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Hydrogen embrittlement occurs in materials under 
the influence of stress in hydrogen environments

Motivation
With growing interest 
in decarbonization, 
hydrogen is being 
considered as a 
means to reduce 
carbon in energy 
infrastructure

Environment

Stress / 
MechanicsMaterials

Mechanics
• Stress
• Defects
• Stress (pressure) 

cycling
• Residual stresses

Materials
• Strength 
• Microstructure and 

homogeneity

Environment
• Partial pressure
• Impurities
• Temperature

Challenge
Hydrogen degrades 
fatigue and fracture 
resistance of steels, 
and the effects on 
pressure vessel and  
line pipe steels are 
significant 



Structural integrity assessment: Basic requirements
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ASME B31.12 describes rules for hydrogen pipelines with 
reference to ASME BPVC Section VIII, Division 3, Article KD-10

Evolution of flaw size determined by 
fatigue crack growth (∆K-da/dN data)
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Outline

• Materials variables
- Microstructure and Welds

• Environmental variables
- Pressure

• Mechanics variables

• Application of knowledge to 
structural integrity assessments 
for hydrogen service
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Fatigue crack growth rates in gaseous hydrogen (GH2) 
similar for all grades of API pipeline steels

A wide variety of steel microstructures 
display nominally the same fatigue 
response in high-pressure GH2

Data generated at both SNL and NIST-Boulder, contained in various publications

Stress intensity factor range, ∆K (MPa m1/2)

Material  Microstructure Sy
(MPa)

X52 PF + pearlite 334-490
X60  PF 434
X65 banded ferrite + pearlite 478

X80 (B) 90% PF + 10% AF 
(coarse) 565

X80 (E) AF (fine) 593
X80 (F)  70% AF + 30% PF 552
X100 Bainite + PF 732
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Welds and base materials behave similarly in GH2

• To first order and if residual stress is 
considered, welds and HAZ show 
similar fatigue behavior in gaseous H2 
as the base metals

• Similar trends have been observed for 
a variety of weld processes

HAZX65 
GMAW

Ref: Ronevich et al. 
IJHE 42 (2017) 

Stress intensity factor range, ∆K (MPa m1/2)
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Fracture toughness of API grade pipeline steels 
depends on steel vintage and strength

Ref.: Ronevich et al, Intern Conf Metals and Hydrogen (2022)

• In general, modern steels 
have very high fracture 
toughness in air

• Modest trend with tensile 
strength in air:

higher strength → 
lower fracture toughness

• Hydrogen ‘equalizes’ the 
fracture behavior 
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Fracture resistance in GH2 does not necessarily 
reflect the fracture toughness in air

• In GH2 (as in air)
higher strength → 
lower fracture resistance

• KJQH is generally greater 
than 55 MPa m1/2

Ref.: Ronevich et al, Intern Conf Metals and Hydrogen (2022)

Crack 
tunneling
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Hydrogen ‘equalizes’ the fracture behavior
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Fracture resistance trends for welds and 
base metals are similar in GH2

Ref.: Ronevich et al, IJHE 46 (2021)

• Fracture resistance 
trends are similar for 
welds and base metals

• One should consider the 
influence of residual 
stresses

• Hardness is an important 
factor

- Local hard spots can 
be detrimental in GH2

55 MPa m1/2

210 bar GH2
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• Materials variables
- Microstructure and Welds

• Environmental variables
- Pressure

• Mechanics variables

• Application of knowledge to 
structural integrity assessments 
for hydrogen service

Materials 
performance



Low hydrogen pressure = large effect on fatigue

• Large ∆K
FCG is independent of pressure

– Fatigue crack growth rate in 3% H2 is 
the same as in 100% H2

• Intermediate ∆K 
FCG is dependent on hydrogen partial 
pressure

– Fatigue crack growth rate is slower in 
3% H2 than in 100% H2  

Large ∆KIntermediate ∆K

Ref.: San Marchi et al, PVP2021-62045

10
0%

 H 2 3%
 H 2

Dashed lines represent design 
curves that can be used to bound 

fatigue crack growth rates
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Low hydrogen pressure = large effect on fracture

X70
P = 85 bar
(N2 + H2)

Decreasing partial 
pressure

• Measurements of fracture 
resistance in gaseous mixtures 
of H2 and N2 show substantial 
effects of H2

• 1% H2 is only modestly different 
than 100% H2

• Fracture resistance does not 
scale linearly with 
pressure/fugacity

<1 bar of H2 substantially 
reduces fracture resistance 

Ref.: Briottet et al, PVP2018-84658

1% H2
10% H2 100% H2
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Summary of materials performance in GH2

• How does GH2 affect fatigue and fracture of pipeline steels?
- Fatigue is accelerated by >10x 
- Fracture resistance is reduced by >50%

• Does pressure affect fatigue and fracture?
- Fatigue and fracture are affected by pressure and there’s no 

obvious threshold (low pressure can have large effects)
• What materials variables influence the fatigue and fracture in GH2?

- Materials pedigree has surprisingly little effect on FCG
- Hydrogen-assisted fracture is influenced by strength 
- Welds (of comparable strength) have similar performance to 

base metals
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General bounding (design) curve captures the behavior 
of pipeline steels in GH2

• Units are important!
• In the above formulation:

- fugacity is in units of < bar >
- da/dN: < m/cycle > 
- ∆K: < MPa m1/2 >

Low ∆K:

High ∆K:

Master design curve formulation 

Pressure term
f� is the thermodynamic pressure or fugacity

Refs: San Marchi et al, PVP2019-93803
San Marchi et al, PVP2021-62045
San Marchi et al, PVP2022-84757

210 bar



Design curves enable upper bound prediction for fatigue 
crack growth as function of loading and pressure

Increasing R

Increasing P

No effe
ct o

f P

Effect of load ratio (R) Effect of pressure (P)
210 bar

210 bar
50 bar
10 bar
1 bar



• Material: 
– API grade X52 pipe
– OD = 324 mm
– t = 12.7 mm

• Environment: 
– Pressure = 200 bar 
– GH2 = 20%, 100%

• Stress: 
– Hoop stress: 68% SMYS
– Cyclic pressure: R = Pmin/Pmax = 0.5, 0.7
– Flaw 

• depth: 25% of wall thickness (a/t =0.25)
• length: 40 mm (2c = 40mm) – propagate with constant aspect ratio

Application of materials behavior to structural integrity 
analysis: Blends
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m
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Analysis of transmission pipe structure: Blends

The blending ratio has no effect 
on fatigue response (for R = 0.5)

Pmax = 200 bar

200 bar
R = 0.7

200 bar
R = 0.5

40 bar
R = 0.5

∆Kstart = 16.5

∆Kstart = 9.9

• Initial crack/flaw: 40 x 3.2 mm
– At start: Kmax = 33 MPa m1/2



• Material: 
– X52
– OD = 36 inch
– t = 0.406 inch

• Environment: 
– GH2 = 100%

Analysis: ‘Real-world’ example (100% GH2)

Analysis of pipeline operating data:
nominally 24-hour cycles over one year 
• Pmax < 700 psi
• Maximum hoop stress < 60% SMYS
• R > 0.9

• Flaw 
– depth: a/t =0.25
– length: 40mm



Summary of structural performance with GH2

• Can GH2 be safely injected into natural gas 
transmission pipe? 

It depends…
- Structural integrity depends sensitively on the pipe 

dimensions, the pipe condition and operating conditions
- For given pipe dimensions and operating conditions, the base 

material is a secondary consideration
- External loading and the condition of the asset (e.g., defects) 

will likely dominate overall risk exposure
- Blending ratio will not be the principal concern in most cases 
- Pressure cycling will likely need to be managed 
- Hard spots could be problematic (e.g., vintage welds)

Environment

Stress / 
MechanicsMaterials
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Chris San Marchi
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Joe Ronevich
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Informational resources

• Technical Reference for Hydrogen Compatibility of Materials
– https://www.sandia.gov/matlsTechRef/
– Report no. SAND2012-7321 (Technical Reference v.2)
– Report no. SAND2013-8904 (polymers)

• Technical Database for Hydrogen Compatibility of Materials
– https://granta-mi.sandia.gov/

• Study Group on Materials Testing and Qualification for Hydrogen Service
– Annual topical discussion group: international and industrial participation

• ASME Pressure Vessels and Piping Division Annual Conference (2005 - current)
– Materials for Hydrogen Service: session organization (2014-current)

• Expanded resources under development at
– Including H-Mat DataHUB (https://h-mat.org )

https://www.sandia.gov/matlsTechRef/
https://granta-mi.sandia.gov/
https://h-mat.org


Database of design properties for NG 
assets with hydrogen 
• Assessment of critical parameters determining 

materials response in hydrogen environments
• Survey of critical materials in ancillary equipment 

(e.g., pumping stations)
• Long-duration aging of polymers 

in piping systems  
• Evaluation of vintage materials

in existing infrastructure  

How do we assess structural integrity 
of infrastructure with hydrogen?

Pipeline Structural Integrity Tool
• Tools to evaluate probability of rupture of NG 

assets based on Nuclear Regulatory 
Commission (NRC) framework

• Uncertainty analysis to inform experimental 
evaluation

• Sensitivity analysis to determine opportunities for 
system and operational improvements

• Regulations, Codes, and
Standards (RCS)-based 
structural integrity 
assessment

What is the structural risk to NG assets 
with blended hydrogen?

Physics-based mechanisms of hydrogen 
embrittlement relevant to NG assets

• Develop deeper understanding of mechanisms of 
hydrogen embrittlement

• Establish models and framework for 
implementing physical phenomena into structural 
integrity tool

• Inform materials selection guidance and 
establish  basis for potential future materials 
development activity 

How do we formulate mechanistic 
models into predictions?

Industry-focused probabilistic 
framework for risk assessment  

International coordination facilitates definition of requirements, reduces redundancy, enhances 
rigor,  and improves breadth of structural integrity tools

State-of-the-art 
characterization 

Guidance on operating conditions

+ partners

Environment

Stress / 
MechanicsMaterials

Safe 
Region

Unsafe 
Region

performance

Materials activities in HyBlend Pipeline Blending CRADA: 
Structural integrity for hydrogen gas infrastructure



Background: thermodynamics (origin of fugacity)

H in metals:

Gas phase:

At equilibrium:

General form of 
Sieverts’ Law

Equation of state for H2
Abel-Noble formulation

Pure gaseous H2:

Blended H2:



Background: stress intensity factor, K

What is this in the stress intensity factor, K? 

• K characterizes the stress state at a crack tip
- analogous to the stress, but for the case of cracks in structures

• K is a transferable parameter that is used to generalize the state of a 
crack and transfer information between one geometry and another 
- for example between a laboratory test and a real-world application

� = ������

pressure
K

� = ����� �����

∆� = � ��� − � ���


