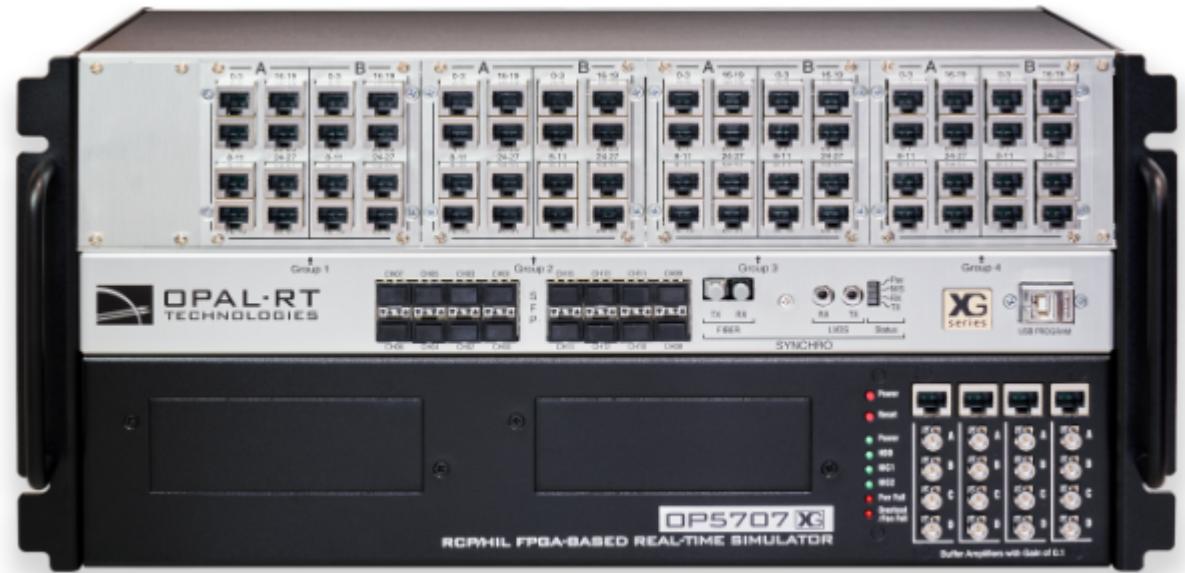


ENERGIZING
TOMORROW


Streamlined Real-Time Model Development for the OPAL-RT Platform Using SwAGSM

Presenter: Ronald Matthews
R&D S&E Electrical Engineer
Contributors: Lee Rashkin, David Wilson, and Steven Glover
Sandia National Laboratories

INTRODUCTION: REAL-TIME MODELING

2

- Real-time modeling allows for an engineer to test controllers and interact with a system as it would operate in the real world.
- Additionally, models which run rather slowly may be easily parallelized on the OPAL-RT platform to allow for faster computation time for more complex systems.

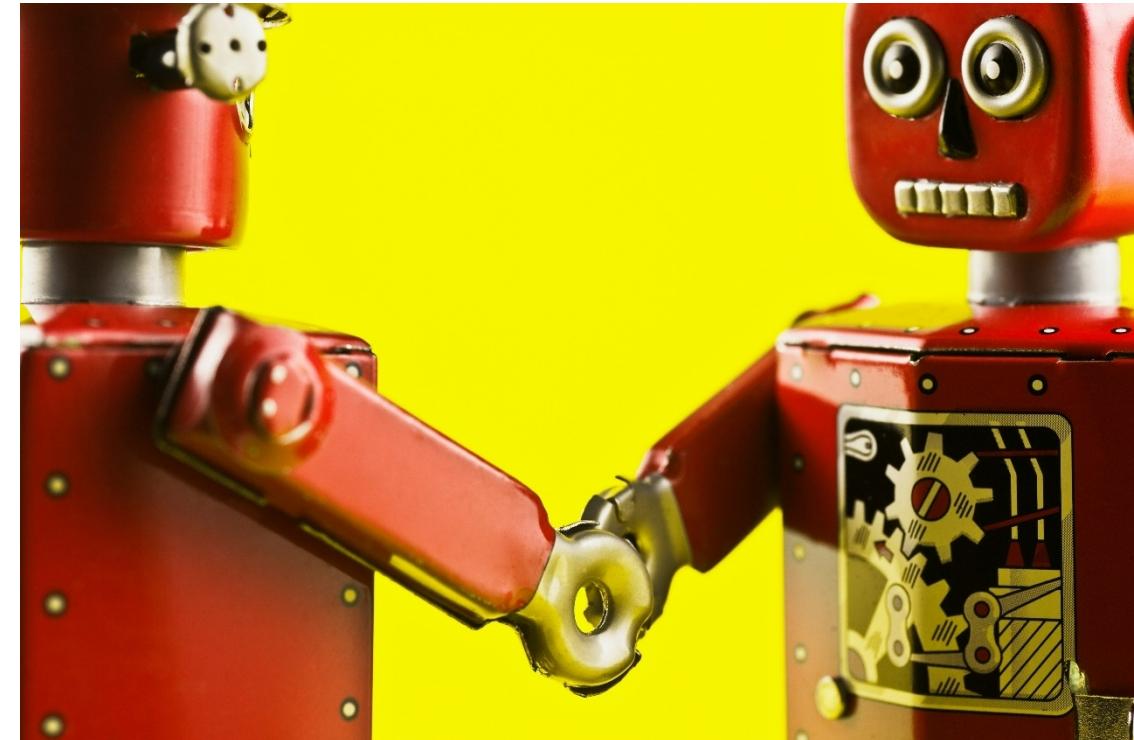
COMPLICATIONS TO REAL-TIME MODEL DEVELOPMENT

3

Development Time

- Developing OPAL-RT Models involves manually developing Simulink Models
 - Potential for human error during development process
- For large models, Simulink's drag-and-drop interface can be time consuming to utilize.
- Models which run offline may not be immediately compatible with the OPAL-RT platform

All of these can result in additional time spent manually developing and debugging models to run on the OPAL-RT platform.

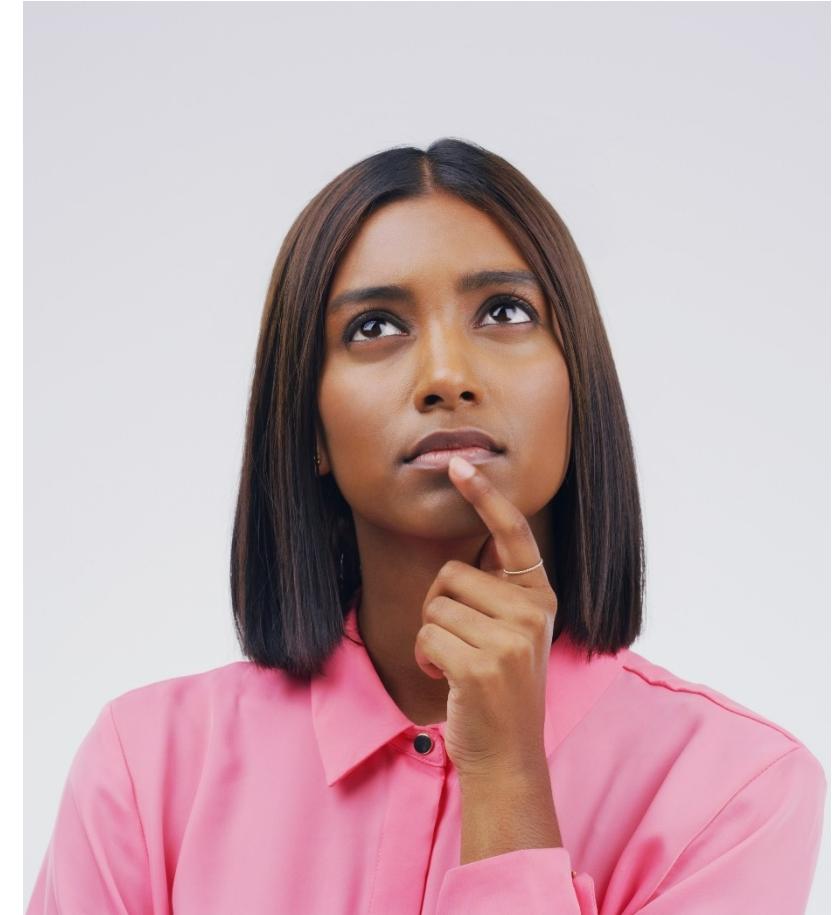

COMPLICATIONS TO REAL-TIME MODEL DEVELOPMENT

4

Collaboration

- Partners may not have the same number of cores available.
 - Tune all models to operate for whoever has the lowest number of cores available
 - Manually create multiple version of the same model based on the number of cores available to each collaborator

Neither of these choices is optimal. The first option is a waste of resources and the second option is a waste of labor efforts.



PROPOSED SOLUTION: MODEL AUTOMATION

5

- Skip the drag-and-drop interface
- Skip the Debugging
- Develop models independent of core availability
- Guarantee model is OPAL-RT ready from the start

But How?

SOFTWARE FOR AUTOMATIC GENERATION OF SIMULINK MODELS

6

Proposed Tool: SwAGSM (Software for Automatic Generation of Simulink Models)

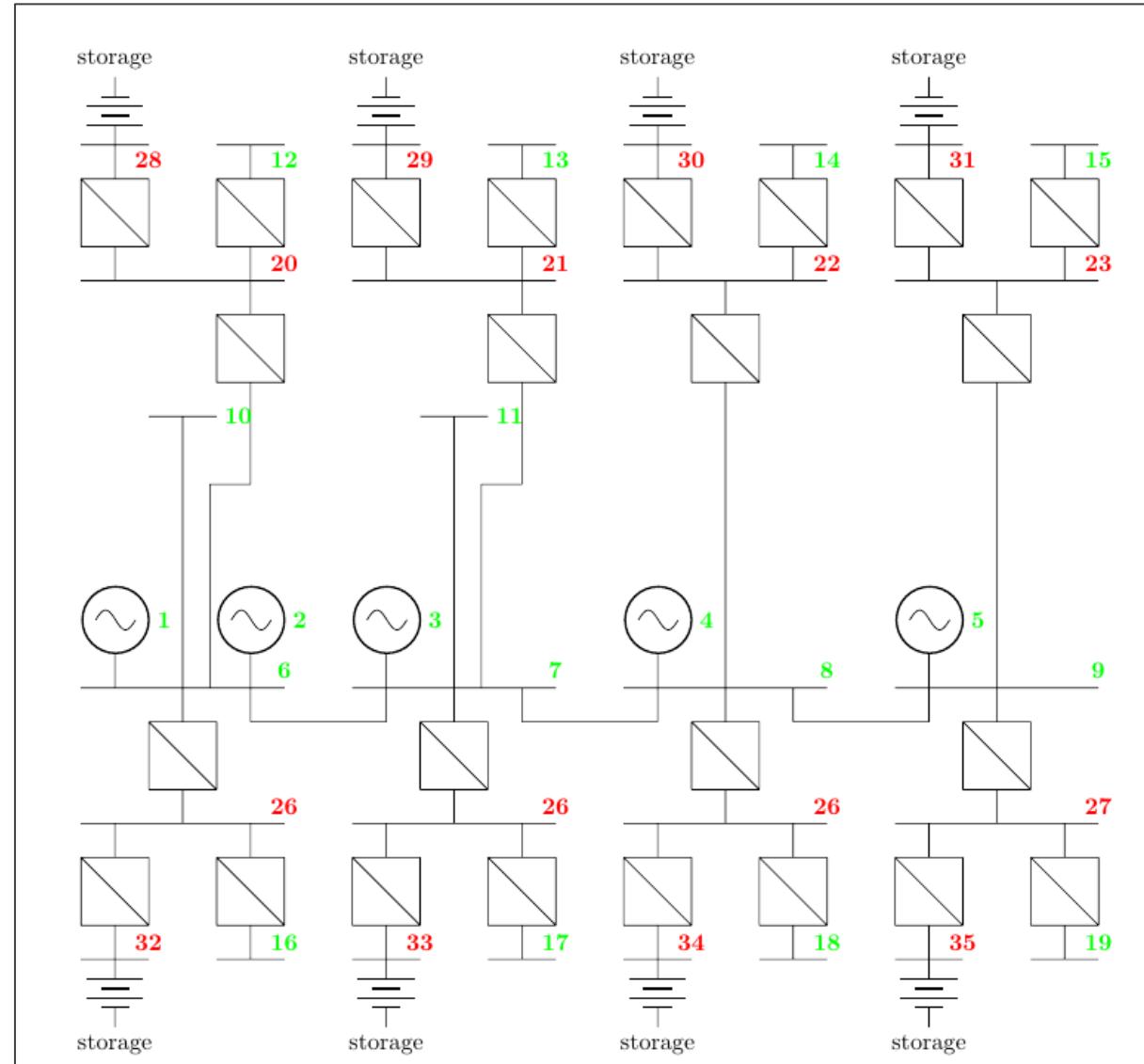
- Requires minimal knowledge of MATLAB/Simulink
- Does not require use of drag-and-drop interface to create OPAL-RT models
- Automatically generated models from Excel Spreadsheets
- Allows for the model core count to be adjusted on-the-fly
 - Simply edit a few values in a spreadsheet.
- No debugging required
- Models automatically formatted to immediately load to OPAL-RT platform.

SOFTWARE FOR AUTOMATIC GENERATION OF SIMULINK MODELS

- SwAGSM is currently being utilized at Sandia National Laboratories to aid in the development of electric ship models for NSWC
- In the remainder of this presentation, examples utilized will be those relevant to the electric ship modeling efforts currently in progress.

Image courtesy of Naval Sea System Command (NAVSEA).
<https://www.navsea.navy.mil/Home/Team-Ships/PEO-Ships/DDG-51/>

HOW DOES SWAGSM WORK?


8

- There is no model initially
- Library components are called by MATLAB script
 - System parameters fully defined in Excel Spreadsheet
- The steps as follows
 1. Edit and save spreadsheet
 2. Run script
 1. A new blank Simulink model is automatically opened and populated with requested components
 3. Save model and load to OPAL-RT as normal

EXAMPLE

Consider the generic shipboard network to the right

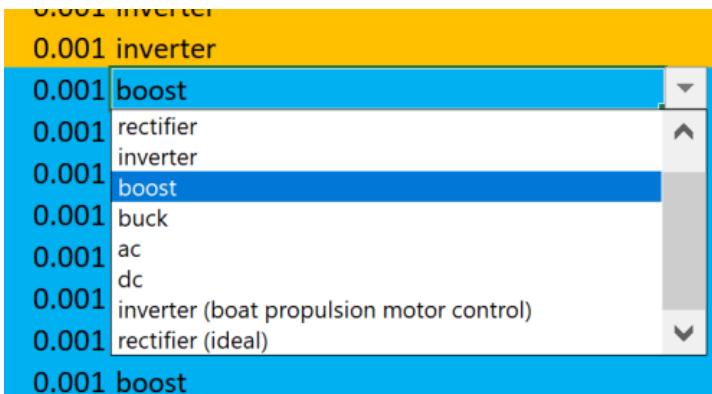
- The parameters are defined on the preceding slides as
- 3-phase AC buses are labeled in green
- DC buses are labeled in red

BUS PARAMETERS

Available Options:

- 3-phase ac generator
- PV-array
- Battery
- Capacitor

Core defined in Col A


O	P
type	delmin
3-phase ac generator	
1-phase ac generator	
3-phase ac generator	
pv array	
battery	
capacitor	
capacitor (IM)	

A	B	C	D	E	F	G	H	I	J	K	L	M	N	O
1	core	bus	ac or dc	C(uF)	active (W)	reactive (VAr)	Vbase	Vmin	Vmax	Pmin	Pmax	Qmin	Qmax	objective
2	1	1	ac		0	0	0	3983.717	3784.531	4182.903	0	50000000	-50000000	50000000 0.01*P^2+1.0*Q^2 3-phase ac generat
3	2	2	ac		0	0	0	3983.717	3784.531	4182.903	0	50000000	-50000000	50000000 0.01*P^2+1.0*Q^2 3-phase ac generat
4	1	3	ac		0	0	0	3983.717	3784.531	4182.903	0	10000000	-10000000	10000000 0.01*P^2+1.0*Q^2 3-phase ac generat
5	2	4	ac		0	0	0	3983.717	3784.531	4182.903	0	10000000	-10000000	10000000 0.01*P^2+1.0*Q^2 3-phase ac generat
6	1	5	ac		0	0	0	3983.717	3784.531	4182.903	0	10000000	-10000000	10000000 0.01*P^2+1.0*Q^2 3-phase ac generat
7	2	6	ac	2000	1000000		0	3983.717	3784.531	4182.903	0	0	0	0
8	1	7	ac	2000	1000000		0	3983.717	3784.531	4182.903	0	0	0	0
9	2	8	ac	2000	1000000		0	3983.717	3784.531	4182.903	0	0	0	0
10	1	9	ac	2000	1000000		0	3983.717	3784.531	4182.903	0	0	0	0
11	2	10	ac	1000	18000000		0	3983.717	3784.531	4182.903	0	0	0	0
12	1	11	ac	1000	18000000		0	3983.717	3784.531	4182.903	0	0	0	0
13	2	12	ac	1000	1000000		0	3983.717	3784.531	4182.903	0	0	0	0
14	1	13	ac	1000	1000000		0	3983.717	3784.531	4182.903	0	0	0	0
15	2	14	ac	1000	1000000		0	3983.717	3784.531	4182.903	0	0	0	0
16	1	15	ac	1000	1000000		0	3983.717	3784.531	4182.903	0	0	0	0
17	2	16	ac	1000	1000000		0	3983.717	3784.531	4182.903	0	0	0	0
18	1	17	ac	1000	1000000		0	3983.717	3784.531	4182.903	0	0	0	0
19	2	18	ac	1000	1000000		0	3983.717	3784.531	4182.903	0	0	0	0
20	1	19	ac	1000	1000000		0	3983.717	3784.531	4182.903	0	0	0	0
21	2	20	dc	16000	1000000		0	12000	11400	12600	0	0	0	0
22	1	21	dc	16000	1000000		0	12000	11400	12600	0	0	0	0
23	2	22	dc	16000	1000000		0	12000	11400	12600	0	0	0	0
24	1	23	dc	16000	1000000		0	12000	11400	12600	0	0	0	0
25	2	24	dc	16000	1000000		0	12000	11400	12600	0	0	0	0
26	1	25	dc	16000	1000000		0	12000	11400	12600	0	0	0	0
27	2	26	dc	16000	1000000		0	12000	11400	12600	0	0	0	0
28	1	27	dc	16000	1000000		0	12000	11400	12600	0	0	0	0
29	2	28	dc	0	0	0	0	3297	3297	3297	-10000000	10000000	0	0 1*P^2
30	1	29	dc	0	0	0	0	3297	3297	3297	-10000000	10000000	0	0 1*P^2
31	2	30	dc	0	0	0	0	3297	3297	3297	-10000000	10000000	0	0 1*P^2
32	1	31	dc	0	0	0	0	3297	3297	3297	-10000000	10000000	0	0 1*P^2
33	2	32	dc	0	0	0	0	3297	3297	3297	-10000000	10000000	0	0 1*P^2
34	1	33	dc	0	0	0	0	3297	3297	3297	-10000000	10000000	0	0 1*P^2
35	2	34	dc	0	0	0	0	3297	3297	3297	-10000000	10000000	0	0 1*P^2
36	1	35	dc	0	0	0	0	3297	3297	3297	-10000000	10000000	0	0 1*P^2

LINE PARAMETERS

Available Options:

- AC lines
- DC lines
- Buck Converters
- Boost Converters
- 3-phase inverters
- 3-phase rectifiers

A	B	C	D	E	F	G	H	I	J	
1	line no.	from	to	R(ohms)	L(H)	type	ac/dc #	dc/dc #	kp	ki
2	1	1	6	0.1	0.0001	ac			0	0
3	2	2	6	0.1	0.0001	ac			0	0
4	3	3	7	0.1	0.0001	ac			0	0
5	4	4	8	0.1	0.0001	ac			0	0
6	5	5	9	0.1	0.0001	ac			0	0
7	6	6	7	0.1	0.0001	ac			0	0
8	7	7	8	0.1	0.0001	ac			0	0
9	8	8	9	0.1	0.0001	ac			0	0
10	9	6	10	0.1	0.0001	ac			0	0
11	10	8	11	0.1	0.0001	ac			0	0
12	11	6	20	0.01	0.001	rectifier	1		0	0
13	12	7	21	0.01	0.001	rectifier	2		0	0
14	13	8	22	0.01	0.001	rectifier	3		0	0
15	14	9	23	0.01	0.001	rectifier	4		0	0
16	15	6	24	0.01	0.001	rectifier	5		0	0
17	16	7	25	0.01	0.001	rectifier	6		0	0
18	17	8	26	0.01	0.001	rectifier	7		0	0
19	18	9	27	0.01	0.001	rectifier	8		0	0
20	19	20	12	0.01	0.001	inverter	9		0	0
21	20	21	13	0.01	0.001	inverter	10		0	0
22	21	22	14	0.01	0.001	inverter	11		0	0
23	22	23	15	0.01	0.001	inverter	12		0	0
24	23	24	16	0.01	0.001	inverter	13		0	0
25	24	25	17	0.01	0.001	inverter	14		0	0
26	25	26	18	0.01	0.001	inverter	15		0	0
27	26	27	19	0.01	0.001	inverter	16		0	0
28	27	28	20	0.01	0.001	boost	1		0	0
29	28	29	21	0.01	0.001	boost	2		0	0
30	29	30	22	0.01	0.001	boost	3		0	0
31	30	31	23	0.01	0.001	boost	4		0	0
32	31	32	24	0.01	0.001	boost	5		0	0
33	32	33	25	0.01	0.001	boost	6		0	0
34	33	34	26	0.01	0.001	boost	7		0	0
35	34	35	27	0.01	0.001	boost	8		0	0

Model Parameters | Bus Data | **Line Connections** | Diesel Gen

COMPONENT PARAMETERS

12

	A	B	C	D	E	F
1	bus	type	Vnom(V)	Ah rating	effic. (%)	SOC(0)
2	28	Li-Ion	3000	300000	99.5	0.8
3	29	Li-Ion	3000	300000	99.5	0.8
4	30	Li-Ion	3000	300000	99.5	0.8
5	31	Li-Ion	3000	300000	99.5	0.8
6	32	Li-Ion	3000	300000	99.5	0.8
7	33	Li-Ion	3000	300000	99.5	0.8
8	34	Li-Ion	3000	300000	99.5	0.8
9	35	Li-Ion	3000	300000	99.5	0.8
10		Lead-Acid				
11		Li-Ion				
12		NiCd				
		NiMH				

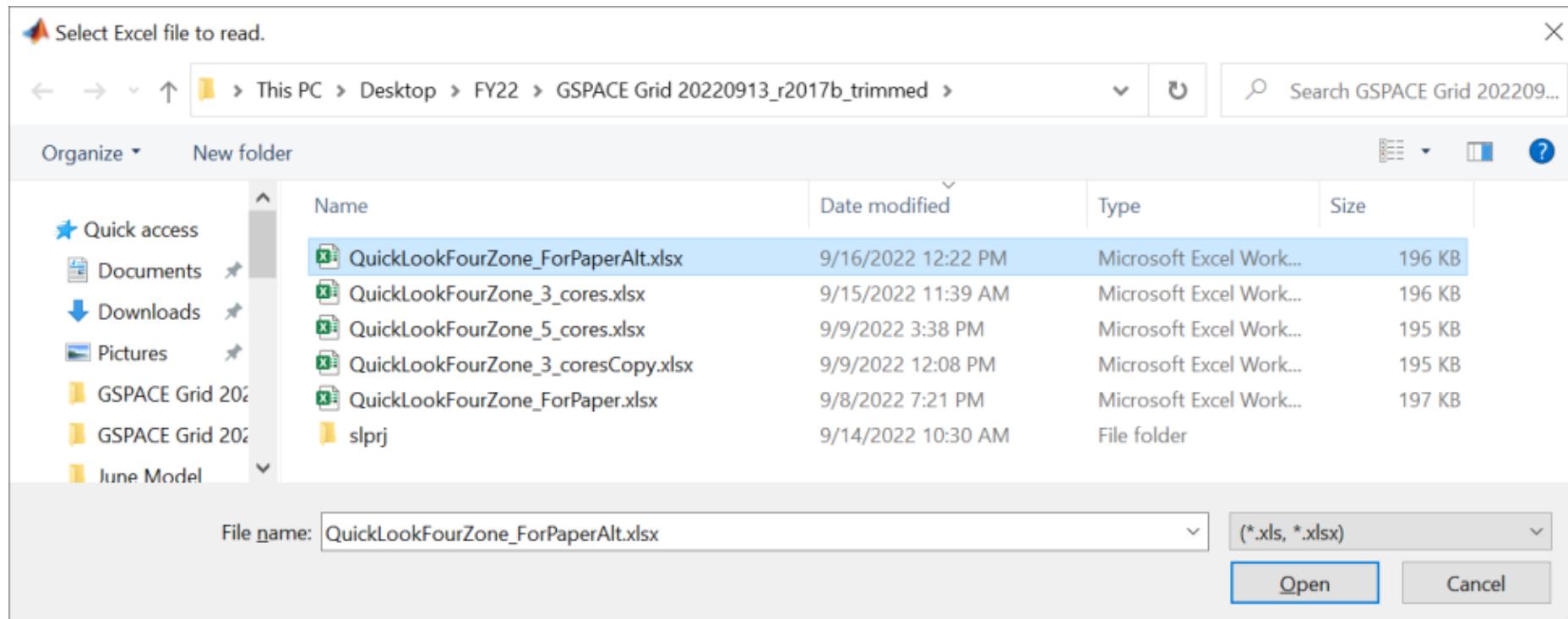
- Component parameters defined by sheets of spreadsheet
- Automatically placed based on core locations defined in “Bus Parameters” sheet

A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	
1	ac bus	P(poles)	J	Bm(Nm.s)	Rs(ohms)	K	T1	T2	T3	T4	T5	T6	Tmin	Tmax	Td	Pm0	rated kW	kDelta
2	1	4	256.38	0.1	0.087	1	0.01	0.02	0.2	0.25	0.009	0.0384	-0.1	1.1	0.024	0.25	150000	-0.1
3	2	4	256.38	0.1	0.087	1	0.01	0.02	0.2	0.25	0.009	0.0384	-0.1	1.1	0.024	0.25	150000	-0.1
4	3	4	256.38	0.1	0.087	1	0.01	0.02	0.2	0.25	0.009	0.0384	-0.1	1.1	0.024	0.25	150000	-0.1
5	4	4	256.38	0.1	0.087	1	0.01	0.02	0.2	0.25	0.009	0.0384	-0.1	1.1	0.024	0.25	150000	-0.1
6	5	4	256.38	0.1	0.087	1	0.01	0.02	0.2	0.25	0.009	0.0384	-0.1	1.1	0.024	0.25	150000	-0.1

LOAD DEFINITIONS

13

time(s)	B	C	D	E	F	G	H	I	J
bus	1	2	3	4	5	6	7	8	9
1	0	29.99	30	59.99	60	89.99	90	119.99	120
2	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0
6	1000	1000	1000	1000	1000	1000	1000	1000	1000
7	1000	1000	1000	1000	1000	1000	1000	1000	1000
8	1000	1000	1000	1000	1000	1000	1000	1000	1000
9	1000	1000	1000	1000	1000	1000	1000	1000	1000
10	1000	1000	1000	1000	1000	1000	1000	1000	1000
11	18000	18000	18000	18000	18000	18000	18000	18000	18000
12	18000	18000	18000	18000	18000	18000	18000	18000	18000
13	1000	1000	1000	1000	1000	1000	1000	1000	1000
14	1000	1000	1000	1000	1000	1000	1000	1000	1000
15	1000	1000	1000	1000	1000	1000	1000	1000	1000
16	1000	1000	1000	1000	1000	1000	1000	1000	1000
17	1000	1000	1000	1000	1000	1000	1000	1000	1000
18	1000	1000	1000	1000	1000	1000	1000	1000	1000
19	1000	1000	1000	1000	1000	1000	1000	1000	1000
20	1000	1000	1000	1000	1000	1000	1000	1000	1000


time(s)	B	C	D	E	F	G	H	I	J
bus	1	2	3	4	5	6	7	8	9
1	0	29.99	30	59.99	60	89.99	90	119.99	120
2	1	0	0	0	0	0	0	0	0
3	2	0	0	0	0	0	0	0	0
4	3	0	0	0	0	0	0	0	0
5	4	0	0	0	0	0	0	0	0
6	5	0	0	0	0	0	0	0	0
7	6	0	0	0	0	0	0	0	0
8	7	0	0	0	0	0	0	0	0
9	8	0	0	0	0	0	0	0	0
10	9	0	0	0	0	0	0	0	0
11	10	0	0	0	0	0	0	0	0
12	11	0	0	0	0	0	0	0	0
13	12	0	0	0	0	0	0	0	0
14	13	0	0	0	0	0	0	0	0
15	14	0	0	0	0	0	0	0	0
16	15	0	0	0	0	0	0	0	0
17	16	0	0	0	0	0	0	0	0
18	17	0	0	0	0	0	0	0	0
19	18	0	0	0	0	0	0	0	0
20	19	0	0	0	0	0	0	0	0

time(s)	B	C	D	E	F	G	H
bus	1	2	3	4	5	6	7
1	0	60	120	180	240	285	300
2	20	1000	1000	1000	1000	1000	1000
3	21	1000	1000	1000	1000	1000	1000
4	22	1000	1000	1000	1000	1000	1000
5	23	1000	1000	1000	1000	1000	1000
6	24	1000	1000	1000	1000	1000	1000
7	25	1000	1000	1000	1000	1000	1000
8	26	1000	1000	1000	1000	1000	1000
9	27	1000	1000	1000	1000	1000	1000
10	28	1000	1000	1000	1000	1000	1000
11	29	0	0	0	0	0	0
12	30	0	0	0	0	0	0
13	31	0	0	0	0	0	0
14	32	0	0	0	0	0	0
15	33	0	0	0	0	0	0
16	34	0	0	0	0	0	0
17	35	0	0	0	0	0	0

GENERATING THE MODEL

Once Spreadsheet edits are saved

- Run script currently called 'main.m' to generate the model
- Choose the desired excel file

OPTIMAL POWER FLOW (OPF) RESULT DISPLAYED

15

Once file is chosen

- File read time is tracked
- AC/DC Optimal power flow is computed
- OPF results is used to initialize model state variables
- After OPF completes, new Simulink model is automatically opened and populated

acBus	VacLN	delDeg
1	3988	0
2	3988	-1.8447e-13
3	3914.4	0.66615
4	3872.5	0.28609
5	3877.3	1.0019
6	3921.9	-0.35788
7	3871.8	0.43243
8	3829.4	0.047519
9	3834.2	0.76358
10	3896.3	-2.9287
11	3800.5	-2.5423
12	3845.1	-2.8045
13	3862.7	-2.8017
14	3859.9	-2.8007
15	3865.8	-2.7989
16	3845.1	-2.8045
17	3862.7	-2.8017
18	3859.9	-2.8007
19	3865.8	-2.7989

OPTIMAL POWER FLOW RESULT DISPLAYED

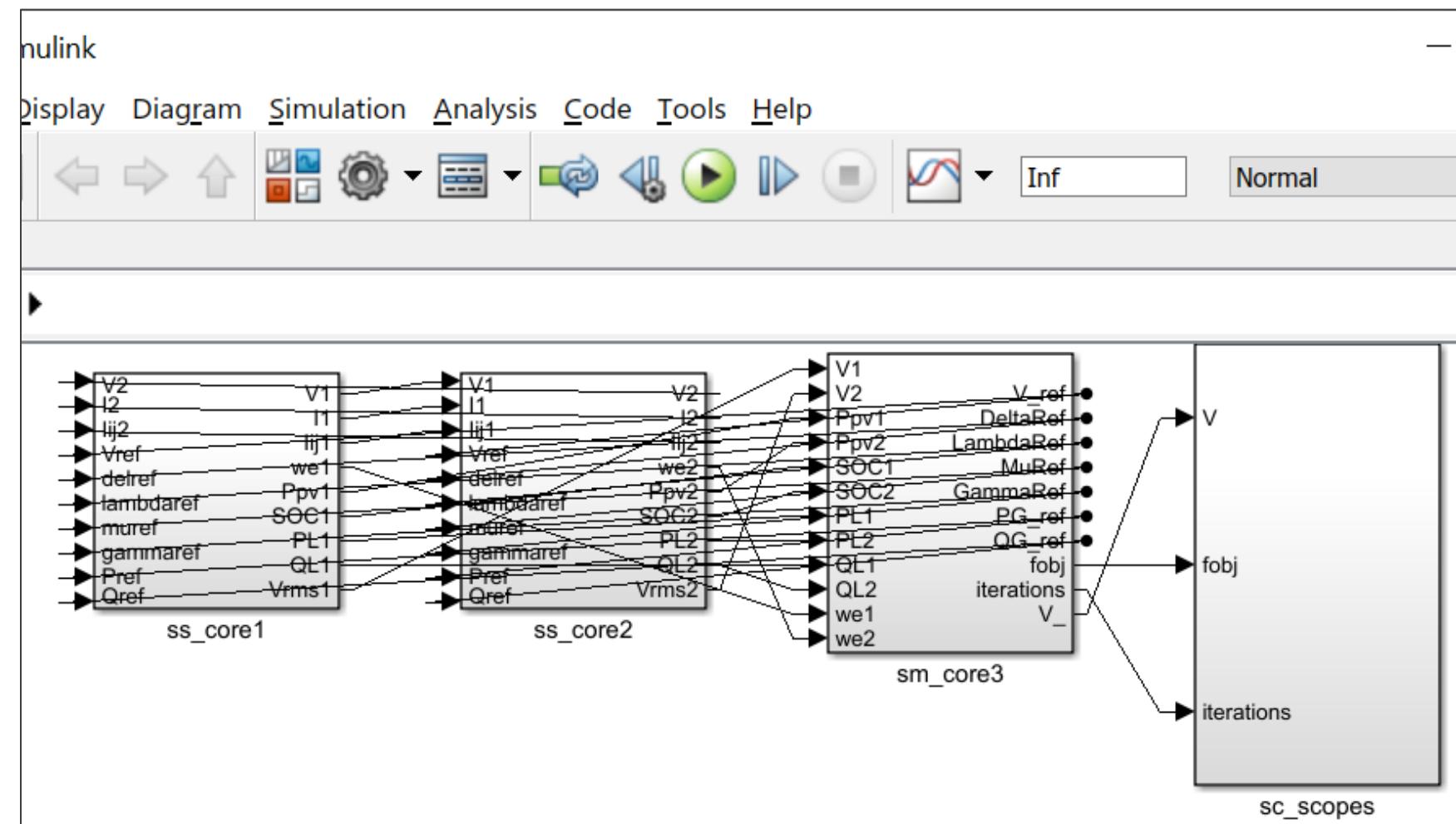
dcBus	Vdc
20	12460
21	12603
22	12565
23	12604
24	12460
25	12603
26	12565
27	12604
28	3297
29	3297
30	3297
31	3297
32	3297
33	3297
34	3297
35	3297

acdcConvNo	dutyMag	dutyAngDeg
1	0.25789	-0.61599
2	0.25265	0.13673
3	0.24781	-0.25811
4	0.25487	0.44002
5	0.25789	-0.61599
6	0.25265	0.13673
7	0.24781	-0.25811
8	0.25487	0.44002
9	0.26478	-2.269
10	0.26298	-2.2687
11	0.26358	-2.2674
12	0.26315	-2.2664
13	0.26478	-2.269
14	0.26298	-2.2687
15	0.26358	-2.2674
16	0.26315	-2.2664

dcdcConvNo	mu
1	0.26454
2	0.26156
3	0.26235
4	0.26153
5	0.26454
6	0.26156
7	0.26235
8	0.26153

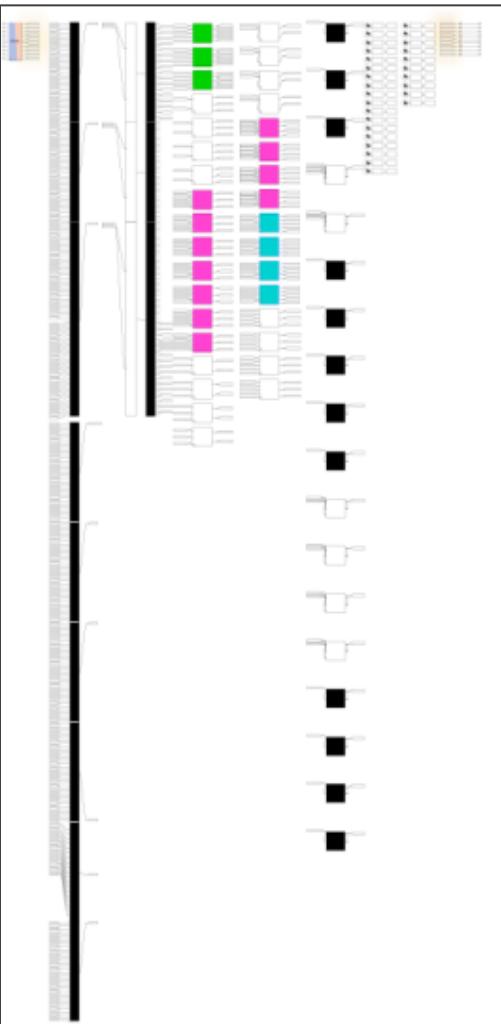
bus_no	MWgen	MVARgen	charging
1	15.793	0	false
2	15.793	0	false
3	10.009	0	false
4	10	0	false
5	10	0	false
28	0.25818	0	false
29	0.19181	0	false
30	0.17561	0	false
31	0.17631	0	false
32	0.25818	0	false
33	0.19181	0	false
34	0.17561	0	false
35	0.17631	0	false

0.071991 per-unit loss (Pgen - Pload)
 11.3912 % loss
 3.847s to solve.
 41 iterations.
 f=0.000835

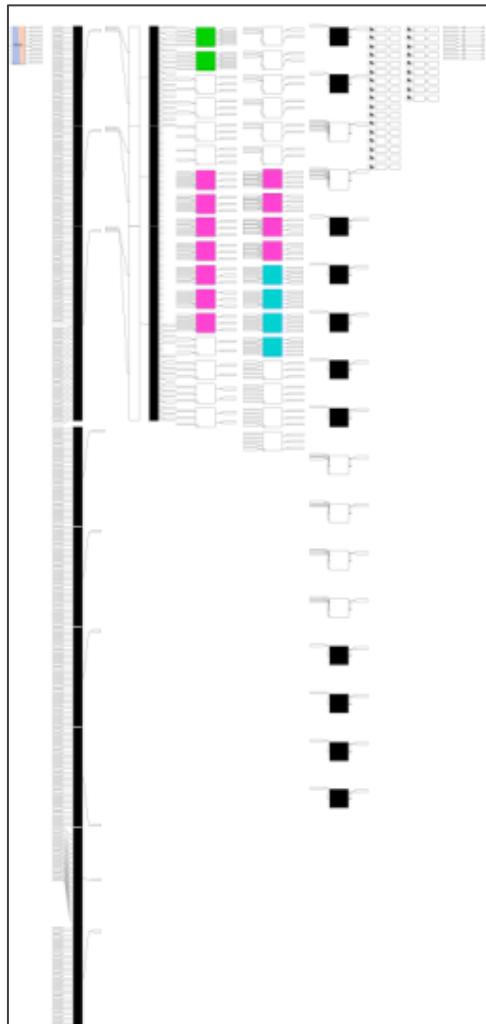

AC/DC converter duty cycles are displayed as phasor quantities

OPAL-RT MODEL AUTOMATICALLY GENERATED

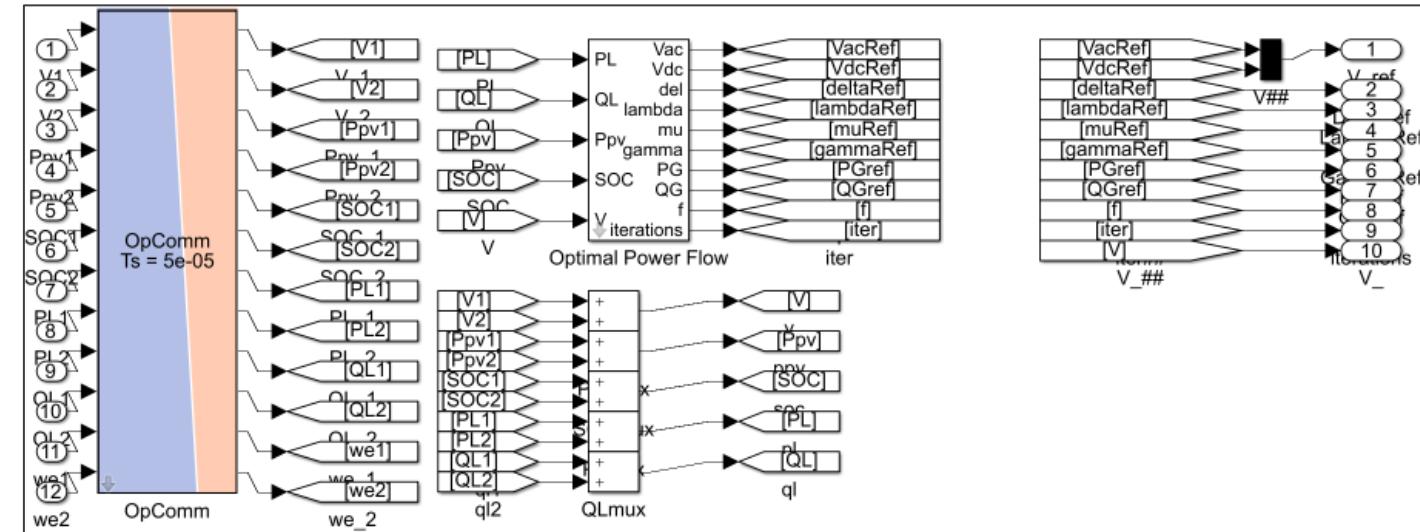
17


Automatically split
across the
specified number
of cores

- 1-2 are plant cores
- 3 is the OPF core
 - Periodic OPF computation



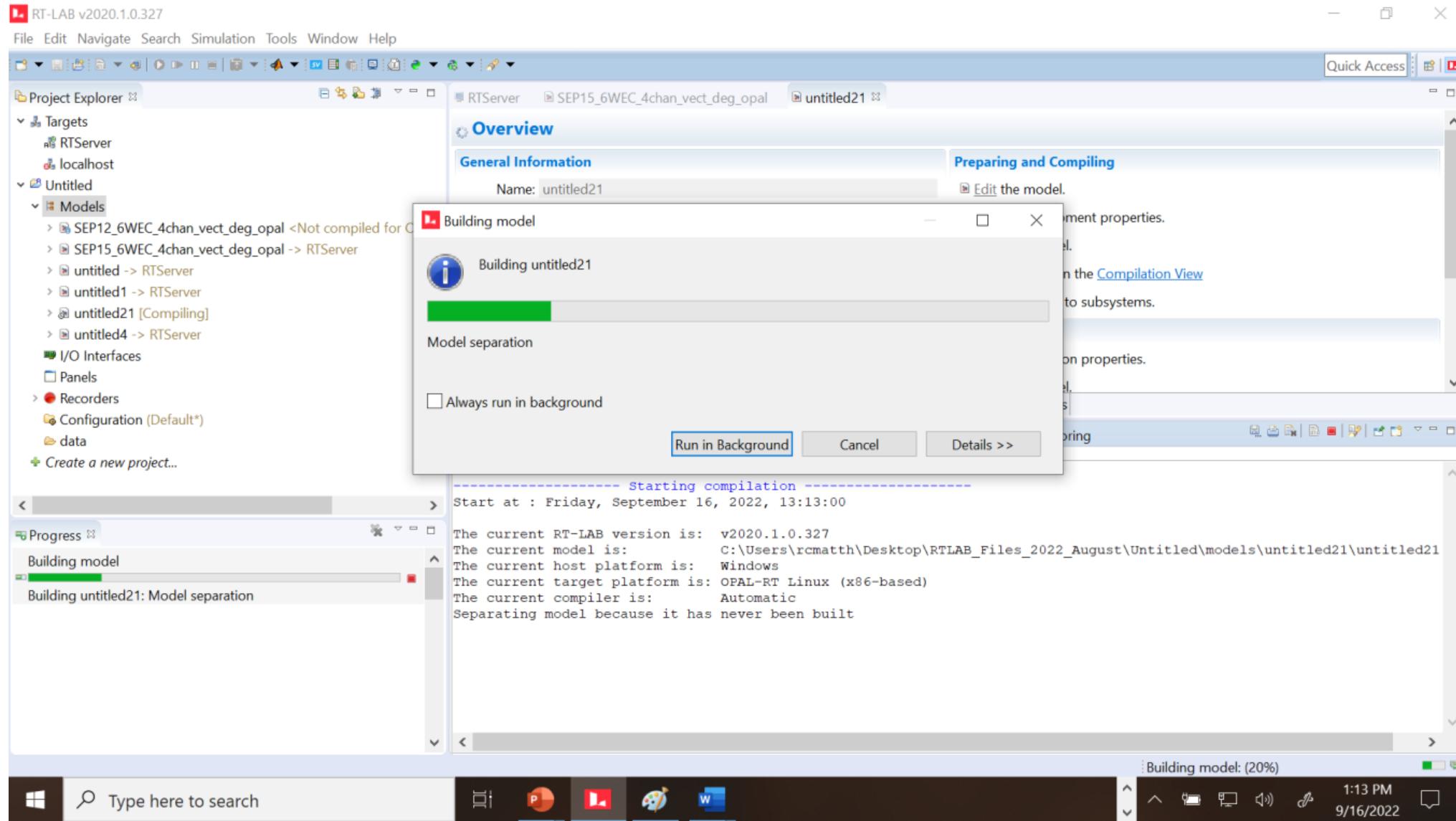
UNDER THE HOOD


ss_core1

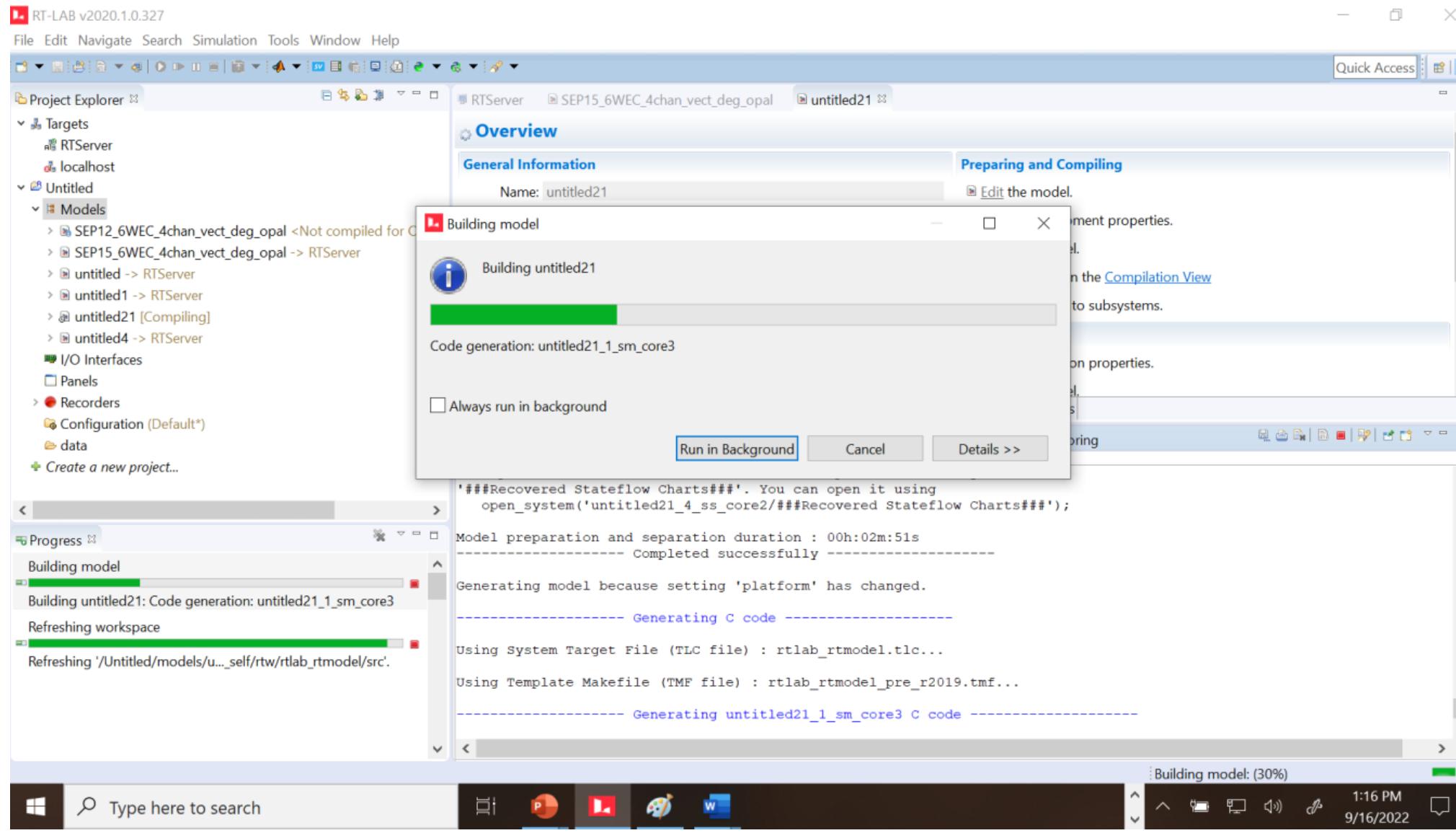

ss_core2

sm_core3

SC_scope

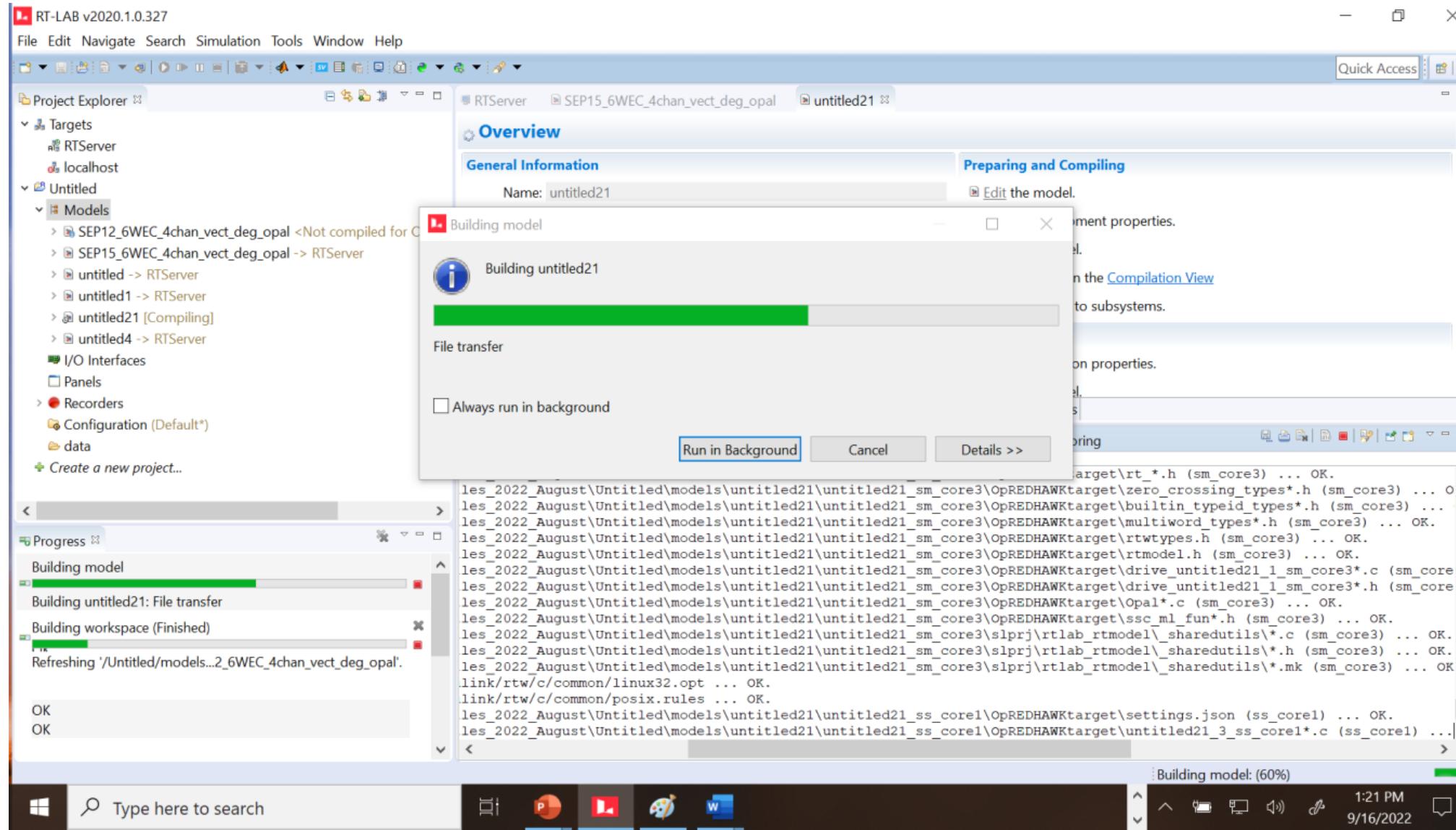


- Hundreds of Simulink blocks are automatically places throughout the model
- OPAL-RT OpComm blocks are automatically placed

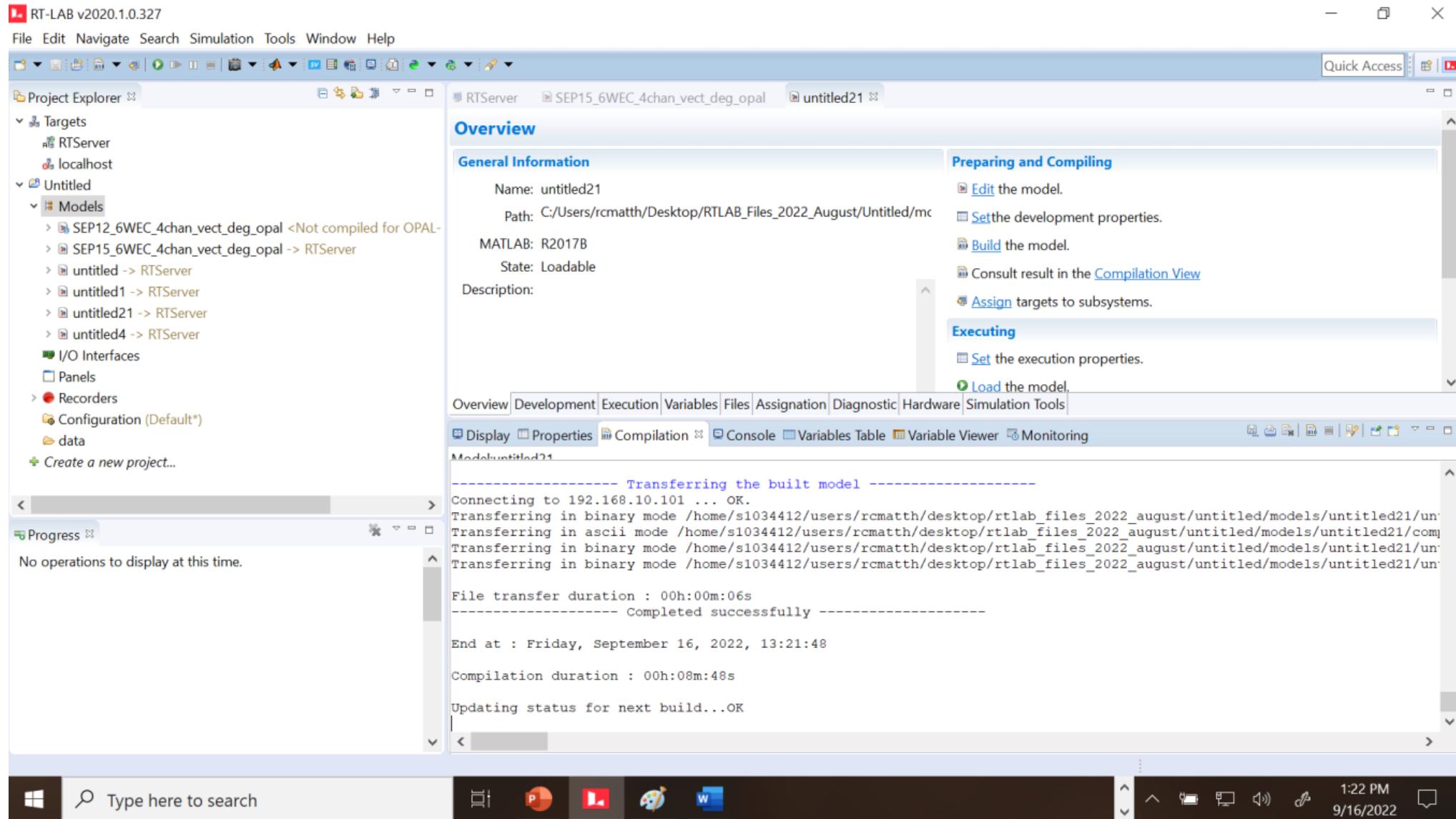

- Simply save model and load to OPAL-RT as normal
- **'IGNORE CRITICAL WARNINGS'** must be chosen in the 'Variable' tab in OPAL-RT before loading

OPAL-RT SIMULATION (BUILD MODEL)

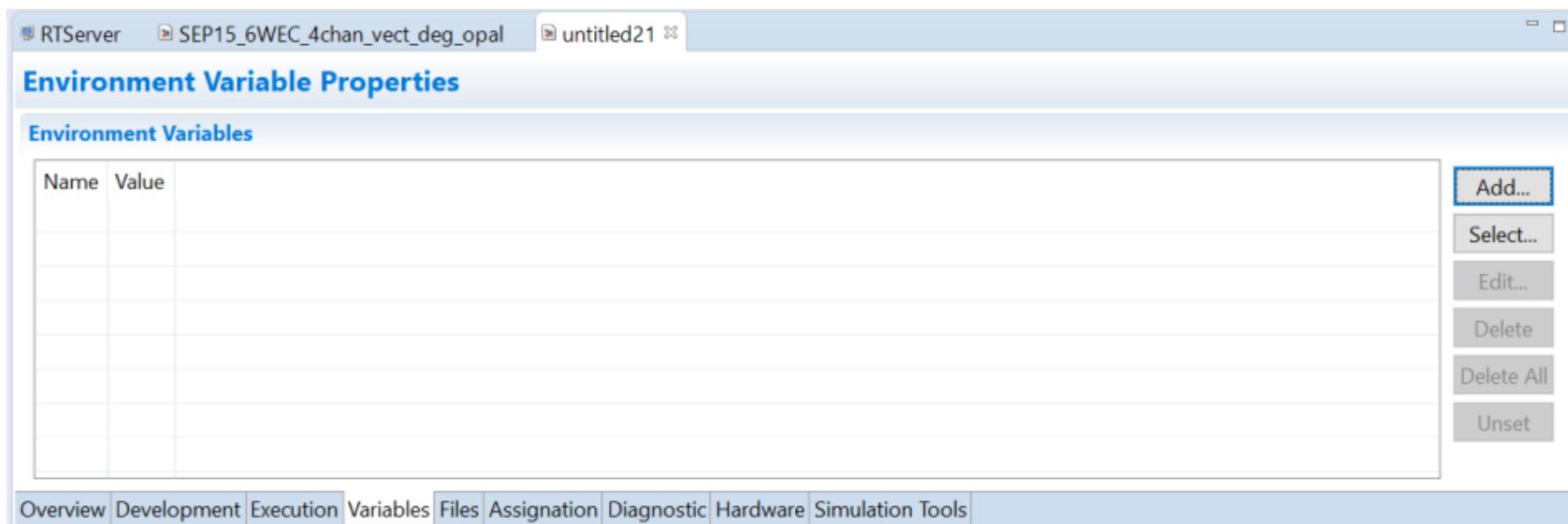
20



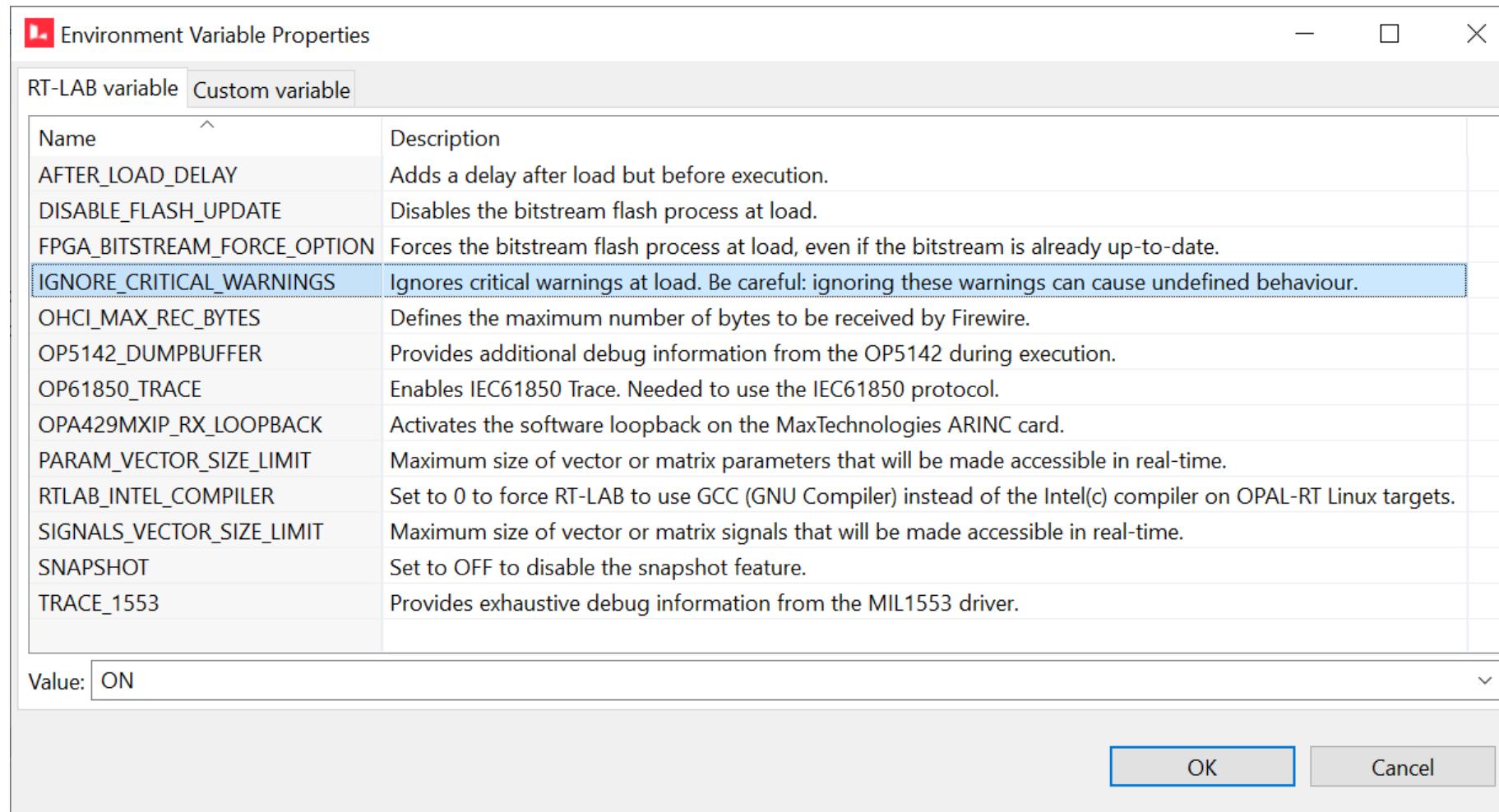
OPAL-RT SIMULATION (BUILD MODEL)


OPAL-RT SIMULATION (BUILD MODEL)

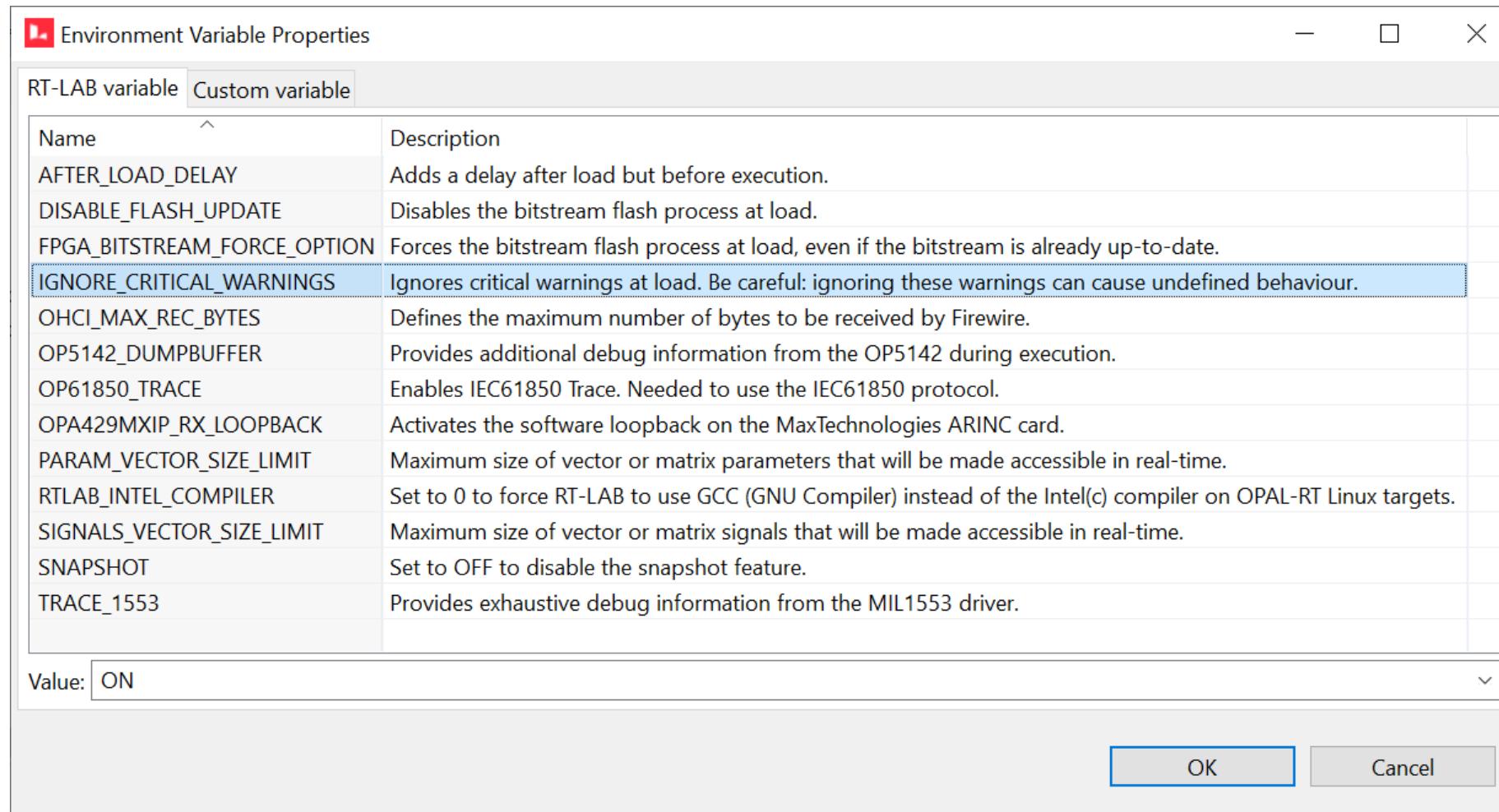
22


OPAL-RT SIMULATION (BUILD MODEL)

23

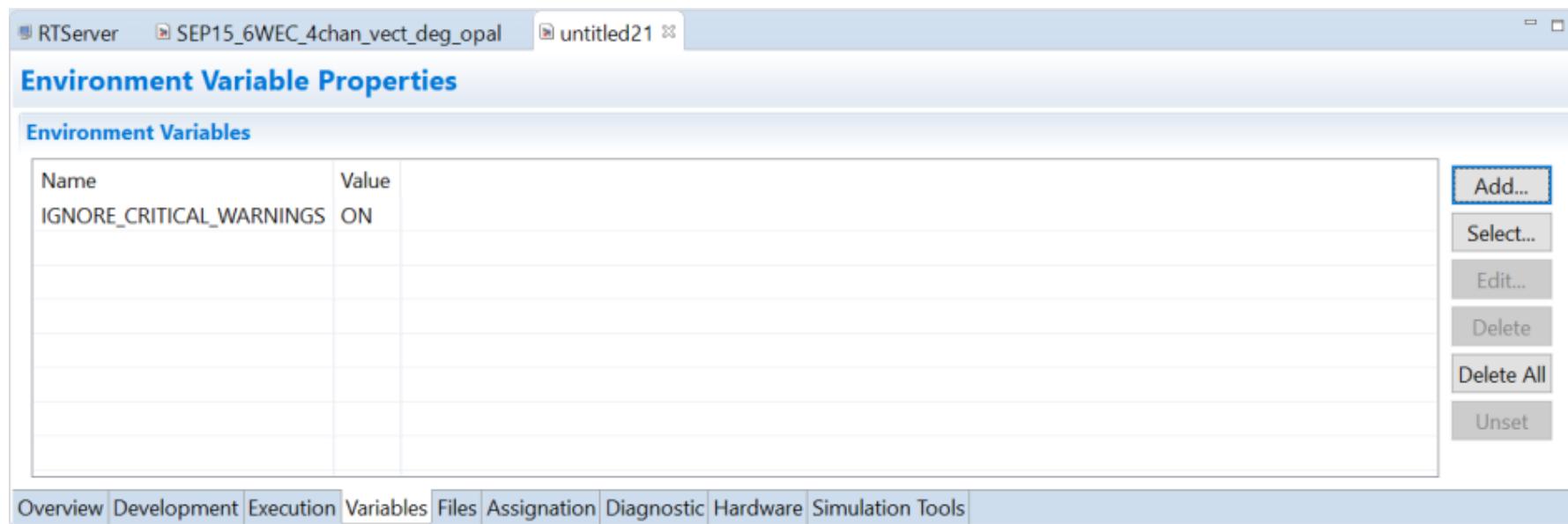

OPAL-RT SIMULATION (LOAD MODEL)

24

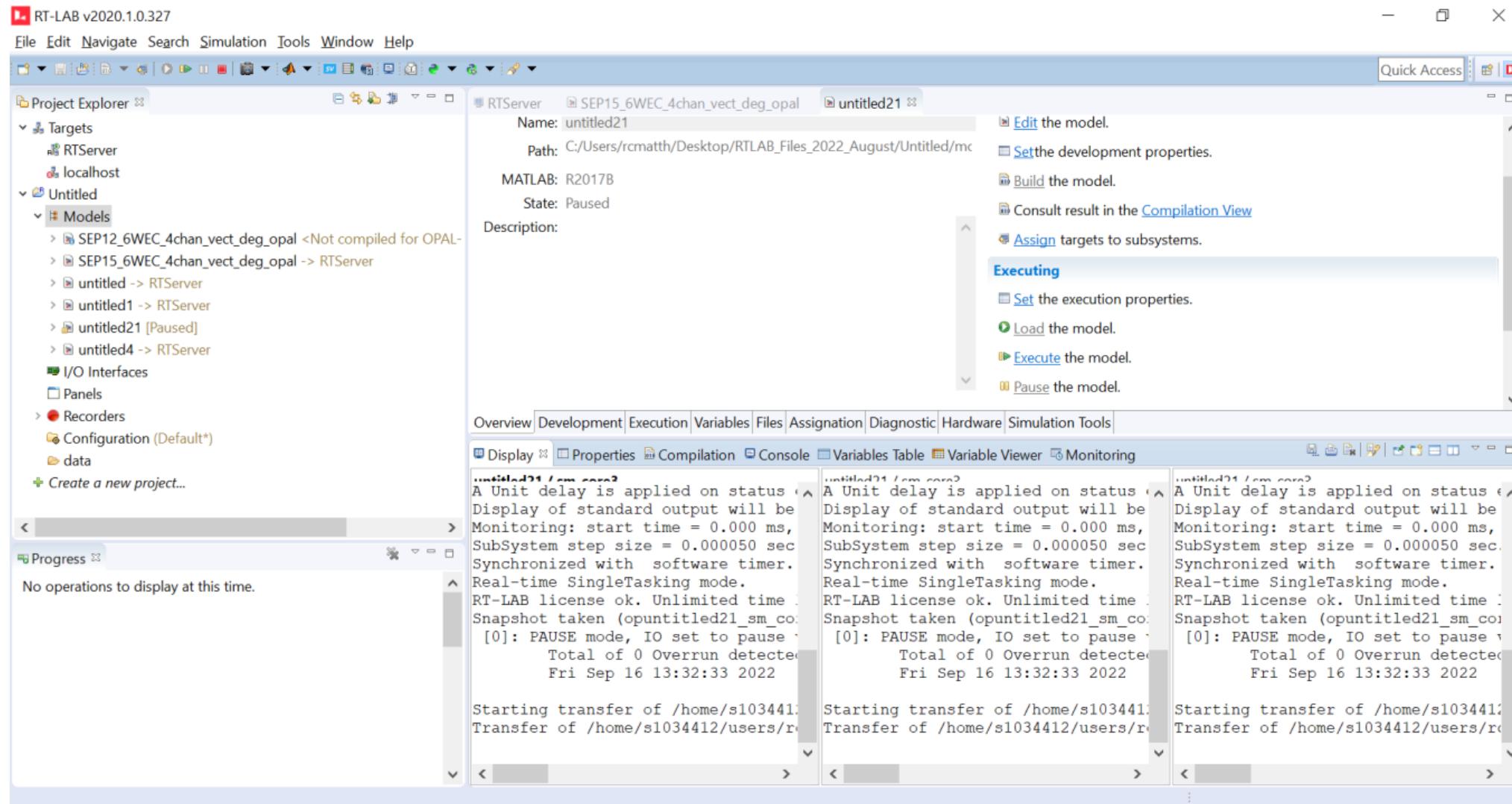


First select 'IGNORE CRITICAL WARNINGS' from 'Variables' Tab in RT-LAB

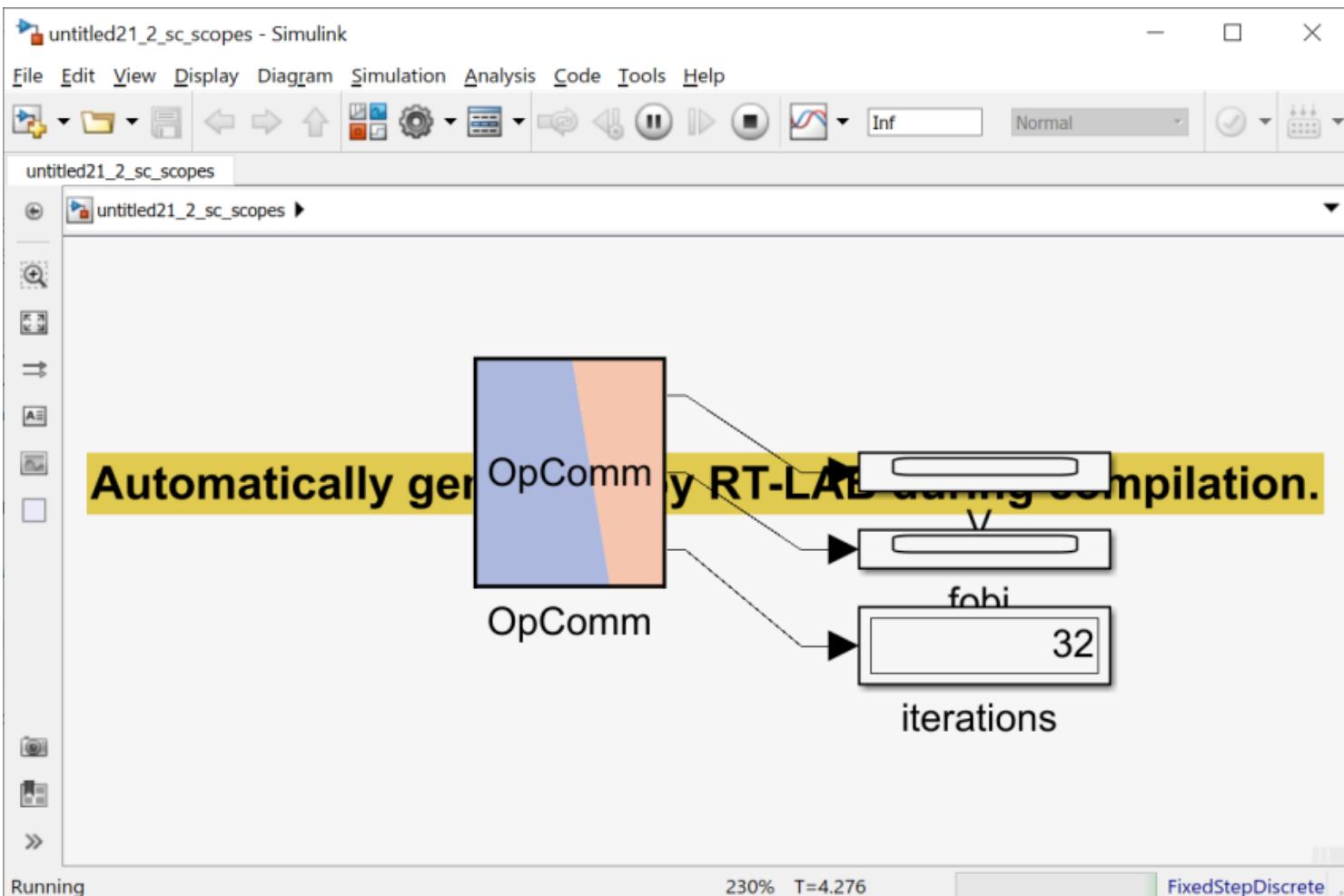
OPAL-RT SIMULATION (LOAD MODEL)



OPAL-RT SIMULATION (LOAD MODEL)

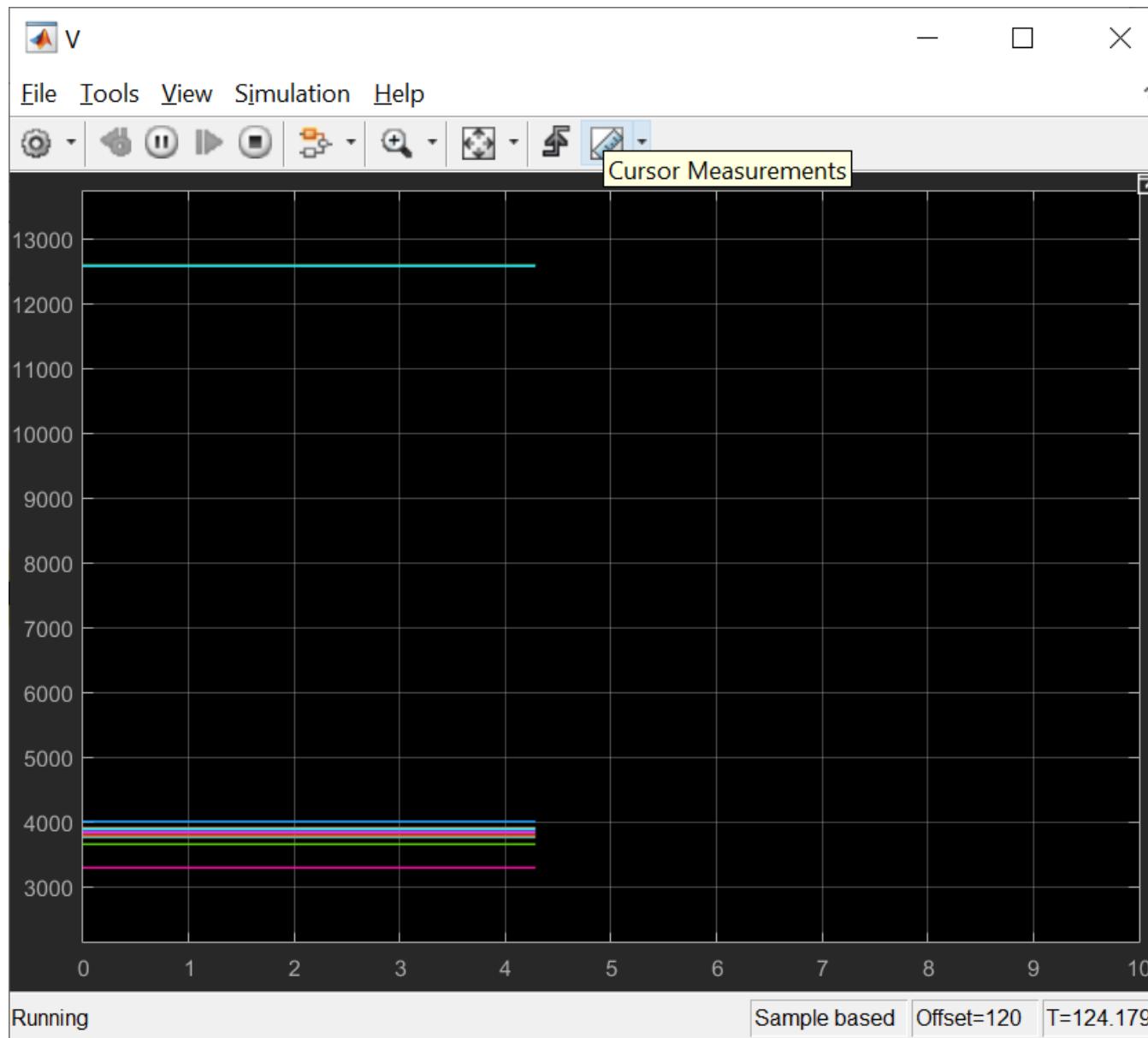

OPAL-RT SIMULATION (LOAD MODEL)

27


- If done correctly, the ‘Variables’ tab will be populated as shown
- Next, the model can be loaded to OPAL-RT as normal

OPAL-RT SIMULATION (LOAD MODEL)

OPAL-RT SIMULATION (EXECUTE MODEL)


29

- RMS and dc voltages are plotted on scope
- Objective function value for OPF is displayed on scope
- Number of OPF iteration is displayed

OPAL-RT SIMULATION

30

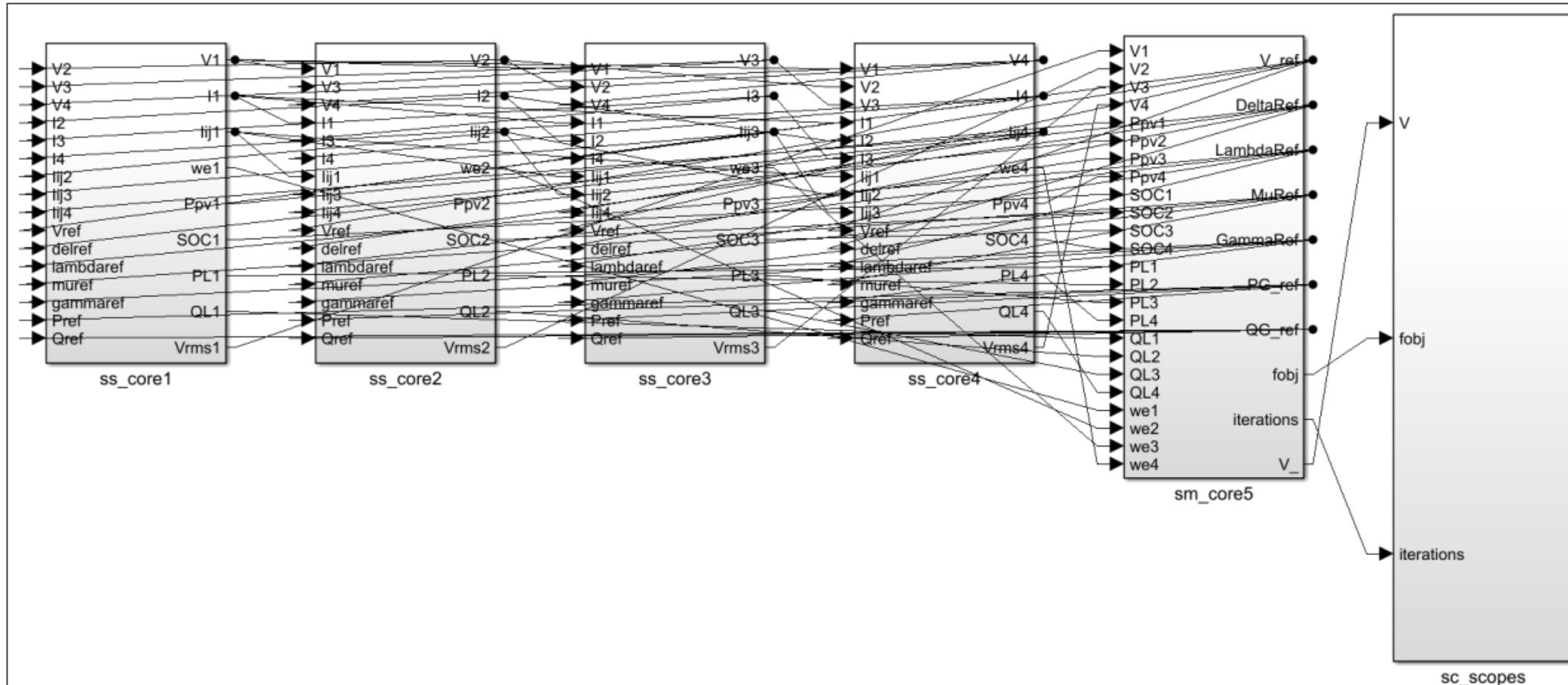
- Voltages are as earlier defined by OPF

CHANGING NUMBER OF CORES

By simply modifying column A of the 'Bus Parameters Sheet', the model can be instead divided across 5 cores on-the fly.

31

1	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O
core	bus	ac or dc	C(uF)	active (W)	reactive (VAr)	Vbase	Vmin	Vmax	Pmin	Pmax	Qmin	Qmax	objective	type	
2	1	1 ac	0	0	0	3983.717	3784.531	4182.903	0	50000000	-50000000	50000000	0.01*P^2+1.0*Q^2	3-phase ac generate	
3	2	2 ac	0	0	0	3983.717	3784.531	4182.903	0	50000000	-50000000	50000000	0.01*P^2+1.0*Q^2	3-phase ac generate	
4	3	3 ac	0	0	0	3983.717	3784.531	4182.903	0	10000000	-10000000	10000000	0.01*P^2+1.0*Q^2	3-phase ac generate	
5	4	4 ac	0	0	0	3983.717	3784.531	4182.903	0	10000000	-10000000	10000000	0.01*P^2+1.0*Q^2	3-phase ac generate	
6	1	5 ac	0	0	0	3983.717	3784.531	4182.903	0	10000000	-10000000	10000000	0.01*P^2+1.0*Q^2	3-phase ac generate	
7	2	6 ac	2000	1000000	0	3983.717	3784.531	4182.903	0	0	0	0	0	capacitor	
8	3	7 ac	2000	1000000	0	3983.717	3784.531	4182.903	0	0	0	0	0	capacitor	
9	4	8 ac	2000	1000000	0	3983.717	3784.531	4182.903	0	0	0	0	0	capacitor	
10	1	9 ac	2000	1000000	0	3983.717	3784.531	4182.903	0	0	0	0	0	capacitor	
11	2	10 ac	1000	18000000	0	3983.717	3784.531	4182.903	0	0	0	0	0	capacitor	
12	3	11 ac	1000	18000000	0	3983.717	3784.531	4182.903	0	0	0	0	0	capacitor	
13	4	12 ac	1000	1000000	0	3983.717	3784.531	4182.903	0	0	0	0	0	capacitor	
14	1	13 ac	1000	1000000	0	3983.717	3784.531	4182.903	0	0	0	0	0	capacitor	
15	2	14 ac	1000	1000000	0	3983.717	3784.531	4182.903	0	0	0	0	0	capacitor	
16	3	15 ac	1000	1000000	0	3983.717	3784.531	4182.903	0	0	0	0	0	capacitor	
17	4	16 ac	1000	1000000	0	3983.717	3784.531	4182.903	0	0	0	0	0	capacitor	
18	1	17 ac	1000	1000000	0	3983.717	3784.531	4182.903	0	0	0	0	0	capacitor	
19	2	18 ac	1000	1000000	0	3983.717	3784.531	4182.903	0	0	0	0	0	capacitor	
20	3	19 ac	1000	1000000	0	3983.717	3784.531	4182.903	0	0	0	0	0	capacitor	
21	4	20 dc	16000	1000000	0	12000	11400	12600	0	0	0	0	0	capacitor	
22	1	21 dc	16000	1000000	0	12000	11400	12600	0	0	0	0	0	capacitor	
23	2	22 dc	16000	1000000	0	12000	11400	12600	0	0	0	0	0	capacitor	
24	3	23 dc	16000	1000000	0	12000	11400	12600	0	0	0	0	0	capacitor	
25	4	24 dc	16000	1000000	0	12000	11400	12600	0	0	0	0	0	capacitor	
26	1	25 dc	16000	1000000	0	12000	11400	12600	0	0	0	0	0	capacitor	
27	2	26 dc	16000	1000000	0	12000	11400	12600	0	0	0	0	0	capacitor	
28	3	27 dc	16000	1000000	0	12000	11400	12600	0	0	0	0	0	capacitor	
29	4	28 dc	0	0	0	3297	3297	3297	-10000000	10000000	0	0	1*P^2	battery	
30	1	29 dc	0	0	0	3297	3297	3297	-10000000	10000000	0	0	1*P^2	battery	
31	2	30 dc	0	0	0	3297	3297	3297	-10000000	10000000	0	0	1*P^2	battery	
32	3	31 dc	0	0	0	3297	3297	3297	-10000000	10000000	0	0	1*P^2	battery	
33	4	32 dc	0	0	0	3297	3297	3297	-10000000	10000000	0	0	1*P^2	battery	
34	1	33 dc	0	0	0	3297	3297	3297	-10000000	10000000	0	0	1*P^2	battery	
35	2	34 dc	0	0	0	3297	3297	3297	-10000000	10000000	0	0	1*P^2	battery	
36	3	35 dc	0	0	0	3297	3297	3297	-10000000	10000000	0	0	1*P^2	battery	


Model Parameters

Bus Data

Line Connections

OPAL-RT MODEL AUTOMATICALLY GENERATED

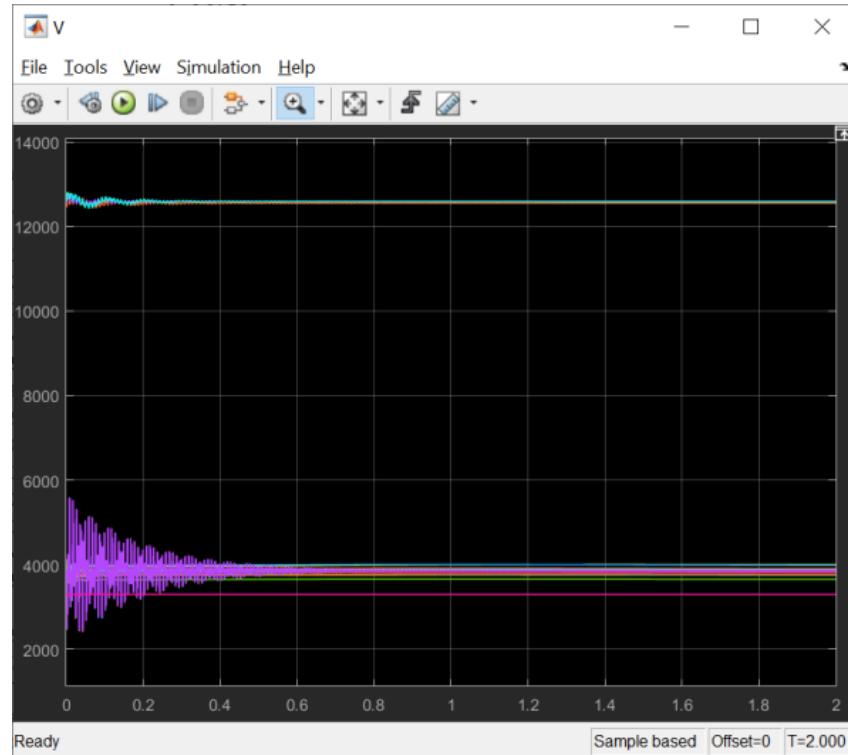
Exact same model split across 5 cores

There is a limit to how many subsystems the model can be divided across

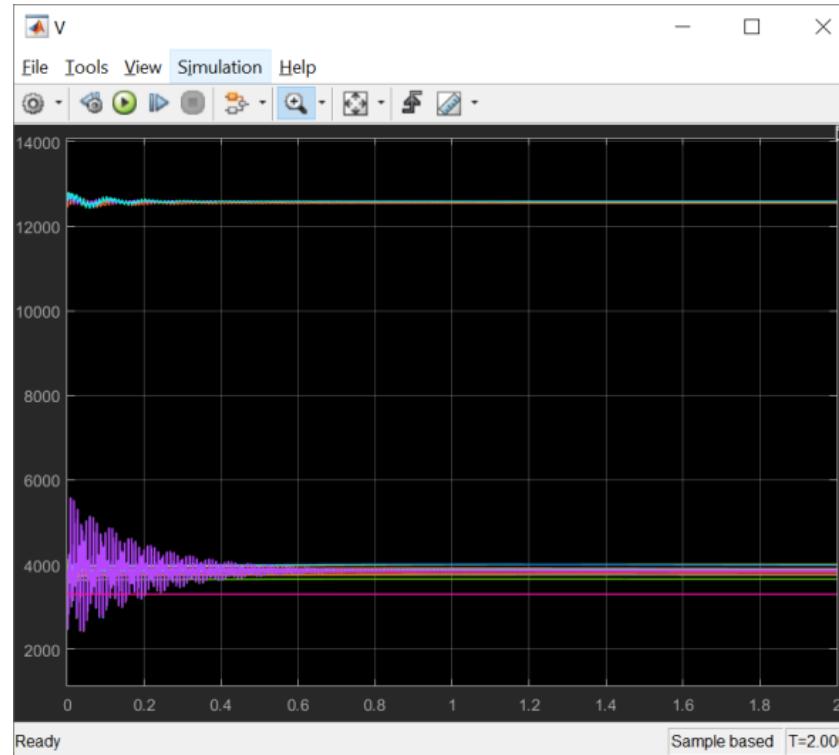
- Memory blocks/delays required for algebraic signal
 - Such additions slightly alter model dynamics
 - Adding more subsystems adds more delays
- There is no interpolation for signals passed among blocks
 - Smoothness of derivatives may suffer

MODEL PARTITIONING

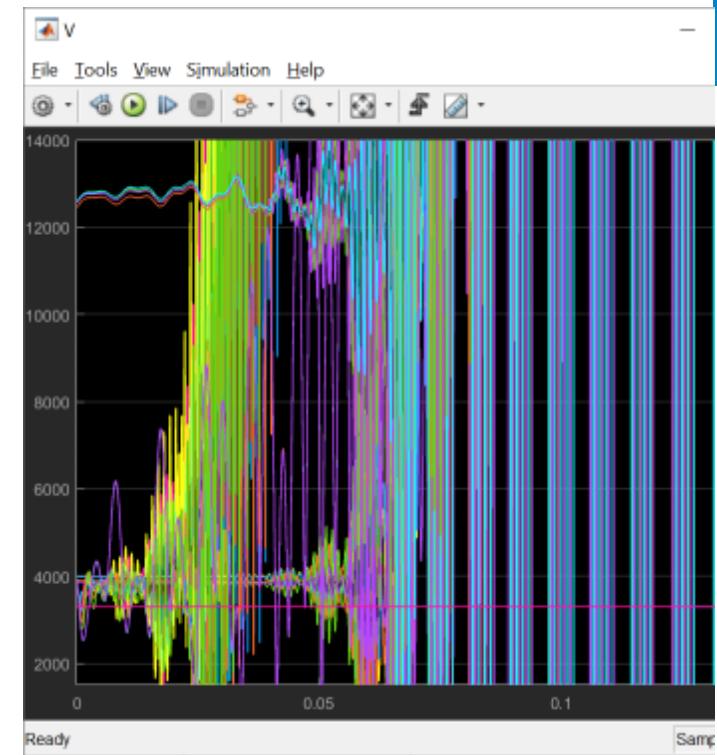
34


Up until now “core” and “subsystem” have been assumed to be interchangeably.

Now we make a distinction between the 2 with some more precise language.


- **Logical core** = logical core on physical processor
- **Simulation core** = subsystem over which model is parallelized by OPAL-RT
- An increased number of subsystems can adversely effect model stability as will bee seen shortly
- Experimentally: Exceeding 5 subsystems seems to cause instability
- If model has overruns when spit across 5 cores, multiple logical cores may be assigned to a single simulation core

SAME MODEL ACROSS 3, 5, AND 8 SUBSYSTEMS


35

3 "cores"
stable

5 "cores"
stable

6 "cores"
unstable

CONCLUSIONS

36

SwAGSM:

- Allows for rapid model development
- Eliminates the debugging process
- Allow for number of cores to be changed without manually reconstructing model
- Streamlines the process of real-time simulation on the OPAL-RT platform

Availability:

- Not yet available for public release

For further details, contact:

- Ronald Matthews
- rcamtth@sandia.gov
- Sandia National Laboratories

ACKNOWLEDGMENT

37

Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.