs are being submitted
over time and they cannot start before their submit time. The
scheduler has no information about jobs arriving in the future.
On the other hand, the scheduler can modify its scheduling
decisions for the jobs that are not started yet. We will use the
following notation in this paper, as described on the diagram
that represent events happening to a job (Fig. 1). After a user
submits a job j, at time s; (called submit time or arrival time),
the job may end up in a wait queue. After spending @); wait
time in the queue, the job starts and completes after additional
D; runtime at time ¢;. The total time that is passed between
the submit time and the completion time is the job’s response
time, F; (also called flow time or turnaround time):

Fj:Qj+Dj~

Users are interested in having the response time as short as
possible. For simplicity, we assume in the following discussion
that no job runtime depends on how the jobs are scheduled,
and hence all D; values are constant. Therefore, reducing
response time [can only be achieved by reducing wait
time ;. We further assume that the cluster contains just one
resource, nodes (R nodes in total), and do not consider any
other resources that the jobs may require. Each job is assumed
to require a constant number of nodes to run, 7;; the user
provides this number during the job submission, along with
requested runtime limit L;.

Many metrics of the off-line scheduling, such as Makespan
and Utilization, are not useful to evaluate “online” scheduling
of jobs when job submit times are predefined [5]. Makespan
and Utilization are determined by the completion time of the
last job (that is, max; ¢;). These metrics usually poorly corre-
late with HPC cluster scheduling quality. A good scheduling
quality metric, however, should include measurable contribu-
tion of every job. Such metric not only can distinguish a wide
set of schedules but also may lead to an objective function for
schedule optimization. A classical ’online” scheduling quality
metrics is Average Response Time (AF):

1
AF = — F;,

n 1§]Z§n ’
where n is the total number of jobs. AF improves when smaller
jobs start first, because this way more jobs can complete
earlier. It does not reflect that computing a larger job creates
more value. Indeed, consider two users that need to perform
same computation but the first user submits a single job
that requires 10 nodes while the second user submits 10
separate jobs with same runtime and requiring 1 node each.
AF indicates that running 10 jobs of the second user before
running the only job of the first user is preferable than vice
versa, although in terms of created value these options are
equal.

A popular metric that often is used to evaluate HPC job
scheduling is Average Slowdown. Slowdown is the ratio
between response time and runtime. The idea of this metric
is that a user would agree that a longer job may spend
more time in the queue. Because extremely short jobs overly
affect Average Slowdown (a job with zero runtime makes
an infinitely large contribution), Average Bounded Slowdown
(BSLD) was introduced:

1 F;
BSLD = 1; max (1, — (Dj’k)> ,
<j<n
where k is some lower bound [5]. Introducing k is a crude
patch as it produces other adverse effects. While BSLD merely
reverts to AF for the subsets of jobs such that D; < k < Fj,
jobs stop contributing to the metric at all as soon as their
response time falls below k. Therefore k is often kept small
(typically 10 s [6], [7]). Yet, even with reasonable value k,

BSLD is often so strongly influenced by moderate delays of
small jobs that it almost completely ignores the quality of
scheduling of long and resource-demanding jobs, the very
jobs HPC clusters are designed to accommodate. Nevertheless,
BSLD is widely used for analysis of HPC job scheduling, even
though, being predominantly influenced by the delays of small
jobs, it almost completely ignores the quality of scheduling of
long and resource-demanding jobs, the very jobs HPC clusters
are designed to accommodate. As we show in Section V,
this metric demonstrates dramatic improvement in response to
relatively simple changes of scheduling algorithms that results
in preferential scheduling of small jobs, yet it conceals the
accompanying degradation of overall job packing efficiency.

III. METRIC TO EVALUATE JOB PACKING EFFICIENCY

To introduce a metric that favors neither small nor large
jobs, we consider the following simple “benefit model.” Com-
puting a job produces new ‘“knowledge,” which becomes
available after the completion of the job, c;. As soon as
the knowledge is available, it can start generating “value”
proportional to the amount of the knowledge. Therefore,
from the utilitarian perspective, the scheduler should strive
to minimize the sum of weighted completion times:) w;c;,
where w; is proportional to the amount of the knowledge job
J produces. Since c¢; = s;+F}; and the scheduler cannot affect
job submit times s;, optimizing the above-mentioned metric is
equal to optimizing Weighted Average Response Time with job
weights w;. Assuming farther that the efficiency of the code
of all jobs is similar and all projects are equally important,
the amount of the knowledge job j produces is proportional
to the effort required to compute the job (which is also called
“cost” [8] or “squashed area” [9] and will be called “area”
herein), that is w; = 7;D;. Hence, we obtain a metric that we
call Area-weighted Average Response Time (AWF):

27D Fj
> riD;j

Similarly, we can obtain Area-Weighted Average Wait Time
(AWQ), which is nothing else but AWF minus area-weighted
average runtime. These metrics are interchangeable under our
assumption that a job runtime does not depend on scheduling
decisions. Note that AWF could be preferable when this
assumption is not valid, although the weights would need to
be adjusted. Suitable metrics for such cases are subject of our
future research.

Alternatively, we can arrive at AWF by analysing a well-
known High Density First (HDF) heuristic, used for optimizing
weighted response time [10]. In our case of HDF, the density
of a job with weight w; is nothing else but T;‘g]_. When
w; = r;D;, the densities of all jobs equals unity. Therefore,
such weights do not encourage any apparent preferential
treatment of jobs based on their size. AWF has other attractive
properties. Thus, the metric reduces if the scheduler manages
to start a job earlier while keeping the starting times of the
rest of the jobs the same (Fig. 2a). Yet, any jobs reordering
that do not change total utilization-over-time profile (Fig. 2b)

AWF =

does not affect the metric. Furthermore, splitting a job into
several jobs that have same runtime and together require same
amount of resources as the original job (or vice versa) does
not affect AWF if all jobs start at the same time as the original
job started. Splitting a job into several shorter jobs that require
same amount of resources and together use same runtime as
the original job (or vice versa) also does not affect AWF if all
jobs start one after another beginning at the original job’s start
time. Splitting or combining jobs does not affect AWF if the
total utilization-over-time profile remains the same [8]. AWF
can only be reduced by moving some computation to earlier
time, the amount of change being proportional to the amount
of computation and to how far the computation was moved.

These properties make AWF a good unbiased measure of
job packing efficiency of the scheduling. Improving packing
efficiency is regarded as reducing the amount of resources
unusable due to fragmentation and constrains [2]. In HPC
clusters and similar system, it equals to minimizing lost
resources when work is available, that is, moving as much
computation to earlier time as possible. However, since AWF
is not affected by reordering of jobs, this metric do not measure
how well the scheduling complies with jobs priorities.

IV. METRICS THAT EVALUATE BOTH PACKING EFFICIENCY
AND COMPLIANCE WITH ARRIVAL TIME PRIORITY

When referring to job priorities, we can imply two rather
different concepts. First, job priorities may signify difference
in benefits of computing the jobs, either due to different
code efficiency or because jobs belong to projects of varying
importance. To represent such priorities, we can adjust AWF’s
weights to become w; = p;r;D;, where coefficient p; signify
i-th job’s priority of such kind. Such modification of the metric
is straightforward and we will not discuss it any further.

The second type of job priorities arises from the common
idea of fairness, that is jobs that waited longest should have
the highest priority. To construct a corresponding weighted
metric, we should increase weights of jobs that waited longer.
We, however, prefer to keep the new metric unaffected by the
sizes of the jobs, similar to AWF. That is, as long as the total
utilization-over-time profile remains the same, our metric’s
value should not change if we split a job into smaller jobs
or reorder jobs (Fig. 2b) that were submitted at the same time
(for simplicity, we do not consider coefficients p;). However,
moving some computation to earlier time (Fig. 2a), as well as
reordering jobs so that longer waiting jobs start earlier, should
reduce the metric’s value.

To obtain such a metric, we deem jobs to be composed of
infinitely small “units of computation™ (each requiring dr re-
sources and dt running time), as shown on Fig. 1 and compute
the metric as weighted average response time of these units.
For instance, job j contributes b(;j o wi(fe(t) drdt =
T be]J w;(fi(t)) dt to the weights, where w;(f(t)) is the
weight of a unit of computation of job j given the unit is
computed at time ¢. This weight may be a function of the
response time of the unit f;(t) = t — s;, but, to keep the
metric independent of the job size, it should not otherwise

Utilization

Time

(a)

Utilization

Time

(b)

Fig. 2: AWF measures how well the jobs are packed at earliest possible times. Moving any job to earlier time while keeping
the starting times of other jobs the same (a) reduces the metric. Reordering jobs while keeping the utilization profile same (b)

does not affect the metric.

depend on the job parameters such as Q;, F};, Dj, or ;. The
relation w;(f;(t)) can be chosen to reflect the cluster policy’s
target balance between job fairness and packing efficiency. A
good baseline is a power function of the response time, that
is w;(t) = (t — s;)“ [11]. Such weights give rise to a series
of metrics which we name Level-a Priority Weighted Specific
Response Time (P*SF):

Sy fy (t —sj)t dt
2T fb,f(t —55)* dt
a+1 ETj (FJ{1+2 _ Q?JrQ)

= a+2 E’/‘j (Fja+1 _Q;,H_l)-

PSF =

P*SF assumes a “benefit model,” in which the “knowl-
edge” created by computation starts to produce “value” im-
mediately upon computation. In the “benefit model” used to
derive AWF, the new ‘“knowledge” becomes available only
after completion of the whole job. Although the ‘“benefit
model” of P*SF represents smaller portion of jobs currently
deployed to HPC clusters, it is necessary to obtain a metric
unaffected by the sizes of the jobs and is well justified by the
confidence that an analysis of scheduling alternatives using
P*SF' is not misled by any preferential treatment of jobs of
particular sizes that some of the schedules may have.

The parameter « controls the ratio between job fairness and
packing efficiency contributions to P*SF'. Higher o makes the
metric more sensitive to the job fairness. The most practical
range is 1 < a < 3. When o > 3, a small number
of poorly scheduled jobs (for instance, during a period of
high demand) may dominate P*SF', making the metric less
responsive to the scheduling decisions related to the other jobs
and thus reducmég the metric usefulness. On the other hand,
POSF = 21l Fi=Dy/2) S0 F —Dy/2) g just the mean of AWF and AWQ
and completely 1ndependent of the job fairness.

As the next section demonstrates, P*SF and AWF sig-
nificantly enhance comparative analysis of the scheduling
approaches and reveal pros and cons of the studied alternatives
that the common metrics, such as BSLD, cannot uncover.

V. EXAMPLE OF COMPARING SCHEDULING ALGORITHMS
USING PROPOSED METRICS

The problem of job scheduling on an HPC cluster belongs to
the class of resource-constrained scheduling problems, which
is NP-hard [12]. Therefore, in practice HPC job schedulers use
approximation algorithms, usually based on a modification of
the list scheduling algorithm [13], which is invoked period-
ically (or upon every job completion or submission). Here,
we evaluate some representative examples of published job
scheduling algorithms and basic algorithms that are variants
of an algorithm shown in Algorithm 1. The pivotal factor that
determines the behavior of the algorithm is the order of the
waiting jobs in the queue (line 1). The commonplace order
is First Come First Served (FCFS). The algorithm’s behavior
also depends on which option is chosen when a job being
considered cannot start immediately because of insufficient
available resources (line 7).

Algorithm 1 General job scheduler algorithm

1: Arrange waiting jobs in Queue according to some rule.
2: while Queue is not empty do

3 j « Queue.POP()

4: if job j can start right away then

5 Start job j.

6: else

7 switch Option

8 case PASSIVE

9 Stop this invocation of the scheduling.

10: case AGGRESSIVE
11 Skip job j but keep it in the queue
for the next invocation of the scheduling.
12: case RESERVING
13: bj < earliest time job j can run.
14: Reserve resources 7

for time period (bj,b; + L;).

The passive option (line 8) effectively pauses the schedul-
ing until some running jobs terminate and release resources

required by the job in the head of the queue. This leads to
starting jobs in the original order and guarantees that no job is
delayed by later jobs, but can lead to poor performance overall.
According to every discussed metric, the passive option is
inferior to the reserving option, so it is not discussed any
further.

The aggressive scheduling option (line 10) skips jobs that
cannot run and schedules jobs that can run instead [14], [15].
This improves resource utilization but delays jobs with high
resource requirements and can lead to job starvation.

In case of the reserving option (line 12), if a job cannot start
immediately, the resources are reserved at the earliest time
the job can run (without violating the previous reservations).
The reservation makes the resources unavailable (for the jobs
later in the queue) for the time period the job is scheduled
to run. This way, no job is delayed by later jobs, yet a
job can start before a job that is earlier in the queue. This
technique is called “backfilling” [16]. The reserving option is
the most computationally intensive option due to complexity
of keeping track of reservations and finding the earliest time
a job can run. It also requires runtime estimates for the
jobs [17], but in return allows improving resource utilization
without compromising compliance with job priorities. Most
efficient backfilling is attained if job runtimes D, are used
to make reservations. However, the runtime is not known
until the job completes, thus job timelimits L; are usually
used instead. In order to demonstrate efficiency attainable in
practice and to estimate best-case scenario, we analyze the
performance of algorithms both using L; and using D;. We
label this algorithm JustBF. It resembles the technique called
Conservative Backfilling [18] but differs in how it addresses
rescheduling when a job completes earlier than expected.
Conservative Backfilling determines the earliest time the new
job can run when the job is submitted and guarantees that
the job is not delayed any further. When a job terminates
earlier than expected, Conservative Backfilling “compresses”
the schedule making sure that jobs start times do not increase.
Our algorithm, which we label JustBF, prioritizes the rule that
job later in the queue cannot delay any earlier job. Therefore, at
each scheduling round, the reservation from the previous round
are “forgotten” and all jobs are rescheduled “from scratch.”

The most common scheduling algorithm used in practice
is EASY Backfilling [16], which, as shown in Algorithm 2,
represents a hybrid of reserving and aggressive options of
the more general algorithm presented in Algorithm 1. For
the traditional EASY algorithm, both initial order and backfill
order (lines 1 and 14) are FCFS. It does not guarantee
that no job will be delayed by later jobs, but nevertheless
guarantees no starvation. EASY Backfilling is widely used
because it is more scalable than full backfilling techniques
(such as Conservative Backfilling or JustBF) as every round
of scheduling create no more than one reservation, yet has
comparable performance in practice.

Because BSLD metric became widely accepted as the stan-
dard of measuring the quality of HPC job scheduling, many
proposed methods make the EASY Backfilling scheduling

Algorithm 2 General EASY Backfilling algorithm

1: Arrange waiting jobs in Queue according to INITIAL
ORDER.

2: Option < RESERVING

3: while Queue is not empty do

4. j < Queue.POP()

5: if job j can start right away then

6: Start job j.

7. else

8: switch Option

9: case AGGRESSIVE

10: Skip job j but keep it in the queue
for the next invocation of the scheduling.

11: case RESERVING

12: bj < earliest time job j can run.

13: Reserve resources r;
for time period (b;,b; + L;).

14: Arrange remaining Queue
according to BACKFILL ORDER.

15: Option < AGGRESSIVE

favor smaller jobs first. Shortest Job Backfilled First modifica-
tion of EASY (EASY-SJBF) is one of those methods [6], [7],
[19]. This modification of the algorithm still employs FCFS
as initial order but uses Shortest Runtime First (SJF) order
as backfill order. Because the first job per a scheduling round
is not delayed, this approach still avoids job starvation. To
further reduce BSLD, EASY Backfilling can be augmented
with Smallest Estimated Area (that is, r;L;) First (SAF) job
order as initial order, producing a scheduling algorithm that
we call SAF-EASY, which is not starvation-free. To restore no-
starvation guarantee, a thresholding mechanism was proposed:
a job waiting longer than a pre-set threshold is placed at the
head of the queue [20], [21]. However, no-starvation guarantee
is a very weak indicator of the scheduling fairness. Without
proper metrics, it is difficult to evaluate how such attempts to
improve BSLD affect other aspects of the cluster performance.

In this section, we compare EASY, EASY-SJBF, and SAF-
EASY (with no thresholding) with several scheduling algo-
rithms based on JustBF and Aggressive algorithms and various
job orders (line 1 in Algorithm 1): SJF, SAF, and Largest Area
First (LAF). We evaluate the algorithms through simulation of
scheduling of traces of real parallel workloads from production
systems listed in Table I. We obtained the workload BW201911
from publicly available December 2019 TORQUE logs of
the NCSA Blue Waters supercomputer [22]. The rest of
the workload logs are the recommended “cleaned” versions
from Parallel Workload Archive [23]. The set of traces spans
three decade and different machine sizes. Some traces have
been studied in related work [6], [7], [18]. This makes the
results obtained in this paper representative of large variety
of practical use cases. We evaluate the performance of the
algorithms using the following four metrics: BSLD (using 10 s
for k), AF, AWF, and P2SF. Experiments ran on an expanded

TABLE I: Characteristics of the real workload traces used in
examples herein.

#CPU #Jobs Utilization Year Duration
KTH-SP2 100 28k 70% 1996 11 months
CTC-SP2 338 77k 85% 1996 11 months
SDSC-SP2 128 60k 83% 2000 24 months
SDSC-BLUE 1,152 234k T77% 2003 32 months
CEA-CURIE 93,312 313k 62% 2012 8 months
BW201911 22,636 92k 68% 2019 1 month

version of Predictsim [7], a parallel job scheduler simulator.
The source code and more details related to our simulation
conditions are available at GitHub'.

The results are summarized in Table II, which shows metrics
changes in percent relative to the values obtained with regular
JustBF. The left part of the table contains results of applying
algorithms using actual job runtimes D;, while the right part
corresponds to results of using user-provided timelimits L;.
Scheduling using actual runtimes reveals possible performance
of the algorithms when they have access to accurate informa-
tion. In this case, SAF-JustBF demonstrates best improvement
of BSLD. Possibly, SAF heuristic is better than SJF for
the studied workloads because it focuses more on long-term
effects of the scheduling decisions. SAF-Aggressive and SJF-
Aggressive result in inferior values of BSLD than SAF-JustBF
and SJF-JustBF, which may be surprising because one can
expect little opportunities of backfilling when smallest jobs
are already scheduled first.

According to AWF, LAF-JustBF is able to attain better job
packing efficiency than regular JustBF. LAF improve packing
efficiency because it gives larger jobs more chances to find
resources and then fill the remaining “holes” with smaller
jobs. When jobs are scheduled in FCFS order, less small
jobs remains to fill the “holes” and the scheduling becomes
more fragmented. AWF of LAF-Aggressive is nevertheless
higher than of regular JustBF. Likely, even though LAF-
Aggressive scheduler gives larger jobs a chance to start first,
it still lets the small jobs jump in front of the large jobs
and end up with few small jobs when needed. No surprise
that scheduling using SAF or SJF results in less efficient job
packing and significantly hurts AWF. Scheduling of SDSC-
SP2 trace exemplifies this. Fig. 3 (top) displays cumulative
fraction of the number of jobs vs job area (similar to empirical
cumulative distribution function): Fi(z) = 3., p <, 1/n
and cumulative fraction of job areas vs job area: F'(z) =
> rp;<aTiDil 2o1<j<n i Dj- Note that smallest 80%
jobs of this trace contributes less than 5% total job area
(which corresponds to the amount of computation), while
largest 5% jobs are responsible for more than 50% of the
computation. Fig. 3 (bottom) shows cumulative wait area
CWA(z) = >_;. . p <, @s7; attained on this workload trace
using various schedulers. While JustBF keeps CWA roughly
proportional to cumulative job area, SAF-JustBF depletes the
wait queue of small jobs and nearly starves the large jobs.

I https://github.com/algo74/predictsim/tree/SBACPAD2022

1.0
c 0.8
2
g
& 0.6 1
[
2
©
0.4
€
S
]
0.2 = Number of jobs
Job areas
0.0
. %10 x nodes x s
- SAF-JustBF
7 EASY-SJBF
o 6- —— JustBF
E =+ LAF-JustBF
2 5
2
S 4
©
S 31 e
E Ll
3 2
1
0 T T T
5 6 7

Job area x10° x nodes x s

Fig. 3: Cumulative fraction of number of jobs and job areas
as functions of job area in SDSC-SP2 (top) and cumulative
wait areas as functions of job area attained on this workload
trace with SAF-JustBF, EASY-SJBF, JustBF, and LAF-JustBF
using actual job runtimes (bottom).

LAF-JustBF increases wait time of smaller jobs, yet they do
not starve. Their wait time per job area remains smaller (on
average) than for the larger jobs while the overall productivity
of the cluster increases.

Because of possibility of diminished packing efficiency, one
should be cautious giving higher priority to shorter jobs even
though it could demonstrate improvement of BSLD. Thus, in
case of SDSC-SP2 trace, the job packing efficiency (measured
by AWF) of SAF-JustBF and SJF-JustBF algorithms is so poor
that these algorithms are worse than regular JustBF even in
terms of AF, a metric that, while still favoring scheduling
smaller jobs first, is more sensitive to job packing efficiency
than BSLD.

While LAF-JustBF can slightly improve AWF over JustBF,
none of the considered algorithms can attain better value of
P2SF than JustBF. Indeed, JustBF is designed to attain good
packing efficiency while complying with job priorities, and
P4SF is measuring just that.

According to the metrics, EASY Backfilling is a good
practical approximation of full backfilling used in JustBF
algorithms. SAF-EASY demonstrates values of BSLD and AF
that are close to SAF-JustBF, while regular EASY is close to
regular JustBF in terms of AWF and P2SF. Of all algorithms
considered, only EASY-S/JBF may be a practical solution
for improving BSLD while maintaining some fairness of the
scheduling. Compared to SAF-JustBF in our experiments,
EASY-SJBF leads to not as large but still significant decrease of

TABLE II: BSLD, AF, AWF, and P>SF of scheduling algorithms as percent changes relative to JustBF. Lower is better.

Using actual runtime

BSLD
Using requested timelimit

KTH-SP2 CTC-SP2 SDSC-SP2 SDSC-BLUE CEA-CURIE BW201911

KTH-SP2 CTC-SP2 SDSC-SP2 SDSC-BLUE CEA-CURIE BW201911

LAF-JustBF 117% 379% 366% 838% 600% 1175% 35% 229% 88% 305% 196% 154%
LAF-Aggressive 111% 258% 288% 135% 197% 146% 24% 33% 74% 32% -719% -87%
JustBF 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
EASY 7% 29% 5% -23% 25% 77% -9% -24% -14% -31% -81% -41%
EASY-SJIBF -26% -39% -15% -67% -55% -47% -32% -53% -19% -64% -83% -60%
SJF-Aggressive -34% -58% -51% -30% -70% 90% -48% -714% -33% -50% -94% -90%
SAF-Aggressive -31% -54% -44% -58% -69% 90% -41% -74% -33% -49% -94% -81%
SJF-JustBF -67% -83% -713% -85% -717% -91% -56% -57% -23% -57% -12% -67%
SAF-JustBF -69% -83% -77% -88% -84% -92% -56% -42% 9% -3% -93% -76%
SAF-EASY -62% -82% -76% -85% -82% -92% -62% -45% -1% -38% -88% -76%
AF
Using actual runtime Using requested timelimit
KTH-SP2 CTC-SP2 SDSC-SP2 SDSC-BLUE CEA-CURIE BW201911 KTH-SP2 CTC-SP2 SDSC-SP2 SDSC-BLUE CEA-CURIE BW201911
LAF-JustBF 26% 132% 139% 298% 63% 198% 20% 146% 59% 141% 48% 120%
LAF-Aggressive 10% 11% 124% 37% -6% -36% 0% -12% 38% 17% 21% -51%
JustBF 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
EASY -4% -10% -4% -13% -7% -13% -7% -24% -12% -15% -20% -23%
EASY-SJIBF -10% -23% -8% -30% -14% -33% -12% -30% -12% -30% -23% -28%
SJF-Aggressive -13% -36% 32% -22% -20% -47% -16% -45% 49% -26% -28% -54%
SAF-Aggressive -13% -36% 49% -32% -20% -48% -14% -45% 57% -25% -28% -54%
SJF-JustBF -18% -23% 14% -44% -17% -38% -19% -33% 48% -31% -19% -26%
SAF-JustBF -17% -33% 2% -38% -21% -47% -6% -14% 140% -11% -28% -53%
SAF-EASY -16% -32% 59% -40% -21% -47% -14% -18% 126% -23% -24% -54%
AWF
Using actual runtime Using requested timelimit
KTH-SP2 CTC-SP2 SDSC-SP2 SDSC-BLUE CEA-CURIE BW201911 KTH-SP2 CTC-SP2 SDSC-SP2 SDSC-BLUE CEA-CURIE BW201911
LAF-JustBF -6% -6% -17% -8% 0% 2% -6% -6% -25% -9% 2% -1%
LAF-Aggressive 7% 23% 16% 16% 3% 4% 5% -1% -13% 16% 1% -1%
JustBF 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
EASY 1% 1% 0% 0% 0% 0% 1% -4% -6% 0% -1% 2%
EASY-SJBF 1% 6% 10% 3% 0% 1% 1% 5% 4% 3% -1% 1%
SJF-Aggressive 25% 211% 430% 63% 3% 5% 21% 105% 349% 58% 1% 0%
SAF-Aggressive 25% 199% 443% 63% 3% 5% 25% 104% 385% 59% 1% 0%
SJF-JustBF 12% 120% 206% 23% 2% 29% 17% 152% 487% 66% 3% 36%
SAF-JustBF 68% 632% 995% 269% 20% 17% 194% 526% 992% 410% 3% 9%
SAF-EASY 59% 671% 888% 233% 7% 17% 104% 485% 945% 333% 60% 10%
P2SF
Using actual runtime Using requested timelimit
KTH-SP2 CTC-SP2 SDSC-SP2 SDSC-BLUE CEA-CURIE BW201911 KTH-SP2 CTC-SP2 SDSC-SP2 SDSC-BLUE CEA-CURIE BW201911
LAF-JustBF 61% 591% 802% 1224% 815% 16% 27% 514% 542% 930% 75% 16%
LAF-Aggressive 406% 2149% 2094% 2517% 777% 55% 191% 921% 1436% 2645% 700% 44%
JustBF 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
EASY 4% 6% 9% 4% 1% 1% 6% 0% -1% 10% 2% 3%
EASY-SJBF 5% 23% 22% 19% 5% 5% 10% 19% 16% 27% 6% 3%
SJF-Aggressive 844% 10111% 11216% 5735% 287% 77% 697% 3481% 9812% 5356% 374% 64%
SAF-Aggressive 894% 8045% 11744% 6846% 315% 77% 878% 3479% 9484% 5348% 372% 64%
SJF-JustBF 102% 3060% 9315% 329% 37% 114% 229% 5226% 13113% 1222% 114% 110%
SAF-JustBF 574% 18841% 16357% 7915% 626% 108% 2946% 12090% 13291% 9456% 109% 92%
SAF-EASY 481% 18570% 16009% 10473% 222% 109% 1776% 12471% 12972% 7559% 3029% 92%

BSLD along with less severe degradation of AWF and P2SF.

Hence, the demonstrated analysis with the help of the
proposed metrics allows to estimate such trade-offs and advise
scheduling changes depending on the cluster policy. When
timelimits are used to estimate runtimes (right part of Table II),
any benefits of JustBF over EASY are insignificant. The other
tendencies described above also become less profound, as
lower quality input data reduce the algorithms’ ability to attain
their goals. The relative values in Table II, however, do not
show that the metrics predominantly degrade when timelimits
are used instead of runtimes. The next section discusses this
problem in more details.

VI. EXAMPLE OF COMPARING JOB RUNTIME ESTIMATING
TECHNIQUES

Backfilling techniques (as well as reordering jobs in some
algorithms) require job runtimes D;, which are not known
until the jobs finish. In practice, algorithms use timelimits
L; that are provided by the users. This leads to less efficient
backfilling and reduced scheduling quality. The rows labeled
Runtime in Table III demonstrate improvements that could be
attained if the scheduling algorithms use actual job runtimes
instead of timelimits. Therefore, estimating job runtimes for
improving the efficiency of scheduling algorithms is a popular
research topic.

However, more accurate estimates of job runtimes not
necessarily improve every metric of every algorithm. For
example, Fig. 4 shows the values of the metrics of scheduling

TABLE III: Effect of using various job runtime predictions in scheduling algorithms demonstrated through the change of the
metrics the algorithms target. Metrics changes are shown as percent changes relative to values obtained using users provided
timelimits. Lower is better. Runtime demonstrates improvements that could be attained with exact predictions.

(@) BSLD of EASY-SIBF

(b) BSLD of SAF-JustBF

KTH-SP2 CTC-SP2 SDSC-SP2 SDSC-BLUE CEA-CURIE BW201911

KTH-SP2 CTC-SP2 SDSC-SP2 SDSC-BLUE CEA-CURIE BW201911

Runtime -282% -41.6% -31.5% -32.9% -63.2% -71.3% Runtime -535% -87.3% -86.2% 91.1% -66.7% -92.5%
Last2 -71.5% -19.0% -21.3% -4.1% -58.5% -68.6% Last2 172% -30.1% -44.4% -75.4% -0.8% -85.9%
CVH -174% -41.4% -1.9% 108.6% -50.7% -69.8% CVH 04% -58.1% -39.8% -17.5% -20.7% -64.6%
Hierarchy -12.2% 4.3% -18.4% -19.8% -42.3% -68.7% Hierarchy -13.3% -24.9% -58.0% -79.4% 1.2% -77.5%
(c) AWF of LAF-JustBF (d) P?’SF of JustBF
KTH-SP2 CTC-SP2 SDSC-SP2 SDSC-BLUE CEA-CURIE BW201911 KTH-SP2 CTC-SP2 SDSC-SP2 SDSC-BLUE CEA-CURIE BW201911
Runtime -1.3% -17.1% -8.9% -5.2% -0.1% -4.9% Runtime -0.6% -25.4% -19.6% -7.3% -3.3% -7.3%
Last2 8.2% 19.0% 17.2% 6.1% 0.8% 15.1% Last2 17.9% 439.4% 9.5% 107.3% 15.2% 32.2%
CVH 14.4% 25.9% 41.4% 24.2% -0.1% 0.4% CVH 355.6% 817.4% 1837.6% 394.5% 111.3% 43.8%
Hierarchy 4.4% 10.1% 18.1% 11.3% 1.5% 15.5% Hierarchy 21.0% 402.9% 8.3% 41.5% 111.1% 19.7%
SP-2% -0.2% -1.0% 0.4% -0.8% 5.5% -0.4% SP-2% 0.6% 0.0% 0.0% 1.1% -1.2% -0.5%
SP-3% -0.2% -0.9% 1.3% -1.2% 3.3% -0.6% SP-3% 0.0% -0.2% 1.3% 3.1% -0.7% -0.4%
SP-4% -0.2% 0.2% 1.0% -0.7% 2.5% 0.8% SP-4% 0.0% -3.5% 0.7% 5.8% -0.5% -0.7%
140
a 25 L% \A\,\//\\I’\«f\/\ % 60 -
Q @ 1201 Q
20 - . ' 50 - .
x104 x10* x10*
2.0 1.6
w 1.35 MMA\,.\ w \'\M w \\.\\/\N
< < <
1.30 1.8+ 151
x10° x10* x10*
1.4
w w i w 7.75 4
3 37 S
< 1.2 < ;004 M < 7.50 A
x106 x10° x10°
2 1 4 1.75
w w T w
n 9 & 1.50 4
a1 a f/“"'"’v‘f/\ a b AJJV,IL/—
. 2 . ’
0.5 1.0 2.0 0.5 1.0 2.0 0.5 1.0 2.0
E/‘/Dj Ej/Dj Ej/Dj
(a) SAF-JustBF (b) LAF-JustBF (c) JustBF

Fig. 4: Effect of runtime estimate distortion on metrics when scheduling KTH-SP2 trace using various algorithms. Lower metric
value is better. The estimates F; are distorted by multiplying the actual runtimes D; by a factor k in the range from 0.5 to

2, that is Ej =k x Dj.

KTH-SP2 trace using as the job runtime estimates the actual
runtimes multiplied by a factor k£ in the range from 0.5 to
2, that is E; = k x Dj, where Ej; is the estimate used for
the scheduling. The accurate runtimes in case of SAF-JustBF
minimize BSLD, but not the other three metrics (Fig. 4a),
suggesting that SAF-JustBF is not working towards improving
these three metrics. On the contrary, LAF-JustBF and JustBF
are not fit for BSLD or AF and they do not attain better values
for these metrics with accurate runtime predictions (Fig. 4b
and 4c). Thus, if an algorithm is not suited for a metric,
more accurate estimates may fail to improve the metric. An
opposite is possible: deliberately inaccurate predictions may
attain better values of BSLD because it leads to more SJF-like
schedule [17], albeit a more suitable algorithm with accurate

predictions should easily outperform such unsound approach.
Meanwhile, if an algorithm achieves its own best value of a
metric using actual runtimes, it still may be an inappropriate
algorithm to optimize that metric. For instance, P2SF for
LAF-JustBF is smallest when E; = D; (the bottom plot of
Fig. 4b), yet JustBF is much better algorithm for P2SF (Table
1D).

In this example, we analyze different job runtime prediction
methods using the four metrics. The first prediction method,
which we label Last2, estimates the runtime as the average
runtime of the last two jobs of the same user [6]. This simple
approach is actually a result of wide hyper-parameter tuning
that aimed at improving BSLD of scheduling traces KTH-SP2,
CTC-SP2, SDSC-SP2 and SDSC-BLUE [6] with EASY-SJBF.

The second predictor, labeled CVH, is also a result of
hyper-parameter tuning that targeted improving of BSLD of
scheduling with EASY-SJBF the traces that Last2 used (plus
CEA-CURIE), but incorporated a more elaborate machine
learning model and employed cross-validation to select best
performing set of heuristics [7].

The third prediction method, labeled Hierarchy, predicts
job runtime as an exponentially decaying weighted average of
most similar historical jobs [24]. It implements hierarchy of
groups, from more specific to more general, based on parame-
ters know at job submission (job name, user id, timelimit, and
required number of nodes) in a manner similar to Gibbons [25]
and Smith et al. [26], and looks through the hierarchy until
finding a non-empty group. A finished job causes prediction
update of all groups to which the job belongs. The order of the
groups in the hierarchy, as well as the decaying parameters,
were selected using an additional dataset [27] and were not
tuned to the data analyzed here.

According to the values of the coefficient of determination
R? (Table 1V), Hierarchy is the most accurate predictor among
considered, followed by Last2. CVH is the least accurate of
the three. The machine learning model used in CVH should
be capable of more accurate predictions, but CVH was tuned
to reduce BSLD of EASY-SJBF scheduling, not to attain the
highest accuracy.

Since AWF and P2SF of LAF-JustBF and JustBF degrade
from underprediction more than from overprediction (Fig. 4b
and 4c), we added one more prediction technique to the
analysis of these metrics. This method estimates job runtime
as a shortest time such that the probability of surviving longer
than it for the historical jobs with same job name, user id,
timelimit, and required number of nodes is below a given
threshold [24]. The survival probability is calculated using
non-parametric Kaplan-Meier method [28], which we modi-
fied with exponentially decaying weights [24]. We consider
survival probability of 2, 3, and 4%, which we label SP-2%,
SP-3%, and SP-4% correspondingly.

Table IIla shows how the use of the predictors improves
BSLD of EASY-SJBF, the algorithm for which Last2 and CVH
are optimized. Although the prediction methods have different
complexity and prediction accuracy, all three predictors help
improve BSLD in most experiments. The high variability in
the performance of the predictors does not allow to identify
the best predictor. When the three predictors are used with
SAF-JustBF (Table IlIb), BSLD also predominantly improves
and the high variability again does not allow to identify the
best predictor. Nevertheless, in this case Hierarchy may be a
little better, possibly because Last2 and CVH are optimized
for a different algorithm and have less accuracy in general.

These three predictors, however, have a detrimental effects
on AWF when used in LAF-JustBF (Table IIlc) and on P2SF
when used in JustBF (Table IIId). Although the high varia-
tion in the results remains, CVH leads to noticeably worse
outcomes for both cases. Poor performance of these three
predictors here is likely due to frequent underpredictions.
Degradation of P2SF is not surprising as underpredictions

can lead to violation of job priorities. Yet, it remains intriguing
that underprediction may hurt job packing efficiency more than
overprediction. Predictors SP-2%, SP-3%, and SP-4% (which
are designed to reduce underprediction) performed better than
the other predictors in both cases. They often lead to better
values of the metrics than the scheduling performed using
timelimits, but high variability of the results does not allow to
conclude whether this prediction approach can improve over
scheduling with timelimits.

This analysis demonstrates that BSLD can be readily im-
proved not only with algorithms that give priorities to smaller
jobs (Section V), but also by using job runtime estimates
obtained by a variety of prediction techniques. On the other
hand, improving AWF and P2SF is not trivial. Not only
little improvement over JustBF was attained by any algorithm
in Section V, no prediction techniques in this section allow
noticeable improvement either. Thus, the current state of the
art in estimating job runtime is not adequate for practical
application in job scheduling.

VII. RELATED WORK

AWF was used in analysis of preemptive gang schedul-
ing [8], [29] and to demonstrate benefits of combining HPC
clusters in a grid [9]. This metric was also suggested as an
objective function when high system load is desired [13]. Yet,
AWF remains virtually unknown. It was not used in the rest of
the publications covered in this Section. Another metric sug-
gested to measure job packing is Loss of Capacity (LOC) [30].
This metric corresponds to the fraction of processor cycles that
were idle when waiting jobs could have use them:

max c;
1<j<n

/mm E rj, R — E r; | dt
min s; j:s;<t<bj j:bj<t<c;
1<j<n

e (max (¢;) — min (sj)> x R ’

1<j<n 1<j<n
where R is the total number of nodes in the cluster. LOC is
harder to compute than AWF, but it is also inferior in other
ways. During the periods when the waiting queue is long, LOC
do not change if a job is moved to another time (Fig. 2a).
When the queue is short, LOC may favor scheduling shorter
jobs first in a situation shown on Fig. 2b. Thus, LOC is a less
reliable metric of job packing efficiency than AWF.

Several approaches were suggested to measure fairness and
compliance with priority policy of scheduling. Thus, Jain et
al. suggested various fairness indices, which are not intended
for use as metrics [31].

Maximum wait time [32] and similar trivial metrics have
little use because they indicate quality of scheduling of a
single job (or a small sub-set of the jobs) and disregards all
other scheduling decisions. Pruhs et al. suggested I, norm of
response time, that is (D F}?)1/ P to measure job fairness [4].
This metric is somewhat similar to P*SF' but may encourage
preferential treatment of jobs on the basis of their size. The
weights of P*SF, in contract, are designed to prevent such

TABLE 1V: Coefficient of determination R? of the job walltime estimations for the discussed scheduling algorithms. Higher

is better.
(a) BSLD of EASY-SJIBF (b) BSLD of SAF-JustBF
KTH-SP2 CTC-SP2 SDSC-SP2 SDSC-BLUE CEA-CURIE BW201911 KTH-SP2 CTC-SP2 SDSC-SP2 SDSC-BLUE CEA-CURIE BW201911
Last2 0.33 0.36 0.52 0.56 0.30 0.06 Last2 0.33 0.36 0.52 0.55 0.30 0.01
CVH -0.05 -0.22 -0.07 0.04 0.23 -0.07 CVH -0.02 -0.22 -0.13 -0.03 0.22 -0.09
Hierarchy 0.64 0.51 0.64 0.68 0.50 0.05 Hierarchy 0.64 0.50 0.63 0.68 0.50 0.18
timelimit 0.59 -0.58 -0.34 -0.06 -7.08 -8.02 timelimit 0.59 -0.58 -0.34 -0.06 -7.08 -8.02
(c) AWF of LAF-JustBF (d) P’SF of JustBF
KTH-SP2 CTC-SP2 SDSC-SP2 SDSC-BLUE CEA-CURIE BW201911 KTH-SP2 CTC-SP2 SDSC-SP2 SDSC-BLUE CEA-CURIE BW201911
Last2 0.32 0.35 0.50 0.55 0.29 0.04 Last2 0.33 0.35 0.50 0.55 0.28 0.03
CVH -0.02 -0.20 -0.18 -0.03 0.26 -0.17 CVH -0.02 -0.22 -0.21 -0.01 0.23 -0.17
Hierarchy 0.64 0.51 0.64 0.69 0.48 0.10 Hierarchy 0.64 0.50 0.63 0.68 0.49 0.05
SP-2% 0.60 -0.44 -0.33 0.06 -1.97 -4.63 SP-2% 0.60 -0.43 -0.33 0.06 -1.84 -4.68
SP-3% 0.60 -0.41 -0.33 0.07 -1.85 -4.60 SP-3% 0.60 -0.40 -0.33 0.07 -1.80 -4.66
SP-4% 0.60 -0.40 -0.32 0.08 -1.73 -4.57 SP-4% 0.60 -0.38 -0.32 0.08 -1.74 -4.63
timelimit 0.59 -0.58 -0.34 -0.06 -7.08 -8.02 timelimit 0.59 -0.58 -0.34 -0.06 -7.08 -8.02

interference with the measurement of job packing efficiency
and fairness. A popular approach to measure fairness of
scheduling is based on job Fair Start Times (FST), which
can be calculated, either by simulating a “fair” schedule,
or by simulating scheduling as if no later jobs arrived, or
both [21], [30], [33]. Such metrics require simulation of the
scheduling, which, may be computationally intensive (as in
case of JustBF) and may be tainted by the use of a “gold
standard” schedule [30]. The “gold standard” schedule must
be not only ideally fair but also very efficient since the metric
becomes zero for any schedule that improves start times of
all jobs over the “gold standard.” Comparing job start times
to FST obtained with the same schedule as if no later jobs
arrived may uncover interesting aspects of the schedule’s inner
consistency with fairness in strong “’social justice” sense. It is
somewhat “orthogonal” to packing efficiency, as in terms of
such a metric one schedule can be inferior to another even
if it improves the start time of every job. P*SF, in contrast,
combines fairness and packing efficiency into a single scalar
metric by assigning priorities to jobs, based not on “who came
first” but on “who waited longer.” P*SF also makes better
objective functions for optimization techniques.

Due to deficiency of suitable metrics to measure job pack-
ing and fairness and insufficient awareness of these aspects
of the scheduling quality, the majority of publications that
present techniques for improvement of job scheduling do
not consider any metrics beyond BSLD and AF. However,
as we show in Section V, improvements of BSLD and AF
are relatively easy to achieve with SJF-like scheduling but
likely are accompanied by degradation of packing efficiency
and fairness. Some publications introduce ad-hoc techniques
to evaluate fairness of scheduling, such as measuring Average
Slowdown separately for jobs of various percentile [32] or cat-
egorizing workload into classes (“long” and “short,” “narrow”
and “wide,” etc.) and calculating performance for the classes
separately [21], [34]. Results of such ad-hoc techniques are
hard to interpret and compare.

Our examples in Sections V and VI are basic demonstrations

10

of using the proposed metrics to evaluate improving of HPC
job scheduling. We do not consider all proposed sort orders,
including those designed to balance BSLD and fairness [32],
[35], and do not analyze relaxed backfill strategies [11],
heuristic-based optimization [36], and more advanced schedul-
ing optimization such as constraint programming schedul-
ing [37], genetic algorithms [38], and simulated annealing
technique [39]. We also do not evaluate all job runtime pre-
diction approaches, including neural networks model [40], k-
nearest neighbors method [41], two-stage approach involving
radial basis function/Bayesian classifier [42], and Predicting
Query Runtime Regression [43]. Comprehensive review and
rigorous evaluation of the state-of-the-art techniques are out-
side of the scope of this paper. Besides, many published
techniques are tuned solely to improve BSLD. It may be
unproductive to evaluate the techniques’ potential in their
present state, as they performance may improve if they are
tuned with the new metrics in mind.

An interesting research direction consists of improving clus-
ter utilization by stimulating users to submit more jobs [44]-
[47]. These activities reveal important findings that, depending
on the users’ behavior, reducing BSLD may lead to more
submitted jobs and thus higher cluster utilization. Although
these findings seem to undermine the need to improve job
packing efficiency and fairness, both approaches have their
place. Stimulating users to submit more jobs is important
when the cluster is underutilized while improving job packing
efficiency and fairness become crucial to retain users once the
cluster is popular.

The higher negative effect of job runtime underestimation
than of the overestimation that we report in Section VI, to the
best of our knowledge, has not been observed before. Such
phenomenon was suggested, but not confirmed by Galleguillos
et al. [37]. In the rest of the cases, the problem of runtime
underestimation is associated with premature cancellation of
jobs. Thus, Fan et al. [48] employed job run time predictions
using a Tobit model to reduce the underestimation because
in their simulations jobs were cancelled as soon as they

reached their estimated runtime. We, similar to Tsafrir et
al. [6] and others, do not cancel jobs until they reach their
requested timelimits. Therefore, the negative effect of the
underestimation we report is not related to premature job
cancellation.

VIII. CONCLUSIONS

Both metrics AWF and P®SFE neither penalize nor en-
courage any preferential scheduling based on job size. This
and other properties make AWF an accurate indicator of
job packing efficiency. The class of P*SF metrics measure
various degrees of balance between packing efficiency and
fairness of schedules.

Our proof-of-concept examples of evaluation of scheduling
(Sections V and VI) demonstrate that the proposed metrics
are highly advantageous for comparing alternative schedules
because they allow to evaluate trade-offs between improving
BSLD or AF on one hand and preserving job packing efficiency
and fairness on the other hand.

The value of BSLD attainable by standard backfilling al-
gorithms, such as JustBF, readily improves with relatively
straightforward modifications of the algorithms and can be
further improved with existing job runtime prediction tech-
niques. However, algorithms that improve BSLD have high risk
of degrading both job packing efficiency and fairness, the two
highly important aspects of job scheduling in HPC clusters.

On the other hand, AWF and P2SF are notoriously difficult
to improve with either modification of the scheduling algo-
rithm or with ordinary runtime estimates. It does not mean
that these metrics are not responsive; their values for SJF-like
schedules are significantly lower than for FCFS backfilling
schedules. Improving these metrics is difficult because JustBF
(our baseline algorithm) is already designed to attain good job
packing and high standard of fairness. Finding an algorithm
that improve over it is difficult. Using job runtime estimates
obtained with existing prediction techniques instead of user-
provided timelimits also cannot improve AWF and P“SF,
possibly due to low accuracy, as well as high frequency of
underprediction, which degrades the metrics stronger than
overprediction. Our custom-made predictor, which limits the
frequency of underpredictions, shows performance similar to
the scheduling with timelimit. Therefore, current prediction
techniques are not mature enough to be used in practice and
further development is needed with emphasis on accuracy and
proper balance between underprediction and overprediction.

For the reasons presented herein, we argue that AWF and
P*SF must be key components of HPC job scheduling
researchers’ toolbox. This metrics allow characterizing mul-
tiple aspects of scheduling quality during analysis. They are
also useful as targets for future algorithm development or as
prototypes of objective functions for optimization techniques.

ACKNOWLEDGMENT

The authors thank Benjamin Schwaller and Omar Aaziz
for their valuable discussions. The works at the University
of Central Florida were supported by contracts with Sandia

11

National Laboratories. The authors acknowledge the Univer-
sity of Central Florida Advanced Research Computing Center
for providing computational resources.

REFERENCES

[1] N. Ensmenger, “The Environmental History of Computing,” Technology
and Culture, vol. 59, no. 4, pp. S7-S33, 2018.

A. Verma, M. Korupolu, and J. Wilkes, “Evaluating job packing
in warehouse-scale computing,” in 20/4 IEEE Int. Conf. CLUSTER.
Madrid, Spain: IEEE, Sep. 2014, pp. 48-56.

R. C. Larson, “Perspectives on Queues: Social Justice and the Psychol-
ogy of Queueing,” Oper. Res., vol. 35, no. 6, pp. 895-905, 1987.

K. Pruhs, J. Sgall, and E. Torng, “Online scheduling,” in Handbook
of Scheduling: Algorithms, Models, and Performance Analysis. Boca
Raton, FL, USA: Chapman & Hall/CRC, 2004.

D. G. Feitelson and L. Rudolph, “Metrics and benchmarking for parallel
job scheduling,” in Job Scheduling Strategies for Parallel Processing,
ser. Lecture Notes in Computer Science, D. G. Feitelson and L. Rudolph,
Eds. Berlin, Heidelberg: Springer, 1998, pp. 1-24.

D. Tsafrir, Y. Etsion, and D. G. Feitelson, “Backfilling Using System-
Generated Predictions Rather than User Runtime Estimates,” IEEE
Trans. Parallel Distrib. Syst., vol. 18, no. 6, pp. 789-803, Jun. 2007.
E. Gaussier, D. Glesser, V. Reis, and D. Trystram, “Improving backfilling
by using machine learning to predict running times,” in SC ’15: Proc.
Int. Conf. High Perform. Comput., Netw., Storage and Anal. ~ Austin,
TX, USA: IEEE, Nov. 2015, pp. 1-10.

U. Schwiegeishohn and R. Yahyapour, “Improving first-come-first-serve
job scheduling by gang scheduling,” in Job Scheduling Strategies for
Parallel Processing, ser. Lecture Notes in Computer Science, D. G.
Feitelson and L. Rudolph, Eds. Berlin, Heidelberg: Springer, 1998,
pp- 180-198.

C. Ernemann, V. Hamscher, and R. Yahyapour, “Benefits of global grid
computing for job scheduling,” in 5th IEEE/ACM Int. Workshop on Grid
Comput. Pittsburgh, PA, USA: IEEE, Nov. 2004, pp. 374-379.

L. Becchetti, S. Leonardi, A. Marchetti-Spaccamela, and K. R. Pruhs,
“Online Weighted Flow Time and Deadline Scheduling,” in Approx-
imation, Randomization, and Combinatorial Optimization: Algorithms
and Techniques, ser. Lecture Notes in Computer Science, M. Goemans,
K. Jansen, J. D. P. Rolim, and L. Trevisan, Eds. Berlin, Heidelberg:
Springer, 2001, pp. 36-47.

W. A. Ward, C. L. Mahood, and J. E. West, “Scheduling Jobs on Parallel
Systems Using a Relaxed Backfill Strategy,” in Job Scheduling Strategies
for Parallel Processing, ser. Lecture Notes in Computer Science, D. G.
Feitelson, L. Rudolph, and U. Schwiegelshohn, Eds. Berlin, Heidelberg:
Springer, 2002, pp. 88-102.

J. Blazewicz, J. K. Lenstra, and A. H. G. R. Kan, “Scheduling subject
to resource constraints: Classification and complexity,” Discret. Appl.
Math., vol. 5, no. 1, pp. 11-24, Jan. 1983.

J. Krallmann, U. Schwiegelshohn, and R. Yahyapour, “On the Design
and Evaluation of Job Scheduling Algorithms,” in Job Scheduling
Strategies for Parallel Processing, ser. Lecture Notes in Computer
Science, D. G. Feitelson and L. Rudolph, Eds. Berlin, Heidelberg:
Springer, 1999, pp. 17-42.

M. R. Garey and R. L. Graham, “Bounds for Multiprocessor Scheduling
with Resource Constraints,” SIAM J. Comput., vol. 4, no. 2, pp. 187-200,
Jun. 1975.

K. Aida, H. Kasahara, and S. Narita, “Job scheduling scheme for
pure space sharing among rigid jobs,” in Job Scheduling Strategies for
Parallel Processing, ser. Lecture Notes in Computer Science, D. G.
Feitelson and L. Rudolph, Eds. Berlin, Heidelberg: Springer, 1998,
pp. 98-121.

D. A. Lifka, “The ANL/IBM SP scheduling system,” in Job Scheduling
Strategies for Parallel Processing, ser. Lecture Notes in Computer
Science, D. G. Feitelson and L. Rudolph, Eds. Berlin, Heidelberg:
Springer, 1995, pp. 295-303.

D. G. Feitelson, L. Rudolph, and U. Schwiegelshohn, “Parallel Job
Scheduling — A Status Report,” in Job Scheduling Strategies for
Parallel Processing, ser. Lecture Notes in Computer Science, D. G.
Feitelson, L. Rudolph, and U. Schwiegelshohn, Eds. Berlin, Heidelberg:
Springer, 2005, pp. 1-16.

[2]

[3]
[4]

[5

[ty

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

(31]

(32]

[33]

[34]

(35]

[36]

(371

D. Feitelson and A. Weil, “Utilization and predictability in scheduling
the IBM SP2 with backfilling,” in Proc. 1st Merged Int. Parallel Process.
Symp. and Symp. Parallel Distrib. Process. Orlando, FL, USA: IEEE,
Mar. 1998, pp. 542-546.

S. Srinivasan, R. Kettimuthu, V. Subramani, and P. Sadayappan, “Char-
acterization of backfilling strategies for parallel job scheduling,” in Pro-
ceedings. International Conference on Parallel Processing Workshop.
Vancouver, BC, Canada: IEEE, Aug. 2002, pp. 514-519.

E. Gaussier, J. Lelong, V. Reis, and D. Trystram, “Online Tuning
of EASY-Backfilling using Queue Reordering Policies,” IEEE Trans.
Parallel Distrib. Syst., vol. 29, no. 10, pp. 2304-2316, Oct. 2018.

S. Srinivasan, R. Kettimuthu, V. Subramani, and P. Sadayappan, “Se-
lective Reservation Strategies for Backfill Job Scheduling,” in Job
Scheduling Strategies for Parallel Processing, ser. Lecture Notes in
Computer Science, D. G. Feitelson, L. Rudolph, and U. Schwiegelshohn,
Eds. Berlin, Heidelberg: Springer, 2002, pp. 55-71.
B. W. Team, “Blue Waters
https://bluewaters.ncsa.illinois.edu/data-sets, 2022.

D. G. Feitelson, D. Tsafrir, and D. Krakov, “Experience with using
the Parallel Workloads Archive,” Journal of Parallel and Distributed
Computing, vol. 74, no. 10, pp. 2967-2982, Oct. 2014.

K. Lamar, A. Goponenko, C. Peterson, B. A. Allan, J. M. Brandt, and
D. Decheyv, “Backfilling HPC Jobs with a Multimodal-Aware Predictor,”
in 2021 IEEE Int. Conf. CLUSTER. Portland, OR, USA: IEEE, Sep.
2021, pp. 618-622.

R. Gibbons, “A historical application profiler for use by parallel sched-
ulers,” in Job Scheduling Strategies for Parallel Processing, ser. Lecture
Notes in Computer Science, D. G. Feitelson and L. Rudolph, Eds.
Berlin, Heidelberg: Springer, 1997, pp. 58-77.

'W. Smith, I. Foster, and V. Taylor, “Predicting application run times with
historical information,” Journal of Parallel and Distributed Computing,
vol. 64, no. 9, pp. 1007-1016, Sep. 2004.

B. Allan, “Two Weeks In The Life of Skybridge,” Tech. Rep. SAND-
2019-4915, 1762352, 675183, Apr. 2019.

E. L. Kaplan and P. Meier, “Nonparametric Estimation from Incomplete
Observations,” Journal of the American Statistical Association, vol. 53,
no. 282, pp. 457-481, Jun. 1958.

U. Schwiegelshohn and R. Yahyapour, “Analysis of first-come-first-serve
parallel job scheduling,” in Proc. 9th Annu. ACM-SIAM SODA. USA:
Society for Industrial and Applied Mathematics, Jan. 1998, pp. 629-638.
V. J. Leung, G. Sabin, and P. Sadayappan, “Parallel Job Scheduling
Policies to Improve Fairness: A Case Study,” in 39th Int. Conf. Parallel
Process. Workshops. San Diego, CA, USA: IEEE, Sep. 2010, pp. 346—
353.

R. Jain, D.-M. Chiu, and W. Hawe, “A Quantitative Measure Of Fair-
ness And Discrimination For Resource Allocation In Shared Computer
Systems,” Digital Equipment Corporation, Hudson, MA, USA, DEC
Research Report TR-301, Sep. 1984.

S.-H. Chiang, A. Arpaci-Dusseau, and M. K. Vernon, “The Impact
of More Accurate Requested Runtimes on Production Job Scheduling
Performance,” in Job Scheduling Strategies for Parallel Processing, ser.
Lecture Notes in Computer Science, D. G. Feitelson, L. Rudolph, and
U. Schwiegelshohn, Eds. Berlin, Heidelberg: Springer, 2002, pp. 103—
127.

G. Sabin and P. Sadayappan, “Unfairness Metrics for Space-Sharing
Parallel Job Schedulers,” in Job Scheduling Strategies for Parallel
Processing, ser. Lecture Notes in Computer Science, D. Feitelson,
E. Frachtenberg, L. Rudolph, and U. Schwiegelshohn, Eds. Berlin,
Heidelberg: Springer, 2005, pp. 238-256.

D. Perkovic and P. Keleher, “Randomization, Speculation, and Adap-
tation in Batch Schedulers,” in SC ’00: Proc. 2000 ACM/IEEE Conf.
Supercomputing. Dallas, TX, USA: IEEE, Nov. 2000, pp. 7-7.

W. Tang, Z. Lan, N. Desai, and D. Buettner, “Fault-aware, utility-based
job scheduling on Blue, Gene/P systems,” in 2009 IEEE Int. Conf. on
Cluster Comput. and Workshops. New Orleans, LA, USA: IEEE, Aug.
2009, pp. 1-10.

D. Talby and D. Feitelson, “Supporting priorities and improving utiliza-
tion of the IBM SP scheduler using slack-based backfilling,” in Proc.
13th IPPS and 10th SPDP. San Juan, PR, USA: IEEE, Apr. 1999, pp.
513-517.

C. Galleguillos, A. Sirbu, Z. Kiziltan, O. Babaoglu, A. Borghesi, and
T. Bridi, “Data-Driven Job Dispatching in HPC Systems,” in Machine
Learning, Optimization, and Big Data, ser. Lecture Notes in Computer

User Portal,”

12

(38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

Science, G. Nicosia, P. Pardalos, G. Giuffrida, and R. Umeton, Eds.
Cham: Springer, 2018, pp. 449-461.

A. Agarwal, S. Colak, and S. Erenguc, “A Neurogenetic approach for the
resource-constrained project scheduling problem,” Comput. Oper. Res.,
vol. 38, no. 1, pp. 44-50, Jan. 2011.

X. Zheng, Z. Zhou, X. Yang, Z. Lan, and J. Wang, “Exploring Plan-
Based Scheduling for Large-Scale Computing Systems,” in 2016 IEEE
Int. Conf. CLUSTER. Taipei, Taiwan: IEEE, Sep. 2016, pp. 259-268.
M. R. Wyatt, S. Herbein, T. Gamblin, A. Moody, D. H. Ahn, and
M. Taufer, “PRIONN: Predicting Runtime and IO using Neural Net-
works,” in Proc. 47th Int. Conf. ICPP. Eugene, OR, USA: Association
for Computing Machinery, Aug. 2018, pp. 1-12.

T. H. Le Hai, L. La Hoang, and N. Thoai, “Potential of Applying kNN
with Soft Walltime to Improve Scheduling Performance,” in 2021 IEEE
Int. Conf. ICCMA. Brest, France: IEEE, Jul. 2021, pp. 1-8.

Q. Wang, J. Li, S. Wang, and G. Wu, “A Novel Two-Step Job Runtime
Estimation Method Based on Input Parameters in HPC System,” in 2079
IEEE 4th Int. Conf. ICCCBDA. Chengdu, China: IEEE, Apr. 2019, pp.
311-316.

A. Matsunaga and J. A. Fortes, “On the Use of Machine Learning to
Predict the Time and Resources Consumed by Applications,” in 2010
10th IEEE/ACM International Conference on Cluster, Cloud and Grid
Computing. Melbourne, VIC, Australia: IEEE, May 2010, pp. 495-504.
D. G. Feitelson, “Resampling with Feedback: A New Paradigm of
Using Workload Data for Performance Evaluation,” in Job Scheduling
Strategies for Parallel Processing, ser. Lecture Notes in Computer
Science, D. Klusidcek, W. Cirne, and G. P. Rodrigo, Eds. Cham:
Springer, 2021, pp. 3-32.

J. P. Jones and B. Nitzberg, “Scheduling for Parallel Supercomputing:
A Historical Perspective of Achievable Utilization,” in Job Scheduling
Strategies for Parallel Processing, ser. Lecture Notes in Computer
Science, D. G. Feitelson and L. Rudolph, Eds. Berlin, Heidelberg:
Springer, 1999, pp. 1-16.

E. Shmueli and D. G. Feitelson, “On Simulation and Design of Parallel-
Systems Schedulers: Are We Doing the Right Thing?” IEEE Trans.
Parallel Distrib. Syst., vol. 20, no. 7, pp. 983-996, Jul. 2009.

N. Zakay and D. G. Feitelson, “Semi-Open Trace Based Simulation for
Reliable Evaluation of Job Throughput and User Productivity,” in 2015
IEEE 7th Int. Conf. CloudCom, Nov. 2015, pp. 413-421.

Y. Fan, P. Rich, W. E. Allcock, M. E. Papka, and Z. Lan, “Trade-Off
Between Prediction Accuracy and Underestimation Rate in Job Runtime
Estimates,” in 2017 IEEE Int. Conf. CLUSTER. Honolulu, HI, USA:
IEEE, Sep. 2017, pp. 530-540.

