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Metamaterials and Metasurfaces

Man-made “atoms” : Metamaterials

In metamaterials, optical properties are determined by configuration and properties of meta-atoms.  

Metasurfaces

Ref. : Neshev & Aharonovich, Light : Science & Applications 7 
(58), 2018. 

Metasurfaces are planar (2D) equivalents of metamaterials. 
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           Ref. : Optics Express 21, 26285 (2013)                     

The All-Dielectric Approach: Mie modes 

Dielectric particles much smaller than wavelength /n  Mie modes in dielectric particles comparable ~ /n               

For dielectric particles, the polarizabilities of the electric and 
magnetic dipole resonances are comparable at optical 
frequencies

This is not the case for metallic resonators at optical 
frequencies because of metal losses

Wikipedia

Rayleigh << /n



Applications of Mie Modes in Dielectric Metasurfaces 

Advantages of Nonlinear Mie Metasurfaces  :        1. Ultrathin ( relaxed phase matching)       2. Low loss and 
high damage thresholds  3.  Large mode volume ( enhanced light-matter interaction)  4. Ease of fabrication 

Nonlinear Optics

Nano Lett. 16, 5426 (2016)

Nano Lett. 16, 7191 (2016)

Tailoring Linear Transmission

Argonne National Labs

ACS Photonics 3, 514 (2016)
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Magnetic Response

PRL. 108, 097402 (2012)

E

Optica 1, 250 (2014)



Strong Light Matter Interaction : Polaritons and Rabi Splitting
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• In strong coupling, light –matter coupling strength > Losses of the system
• Formation of new hybrid states (polaritons) which are superposition of 

photonic mode and matter excitation and separated by frequency gap ΩR,  
called Rabi splitting.  



An Intersubband Polaritonic Metasurface : Light-Matter Coupling
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ΩR depends on : 
• Matter : Transition dipole moment of intersubband 

transitions and number of electrons (Ne= NdxNQW)
       inside the cavity.  
• Light     : Distribution and enhancement of the z-directed 

electric field components of the photonic mode 

Surface Plasmon mode
   in thin ENZ material 
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Coupling of Magnetic Dipole Mode to Intersubband Transitions
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• R/h is tuned to spectrally align the MD mode to the ISB transition
• MD mode has strong z electric field components, allows for normal incidence,  and smallest size of 

the resonator. 



Fabrication of a Polaritonic Metasurface
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Controlling Light-Matter Interaction by Engineering 
Heterostructure
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• The strength of light-matter interaction is proportional  to number of electrons (Ne= NdxNQW) in the cavity. 
• We modify the number of electrons by modifying the doping and number of the quantum wells.  
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NQW = 30, Nd = 8e17 cm-3

NQW = 40, Nd = 3e18 cm-3



Controlling Light-Matter Interaction by Engineering Heterostructure
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Experiment

Simulation

         No coupling : Linear scaling 

NQW = 40, Nd = 3e18 cm-3

         Ωrabi=5 %

NQW = 30, Nd = 8e17 cm-3

         Ωrabi=10 %

NQW = 40, Nd = 3e18 cm-3
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Controlling Light-Matter Interaction by Coupling to Different Photonic Modes

Since  different  Mie  modes  have  different  mode  volumes  and  field  enhancements,  we  can 
modify light-matter interaction by coupling the IST to different photonic Mie modes (without 
modifying the heterostructure).  
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Controlling Light-Matter Interaction by Coupling to Different Photonic Modes
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The magnetic dipole modes show stronger light-matter interaction !   

Magnetic Dipole (NQW = 30, Nd = 3e18 cm-3) Electric Dipole (NQW = 30, Nd = 3e18 cm-3)
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Polaritonic Metasurface : Extreme Nonlinearities

Surface Plasmon mode
   in thin ENZ material 
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• Light-matter  coupling  between  a  MD  Mie  mode  and 
intersubband electronic excitations. 

• MD mode  has  strong  z  electric  field  components,  allows 
for normal incidence,  and smallest size of the resonator. 
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Resonant ꭕ(2) using Intersubband Transitions

       IEEE J. Quantum Electr. 30, 1313 (1994)
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 ~ 8 µm

InGaAs/AlInAs Quantum Wells
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Fabrication of the All-Dielectric Nonlinear Metasurface 
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Linear Reflectance Spectra : Simulation and Experiment

Splitting of Photonic Resonance due to Strong Coupling !

Simulation Experiment
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Second-Harmonic Generation : Experiment and Simulations
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Excellent qualitative areement between experiments and simulations can be seen ! .



Limited Collection Efficiency due to Diffraction
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Experimentally Measured SHG Efficiencies 
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Large magnitude of χ(2) gives SHG efficiency ~ 0.013 % at 11 kW/cm2  and conversion factor ~ 0.5 
mW/W2.



Enhancing Collection Efficiency by Varying Radius & Period
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Polarity Switching of χ(2)

-χ2
χ2

χ2

The SHG efficiency can be controlled by controlling the sign of χ(2) inside the Mie resonator
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Summary 
• We  demonstrate  giant  second-order  nonlinearities  in  polaritonic  all-dielectric 

metasurfaces  which  can  be  controlled  via  microscopic  control  of  magnitude  and 
sign of the material nonlinearity. 

• Our results are proof-of-concept and the efficiencies can be improved by optimizing 
the heterostructure,  field overlaps, and  interplay between field enhancement and 
nonlinearity. 

• Our approach although demonstrated for a particular wavelength, in principle,  can 
be scaled to other wavelengths from visible to near-IR. 

Ref. : [1] R. Sarma et al., Nano Letters 21(1), 367-374 (2021). 
          [2] R. Sarma et al., Nano Letters 22(3), 896-903 (2022). 


