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Abstract—The National Academy of Sciences, Engineering,
and Medicine (NASEM) defines reproducibility as ‘‘obtaining
consistent computational results using the same input data,
computational steps, methods, code, and conditions of analysis,”
and replicability as “obtaining consistent results across studies
aimed at answering the same scientific question, each of which
has obtained its own data” [1]. Due to an increasing number
of applications of artificial intelligence and machine learning
(AI/ML) to fields such as healthcare and digital medicine, there
is a growing need for verifiable AI/ML results, and therefore
reproducible research and replicable experiments. This paper
establishes examples of irreproducible AI/ML applications to
medical sciences and quantifies the variance of common AI/ML
models (Artificial Neural Network, Naive Bayes classifier, and
Random Forest classifiers) for tasks on medical data sets.

Index Terms—machine learning, reproducibility, randomness,
pseudo-random number generator, neural network, naive Bayes,
random forest

I. INTRODUCTION

With the increasing use of artificial intelligence (AI) and
machine learning (ML) methods to analyze complex medi-
cal datasets, including medical disease diagnosis and treat-
ment [2]—[4]], it is essential to ensure that studies focused
on the AI/ML application meet the same standards expected
of medical research papers. That is, they publish their data
and others can arrive at the same conclusions with their own
analysis. In the case of ML models, equivalent models with
the same accuracy presented should be able to be recreated
using the same algorithms, data, and runtime settings. Some
papers strive to achieve this by meticulously documenting
the algorithm and settings to what the authors believe is a
sufficiently detailed level. Others try hard, but inadvertently
leave out critical information necessary to achieve the same
results independently.

Publishing datasets has been a hit or miss effort that
has led to the creation of the FAIR Data Principles [5]. In
summary, FAIR stands for Findable, Accessible, Interoperable,
and Reusable, defining four principles widely agreed upon for
trustworthy science. A critical goal of FAIR data management
and a benchmark for trustworthy science is experimental
reproducibility. The majority of scientists will fail to reproduce
findings of a prior study [6], informing what is considered a
“reproducibility crisis” across scientific fields. Many scientific
findings are in fact the results of repeated retrial and retesting
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until the desired results are achieved, without emphasizing that
the results are actually extremely rare and unlikely to obtain
by running the same experiment [7].

The wide availability of common data sets both from the
University of California, Irvine Machine Learning data set
archive as well as data published seeking to achieve FAIR
standards for either a single publication or some larger re-
search effort enables practitioners to re-attempt the published
experiments relatively easily to better understand the work
presented. Even with the more complex models generated
using ML techniques compared to older analysis techniques,
the reproducibility standard should still hold. However, the
additional information necessary to properly reproduce results
is not clearly understood and inconsistent practices have led
to good work not being reproducible lending doubt to the
accuracy.

With randomization present in essentially all ML model
generation, the simplest standard of publishing the random
number source and seed is often overlooked. ML model repro-
ducibility can only be achieved by ensuring the reproducibility
of psuedo-random number sequences generated during model
training. Psuedo-random number sequences are produced by
pseudo-random number generators (PRNGs) and can be repli-
cated using identical PRNG seed values (the starting value of
a pseudo-random number sequence). This paper contributes to
the conversation of FAIR and reproducible scientific research
by demonstrating that published ML models for medical
decision making can have inconsistent performance due to
a combination of uncontrolled randomness and insufficient
model design information accompanying published results.

Even beyond the PRNGs, other factors, such as training
batch sizes, must be recorded and published for someone else
to be able to reproduce the work. Missing other parameters or
using a subset of available data without clear justification can
make a seemingly excellent study raise subtle doubts. These
doubts may or may not be justified, but the missing additional
information should prompt readers to ask, “why was this left
out?”

This paper has selected two excellent published studies
using ML for data analysis. The first uses n Artificial Neural
Network (ANN) to achieve a high accuracy score in analyzing
a single data set. The second uses three different algorithms
on common data, but only a portion without justifying that
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selection. We attempt to recreate the results presented in both
of these studies and offer lessons learned for how to best
document ML model generation and experiments to enable
reproducibile results as well as achieve FAIR data principles.
The rest of the paper is organized as follows. First Section
is an overview of related work. Next, Section [I1I|is an overview
of the data sets evaluated in the studies under evaluation in
this work. Experiments attempting to reproduce the selected
works are presented in Section [[V] followed by a discussion in
Section [V] Finally, in Section conclusions are presented.

II. RELATED WORK

Scholars in the medical and health sciences are increasingly
calling for standardization of FAIR scientific research and data
management [[8]—[10]]. Basareh et al. [[11]] demonstrates on the
Hospital Averse Incidents Classification Scheme (HAICS) data
set that FAIR ontologies contribute to the accountability of
and transparency of ontology-based Al systems. Furthermore,
Hooker et al. [[12] and Yona et al. [13]] argue for the importance
of ensuring fairness in algorithm design in addition to fairness
in data set collection, and address the potential implications of
optimizing algorithm parameters for maximum accuracy score.

Carter et al. [[14] addresses the need for reproducible Al
research to ensure replicability across hardware systems, as
computational variances can cause inconsistency even when
using identical raw data, programming code, and computing
environments. Zhuang et al. [15] quantifies the impact of
system noise and the cost of ensuring determinism for various
hardware types. Carter et al. also notes the irreproducibility
of psuedo-random number sequences on high-performance
computing systems. As a solution to this problem, Salmon
et al. [16] introduces a series of high quality, parallelizable
PRNGs—called AES, Threefish, and Philox—that can guar-
antee reproducible psuedo-random number sequences across
CPUs, GPUs, clusters, and special-purpose hardware.

Randomness in neural networks and the importance has
also been investigated by Scardapane et al. [17]. Pham et
al. [18] and Alahmari et al. [19] study the repeatability of
deep learning models using Python’s TensorFlow and Keras
libraries given the presence of uncontrolled randomness. Pham
et al. studies the variance in accuracy scores of deep learning
training algorithms given changes in training data, algorithm,
network, and PRNG seed. Alahmari et al. finds that while deep
learning models can be repeated by saving the random initial-
izations, computational variances may results in a different
learning process for a given run.

In the past, computer scientists have regenerated pseudo-
random number sequences by recording the PRNG seed. Sen
et al. [20] uses a “capture-and-replay” method to replay data
races using the same PRNG seed. Frederickson et al. [21]] uses
a similar approach to reproduce Monte Carlo trees. Ahmed et
al. [22] uses this approach in a series of experiments showing
the extent to which the PRNG seed, train/test split ratio,
and train and test data sets can impact final accuracy scores
of neural networks, k-means clustering, and Naive Bayes
classifier models on scientific data sets. Ahmed et al. further

shows that variance in accuracy score can be exacerbated or
diminished depending on ML algorithm type and data set. Our
paper extends on this line of work by investigating the possible
variance of popular ML algorithms for medical diagnosis,
and establishing examples of irreprodicible published scientific
results.

III. DATA SETS

This research utilizes a total of five benchmark data sets.
Experiment 1 (Section evaluates the predictive perfor-
mance of ANNs on the Pima Indian Diabetes (PID) data set
collected by the National Institute of Diabetes and Digestive
and Kidney Diseases [23]. The PID data set consists of
768 instances and nine features: pregnancies, glucose, blood
pressure, skin thickness, insulin, body mass index (BMI),
diabetes pedigree function, age. The last feature is the target
class label. We follow the preprocessing steps used by Khanam
et al. [24] in their comparison of ML algorithms for diabetes
prediction. Preprocessing was done using the WEKA data
mining software tool, and consisted of missing value identifi-
cation, outlier rejection, feature selection, and normalization.
Using WEKA, we identified missing values, and identified and
removed outliers and extreme values based on interquartile
ranges. While Khanam et al. reports finding numerous missing
values in the PID data set, we identified 0 missing values
using WEKA. Additionally, Khanam et al. reports finding 45
outliers and 26 extreme values using WEKA, while we found
49 outliers and 0 extreme values. This reduced the PID data
set to 719 instances. Then, based on the Pearson correlation
coefficient feature selection method described by Khanam et
al., we removed three features that were measurably irrelevant
to the final outcome: skin thickness, blood pressure, and
diabetes pedigree function. This left five predictive features:
pregnancies, glucose, insulin, BMI, and age.

In Experiment 2 (Section [[V-B)), the Heart Disease database
is used to compare the predictive performances of Gaussian
Naive Bayes classifiers, Bernoulli Naive Bayes classifiers, and
Random Forest classifiers. Heart Disease consists of four data
sets collected from heart disease patients at four different
medical centers: the Cleveland Heart Disease data set from the
Cleveland Clinic Foundation; the Switzerland Heart Disease
data set from the University Hospitals in Basel and Zurich; the
Hungary Heart Disease data set from the Hungarian Institute
of Cardiology in Budapest; and the Long Beach Heart Disease
data set from the Veterans’ Affairs (V.A.) Medical Center in
Long Beach. We used the processed versions of these data sets
made available in the UCI ML Repository [25] to train and test
each ML model. Although Bernando et al [26]. did not detail
how they dealt with missing values during preprocessing, we
replaced missing values in each Heart Disease data set with
the mean of the column values. Each Heart Disease data
set varies in number of instances, but share the same 14
features: age, sex, chest pain type (cp), resting blood pressure
(trestbps), serum cholestoral (chol), fasting blood sugar (fbs),
resting electrocardiographic results (restecg), maximum heart
rate achieved (thalach), exercise induced angina (exang), ST



depression induced by exercise relative to rest (oldpeak), slope
of the peak exercise ST segment, number of major vessels
colored by flourosopy (ca), thalassemia (thal). The last feature
is the target class label.

IV. EXPERIMENTS

This paper consists of two sets of experiments, each in-
vestigating the results of published ML algorithms on public
medical data sets. In Experiment 1, we use a Philox PRNG
made available in Python’s Keras library. Philox is considered
a very high quality generator due to its speed, range, and
period, and it is guaranteed reproducibility for parallel and
GPU systems [15]. Experiment 2 relies on Python’s default
Mersenne Twister generator, a less robust but still high quality
PRNG [27].

Experiment 1 aims to reproduce the ANN model for di-
abetes prediction published by Khanam et al. [24]. Experi-
ment 2 aims to reproduce the various ML models for heart
disease prediction published by Bernando et al. [?].

A. Experiment 1: Predicting diabetes with Artificial Neural
Networks (ANNs)

There have been numerous studies publishing the results
of ANN models for diabetes prediction, with several ANN
models reaching accuracy scores of over 80% on diabetes
data sets [24f, [28], [29]. Our first experiment quantifies
the variance in diabetes prediction accuracy of ANNs with
two hidden layers. We follow the data preprocessing and
model construction methods of Khanam et al. [24], whose
ANN model achieved an accuracy score of 88.6%. Our ANN
algorithm was developed in Python using the Sequential class
in Keras and TensorFlow, and using the Philox PRNG for
Keras. The ANN consists of four dense layers, where the first
and fourth are input and output layers, respectively. The input
layer consists of five neurons (for five input features) and
uses the RELU activation function. The second dense layer
consists of five neurons, and the third consists of 26 neurons.
Both hidden layers also use the RELU activation function. The
output layer has only one neuron to output a binary value (0
to indicate no heart disease, and 1 to indicate heart disease),
and uses the sigmoid activation function.

Using this algorithm, we generate 100 ANN models on the
PID data set. For each model, a datetime method is used to
set a unique PRNG seed. As per Khanam et al., models are
fitted and tested with an 85:25 train/test split, and trained
on 400 epochs with a learning rate of .0l. We noted that
the batch size used by Khanam et al. is not specified in
their publication and there is no consensus within the ML
community as to finding the optimal batch size for a given
algorithm and data set. In fact, research has shown that higher
batch sizes increase accuracy scores for convolutional neural
networks [30], whereas lower batch sizes increase accuracy
scores for deep neural networks [31]. Because we have no
reliable method for determining the best batch size for our
ANN, we chose an arbitrary batch size of 64 for the initial
round of tests, for which results are shown in Fig.
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Fig. 1: 100 ANNs generated on the PID data set, where each

model has a unique PRNG seed.

Across the 100 different ANN models, the best performing
ANN had an accuracy score of 78.7%, and the worst perform-
ing ANN has an accuracy score of 54.63%, making for an
overall difference of 24.07% accuracy points between the best
and worst ANN models.

We did not achieve Khanam et al.’s accuracy score of 88.6%,
and while a high accuracy may be attributed to a certain
PRNG seed, we also considered that a different batch size
could increase model accuracy. So, we carried out another
set of tests, where we generated ANN models with a fixed
PRNG seed (specifically, the seed value that was set for the
ANN model with a 78.7% final accuracy score) and at every
possible batch size (i.e., every integer in range 1 to 719, the
size of the data set). This resulted in 719 models, each with
a final accuracy score of 78.7%, which suggested that the
training batch size wasn’t significantly impactful on the final
performance of an ANN model.

However, after correspondence with the authors, we learned
that the batch size used by Khanam et al. was 1. Using a
batch size of 1 in neural network training is called online
or incremental training (as opposed to batch training, where
the batch size is equal to the size of the entire training
data set). Online training is typically used when a learning
algorithm’s knowledge base is being continuously updated
with new training samples [32]. Online training is shown
to result in faster convergence and lower computational cost
with no significant difference in testing accuracy compared to
training on larger batch sizes [33], [34]]. We continued this
experiment by generating 100 ANN models on the PID data
set using a different PRNG seed and a batch size of 1 each.
Results are shown in Fig

When the PRNG seed is varied and the batch size is
set to 1, we find that the best performing ANN model has
an accuracy score of 100% whereas the worst has 62.96%
accuracy, making for a difference of 37.04% accuracy points
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Fig. 2: 100 ANNs generated on the PID data set, where each

model uses a different PRNG seed and a batch size of 1.

between the best and worst ANN models. Although many
of the ANN models score 100% accuracy, as seen in Fig
the significant drops in accuracy points further demonstrate
the consequence of PRNG seed on final model outcome. We
were still unable to achieve the result of 88.6% published by
Khanam et al., demonstrating the difficulty of replicating a
model guaranteeing exact performance. Whether this variance
is due to differences in PRNG seed, data preprocessing, or
unintentional deviation from Khanam et al’s experiment design
is unclear. But the results shown in Fig [I] and Fig [2] contradict
the notion that batch size does not affect final model accuracy
score, as reducing the batch size from 64 to 1 improved the
accuracy score of our ANN models by as much as 45.37%
points.

Furthermore, we noted that in Khanam et al., the reason
given for normalizing the PID data set during preprocessing
was to speed up computation. However, there is reason to
suggest that normalizing a data set prior to training and testing
actually increases ANN model accuracy [35]. So, in our next
set of tests (Fig [3), we generate 100 ANN models using
different seeds and a batch size of 1 on an un-normalized
PID data set.

As seen in Fig [3] generating ANN models with a batch
size of 1 and a different PRNG per model on the un-
normalized PID data set results in no ANN model reaching
100% accuracy. The best ANN model has an accuracy score
of 80.56%, whereas the worst ANN model has an accuracy
score of 55.56%, making for a difference of 25% accuracy
points between the best and worst ANN models. Seeing
that normalizing the PID data set significantly improves the
performance of ANN models, we leave exploring the effects
of normalizing different data sets for other types of ML
algorithms as a future work.
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Fig. 3: 100 ANNs generated on the un-normalized PID data

set, where each model uses a different PRNG seed and a batch

size of 1.

B. Experiment 2: Predicting heart disease with Naive Bayes
and Random Forest classifiers

A wide variety of ML algorithms have been evaluated in
their performance of predicting heart disease [26], [36], [37],
and there is no consensus as to which algorithm consistently
performs the best. Our second experiment follows a survey of
three ML algorithms—a Gaussian Naive Bayes, a Bernoulli
Naive Bayes, and a Random Forest classifer—for heart disease
diagnosis. Our Python implementations of these algorithms use
the Scikit-learn GaussianNaiveBayes, BernoulliNaiveBayes,
and RandomForest classes and Python’s default Mersenne
Twister PRNG. We extend upon Bernando et al.’s [26] evalua-
tion of these algorithms by introducing variation in the PRNG
seeds. We first generate 100 models of each algorithm on
the Cleveland Heart Disease data set, where each model is
generated with a different PRNG seed. As per Bernando et
al., each model uses an 80:20 train/test split.

As seen in Fig. [5a} [5¢] the three ML algorithms observably
produces a wide variety of models on Cleveland Heart Disease
given different PRNG seeds. From our Gaussian Naive Bayes
algorithm, the best model has an accuracy score of 65.57%,
and the worst has an accuracy score of 34.43%, making for
a 31.15% difference in accuracy points. Additionally, the best
Bernoulli Naive Bayes model reaches an accuracy score of
67.21%, and the worst has an accuracy score of 40.98%, a
difference of 26.23% accuracy points. And lastly, the Random
Forest classifier produces its best model with an accuracy score
of 72.13%, and its worst with an accuracy score of 42.63%,
making for a difference of 29.51% accuracy points.

Although Cleveland Heart Disease is more frequently cited
in publications [25], we extended our experiment to the
remaining three data sets in the UCI Repository Heart Disease
collection. Fig. [5dl5] show the results of generating 100
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Fig. 4: 100 models generated from each of the Gaussian Naive Bayes, Bernoulli Naive Bayes, and Random Forest algorithms
using unique PRNG seed values on a compiled data set containing the data from all four Heart Disease data sets.

Data set # of # of missing Maximum Minimum Range of Mean Standard dev
instances values accuracy accuracy accuracy accuracy (accuracy)
Cleveland GNB: 65.57% | GNB: 34.26% | GNB: 31.15% | GNB: 53.44% | GNB: 6.21%
Heart Disease 303 6 BNB: 67.21% | BNB: 40.98% | BNB: 26.23% | BNB: 54.54% | BNB: 5.61%
RF: 72.13% RF: 42.62% RF: 29.51% RF: 56.98% RF: 5.61%
Switzerland GNB: 36% GNB: 0% GNB: 36% GNB: 17.08% | GNB: 7.46%
Heart Disease 123 273 BNB: 56% BNB: 20% BNB: 36% BNB: 36.44% | BNB: 7.4%
RF: 60% RF: 16% RF: 44% RF: 38.68% RF: 9%
Hungary GNB: 57.63% | GNB: 10.17% | GNB: 47.46% | GNB: 31.25% | GNB: 10.78%
Heart Disease 294 0 BNB: 74.58% | BNB: 50.85% | BNB: 23.73% | BNB: 62.37% | BNB: 4.98%
RF: 84.75% RF: 50.85% RF: 33.9% RF: 66.32% RF: 6.87%
Long Beach GNB: 30% GNB: 2.5% GNB: 27.5% GNB: 15.9% GNB: 5.18%
Heart Disease 200 698 BNB: 32.5% BNB: 2.5% BNB: 30% BNB: 15.7% BNB: 5.75%
RF: 47.5% RF: 20% RF: 27.5% RF: 33.35% RF: 6.54%
Heart Disease GNB: 57.62% | GNB: 5.08% GNB: 52.54% | GNB: 30.37% | GNB: 11.34%
(compilation) 920 977 BNB: 74.58% | BNB: 44.07% | BNB: 30.51% | BNB: 62.03% | BNB: 5.92%
RF: 76.27% RF: 52.54% RF: 23.73% RF: 66.14% RF: 4.72%

TABLE I: Summary of results from Gaussian Naive Bayes (GNB), Bayesian Naive Bayes (BNB), and Random Forest (RF)

classifiers on Heart Disease data sets.

models from each algorithm on each of the Switzerland Heart
Disease, Hungary Heart Disease, and Long Beach Heart Dis-
ease data sets. We observe that all three algorithms obtained
higher accuracy scores on the Cleveland and Hungary Heart
Disease data sets, but have lower scores on the Switzerland
and Long Beach Heart Disease data sets. This display of
inconsistency across data sets makes it difficult to determine
whether the respective ML algorithms are indeed capable
of predicting heart disease given the relevant features. To
address this lingering uncertainty, we tested each algorithm
on a singular data set compiling all four data sets in the
Heart Disease database. A summary of the performances of
each algorithm on each Heart Disease data set can be seen in
Table [

V. DISCUSSION

Experiment 1 demonstrates both the variance of ANN
model accuracy for diabetes prediction, and the difficulties
of reproducing a published scientific result. This struggle to
reproduce published work is experienced by many scientists,
and is exactly the kind of problem that FAIR guidelines aim to
rectify. Thus, Experiment 1 shows the need for FAIR standards
and practices throughout the scientific research and publication
process.

Experiment 1 also demonstrates that choice in data pre-
processing steps and in training batch size are decisive of
final model accuracy scores. Our work suggests that online
training significantly increases the final accuracy scores of
ANN models. Similar results were found by Won et al. [38],
and we leave further investigation of our results as a future
work.

Experiment 2 additionally quantifies the variance of Guas-
sian Naive Bayes, Bernoulli Naive Bayes, and Random Forest
classifers in medical diagnosis from numerous heart disease
data sets. This experiment shows that comparing algorithmic
performance on a given data set is incredibly difficult due
to frequent inconsistency in model performance caused by
PRNG seeds. We did observe that overall, the Random Forest
algorithm had less variance and better testing accuracies on
all four Heart Disease data sets separately (see Table [I),
although it only sometimes outperformed the Gaussian and
Bernoulli Naive Bayes algorithms on the compiled Heart
Disease data set. We will leave further exploration of the
potential for Random Forest classifiers to predict heart disease
using different data sets as a future work.

Experiment 2 also showed that model accuracy can vary
widely for different subsets of a data. We noted that in the
Heart Disease data set collection, the number of missing
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Fig. 5: 100 models generated from each of the Gaussian Naive Bayes, Bernoulli Naive Bayes, and Random Forest algorithms
on each of the Heart Disease data sets, where each model uses a unique PRNG seed values.




values varies by data set (see Table [). The Swrizerland and
Long Beach Heart Disease data sets contain higher propor-
tions of missing values, which likely contribute to all three
algorithm’s consistently lower performance on these respective
data sets. This is relevant to our current work, in which we
are investigating the factors that determine whether a given
algorithm/data set pair will produce high or low accuracy
models.

VI. CONCLUSIONS AND FUTURE WORKS

In this study, we described the obstacles in reproducing
published scientific experiments, and quantified the variance in
accuracy of common ML models (Artificial Neural Networks,
Naive Bayes classifiers, and Random Forest classifiers) in
predicting different diseases. The data sets and code used for
our experiments and data analysis can be found on GitHub
The findings of this study determine that it can be near
impossible to replicate another researcher’s findings without
identical raw data, programming code, and tooling. It is also
difficult to verify the results of a comparison between ML
algorithms on a given data set or task due to the extent of
inconsistency caused by randomness.

As stated previously, current work involves determining the
metrics that can be used to foretell whether a certain algo-
rithm/data set pair will results in high quality models. Future
work includes designing Python intercepts (similar to the C++
intercepts introduced by Ahmed et al. [22]) for capturing
PRNG seeds and replacing the default Mersenne Twister in
the Python random library with a Philox generator for better
reproducibility across hardware systems. Another future work
to this paper is running identical experiments with additional
types of algorithms for prediction from medical data sets, and
using a broader variety of hardware and high-performance
computing tools such as GPUs and parallel programs.
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