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Metamaterials and Metasurfaces

Man-made “atoms” : Metamaterials

Ref. : Neshev & Aharonovich, Light : Science & Applications 7
(58), 2018.

In metamaterials, optical properties are determined by configuration and properties of meta-atoms.

Metasurfaces are planar (2D) equivalents of metamaterials.



The All-Dielectric Approach: Mie modes

Dielectric particles much smaller than wavelength A/n 'E\B/”e modes in dielectric particles comparable ~ A/n

Rayleigh << A/n

MD excitation
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For dielectric particles, the polarizabilities of the electric and 1
magnetic dipole resonances are comparable at optical
frequencies 0 . . . . )
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This is not the case for metallic resonators at optical A (nm)

frequencies because of metal losses Ref. : Optics Express 21, 26285 (2013)



Applications of Mie Modes in Dielectric Metasurfaces

Magnetic Response
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Advantages of Nonlinear Mie Metasurfaces : 1. Ultrathin ( relaxed phase matching) 2. Low loss and
high damage thresholds 3. Large mode volume ( enhanced light-matter interaction) 4. Ease of fabrication ,



Strong Light Matter Interaction : Polaritons and Rabi Splitting
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* In strong coupling, light —matter coupling strength > Losses of the system

* Formation of new hybrid states (polaritons) which are superposition of
photonic mode and matter excitation and separated by frequency gap Q,
called Rabi splitting.



An Intersubband Polaritonic Metasurface : Light-Matter Coupling

Electric Field
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(), depends on: 0
* Matter : Transition dipole moment of intersubband Q
transitions and number of electrons (N,= N xNg) -
* Light :Distribution and enhancement of the z-directed ‘ ‘
electric field components of the photonic mode S 10 15

Growth Direction (nm)



Coupling of Magnetic Dipole Mode to Intersubband Transitions

|E,/E,..| of MD
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* R/histuned to spectrally align the MD mode to the ISB transition

e MD mode has strong z electric field components, allows for normal incidence, and smallest size of
the resonator.



Fabrication of a Polaritonic Metasurface

Scanning Electron Micrograph
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Controlling Light-Matter Interaction by Engineering
Heterostructure
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* The strength of light-matter interaction is proportional to number of electrons (N .= N xNg,,) in the cavity.
* We modify the number of electrons by modifying the doping and number of the quantum wells.



Controlling Light-Matter Interaction by Engineering Heterostructure

No coupling : Linear scaling Q=5 % . Q.,i=10 %
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Controlling Light-Matter Interaction by Coupling to Different Photonic Modes
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Since different Mie modes have different mode volumes and field enhancements, we can
modify light-matter interaction by coupling the IST to different photonic Mie modes (without

modifying the heterostructure).
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Controlling Light-Matter Interaction by Coupling to Different Photonic Modes
Electric Dipole (Ng,, =30, Ny =3e18 cm™)
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Magnetic Dipole (Ng,, =30, Ny = 3e18 cm™)
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Polaritonic Metasurface : Extreme Nonlinearities

Electric Field
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* Light-matter coupling between a MD Mie mode and A ~8pum

intersubband electronic excitations. -0.2} | | | |
* MD mode has strong z electric field components, allows 5 10 15 20 25
for normal incidence, and smallest size of the resonator. Growth Direction (nm)
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Resonant x? using Intersubband Transitions
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Fabrication of the All-Dielectric Nonlinear Metasurface
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Linear Reflectance Spectra : Simulation and Experiment
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Splitting of Photonic Resonance due to Strong Coupling !



Second-Harmonic Generation : Experiment and Simulations

Experiment Simulation
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Excellent qualitative areement between experiments and simulations can be seen ! -
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Limited Collection Efficiency due to Diffraction
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Experimentally Measured SHG Efficiencies

PSH/PPump ><10'5

- - 7
30.013 5|
& —

5 L
o =3
&) , o |
= 0.01 q§34
= E S.l
9 ¥ 3 T
e ! o i
50005/ = 2 0.5 mMW/W?2
S 03 2 5 T
O Wavelength (um)
0 ' ' ' : 0 ' ' '
0 100 200 300 400 0 0.05 0.1 0.15

Pump Power (mW) Pump Power Squared ( W?)

Large magnitude of x?) gives SHG efficiency ~ 0.013 % at 11 kW/cm? and conversion factor ~ 0.5
mW/W?2



Enhancing Collection Efficiency by Varying Radius & Period
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Polarity Switching of y{?)

-5
ST 3.5 <10
0.5 '
A 3
0.4 | < 25
S - =3
- — | 2_
5 0.3 N 3
- N ~ B gl
D . =
¥ 0.2 3 KT
0.1 . 05
<>
0.06 um 0 | |
O | | |
L . e . 7 75 8 8.5

Wavelength (um) Pump Wavelength(u:m)

The SHG efficiency can be controlled by controlling the sign of x2) inside the Mie resonator
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Summary

We demonstrate giant second-order nonlinearities in polaritonic all-dielectric
metasurfaces which can be controlled via microscopic control of magnitude and
signh of the material nonlinearity.

Our results are proof-of-concept and the efficiencies can be improved by optimizing
the heterostructure, field overlaps, and interplay between field enhancement and
nonlinearity.

Our approach although demonstrated for a particular wavelength, in principle, can
be scaled to other wavelengths from visible to near-IR.

Ref. : [1] R. Sarma et al., Nano Letters 21(1), 367-374 (2021).
[2] R. Sarma et al., Nano Letters 22(3), 896-903 (2022).
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