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2 I Outline |
|
* What is GMLS?

« Applications: |
« #1: mesh-“hardened” DG scheme |

e #2:. meshfree mimetic divergence
« #3: other examples |
 Conclusions |
I
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3 I A GMLS tutorial |

Generalized Moving Least Squares (GMLS) is a non-parametric regression for dual spaces

Statement of the GMLS problem: Given . \ . ‘
i.e., linear functionals!

Vv,V - a function space and its dual I
P =span{p,}2, CV - a finite dimensional “consistency” space (usually polynomials)
A={A,....,A,}CV" - afinite set of sampling functionals:

w:V'xV'"—=R - a correlation measure between functionals

For every TEV’ (target) find an approximation 7 € V" given by

e - A
T(p)=1(p) VpeEP - P-reproducibility
N
T(u)= Eal.(r))ti(u) such that ;w(7,A)=0 =a,(r)=0 - local support |
- Ja@)], sC VzeVv - uniform boundedness
\ : Y,

H. Wendland. Scattered data approximation, Vol. 17. Cambridge university press, 2004.
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4 I A GMLS tutorial

Theorem. The GMLS coefficients a,(7) €ER solve a (local) Quadratic Program (QP):

N 2 N = . N — ) E RQ L= A, Ve RQXN
min —; E % (T uch that Eai(r))Lit p)=1(p) VpEP a(t)=[a()]ER"  T(p)=[7(p,)] [4,(p)] ‘
: i=1

“~ (T, A) W(r) = diag|w(z,A)|ER™  u=[4w)]ER"- sample vector
I
Algebraic form of the QP QP solution: GMLS “basis” functions
B
[ min%a(r)TW'l(r)a(r) such that La(t) = 7(p) J [ a(t)=W(@)L" (LW('L')LT )‘1 7(p) ]
GMLS approximation of the action of €V onueV: We can also group the terms as follows
[ T =v' |[W@L (LW@L') (p)|=ua(r) J [ T(u) = [uTW(r)LT (LW@L) [2(p)=b(@) 7(p) J
GMLS basis form: sum of field samples 4,(x) times basis f. GMLS action form: sum of target acting on consist. space. |
1 1 2 ‘
The coefficients b(t) solve an algebraic WLS problem: [b(f )= argmln—(LTC—ll)T 4¢ )(LTC-U) = argmmEHLTc—u‘W(J
ceRY ceRY T
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5 I GMLS is not a polynomial regression!

Example: field approximation from point values

pi(x) A polynomial basis function

0
Not a polynomial! = [ p,(x)=2bl.(x)pi(x) J

b;(x) A coefficient depending on the spatial location

= == ==« Fxact

“Frozen” GMLS

GMLS approximant

X oooooxo ©00 0 © 0000000 0000 00 0 00 Figure credit: M. Perego
)

This is non-parametric regression of the data: approximant not known

in closed form but can be effectively computed at any given point.
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1 for Next Generation
6 The Compa’d re TOOI klt A\ &\ Architectures (CANGA)

LABORATORY CIRECTED RESEARCH E DEVELTFMENT

A modern, performant software library for meshfree and particle methods on different architectures.

« Everything you need to do particle/meshfree methods Broblem
» Developers: P. Kubbery, N. Trask, P. Bosler HIRES (Asse'ﬁl{lv)
+ Initial development funded by Sandia’s LDRD program —otncan/Londition:
« Continuing support by the CANGA SciDAC project, NNSA, ASC Tlime-stepping
anager
Manages Repartitioning
* Input deck parsing Cfordinates 7 —
«  Parallel file reading/writing (ASCIl CSV, VTK, and Netcdf) Sl oo (Point Eval,
- Neighborhood searches (k-d tree) Caade; — —
» Euclidean & Spherical coordinate systems npAHECk
» Registering fields of various dimensions Compadre Toolkit v. 1.0 DOI: 10.11578/dc.20190411.1
» Sets of particles
+ Data transfer between sets (remap) Distribution

» Partitioning/repartitioning particle sets over multiple processors (Zoltan2)

. https://www.osti.gov/doecode
Leverages Trilinos Tools g ;

« Trilinos/Zoltan2 particles over processor partitioning DOECODE iommmetemm, omsion
» Trilinos solvers (Amesos2, Ifpack2, Muelu, Belos, Teko, Thyra,
Stratimikos) for stationary problems (time-dependent pending) https: / /github.com/SNLComputation/compadre
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https://github.com/SNLComputation/compadre
https://doi.org/10.11578/dc.20190411.1
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7 I Application #1:“mesh-hardened” DG

Sometimes we have no choice but compute on highly Generation of high-quality grids can take up to 75% of the
distorted meshes as in Lagrangian and ALE hydro codes: total time-to-solution (Dart System Analysis: SAND2005-4647
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What is the problem? Finite Element Methods (FEM) work best on shape-regular meshes. But... |
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Tzanio Kolev (BLAST hydro code, LLNL), M. Shashkov (LANL) http://cubit.sandia.gov
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g8 I What can we do about this problem?

Problem:

FEM solution quality depends on shape function quality:

Quality of standard FEM shape functions is tied to mesh quality

Solution:

Divorce shape function quality from the mesh quality!

|. Babuska and A. Aziz. On the angle condition in the finite element
method. SIAM Journal on Numerical Analysis, 13(2):214-226, 1976

How can we do this?

Go Meshless! .

* We will use the mesh only for integration which can be done accurately even on a bad mesh

* We will extend Generalized Moving Least Squares (GMLS) to approximate bilinear forms
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A little bit of history

The GMLS “basis” functions a,(7) have been used
as FE shape functions by Nayroles (1992), Belytschko

(1994), Atluri (1998), Mirzaei (2013) and others.

' _
4 3
)
. . . B
However, a,(T) is non-polynomial and requires
expensive quadrature. .

A (G)MLS shape function and its derivative for Gaussian and
J.S. Chen uses under-integration to avoid this regularized w(.,.) and a standard P71 shape function on triangles.

problem and obtain computationally efficient
methods for large deformation solid mechanics.

T. Most, C. Bucher, Structural engineering and mechanics, 21/3, pp.315-332

Chen, J.S,, Hillman, M., Riter, M.: An arbitrary order variationally consistent integration for

However) under-integration intrOduceS Galerkin meshfree methods. Int. J. Num. Meth. Engrg. 95(5), 387—418 (2013).
instabilities and requires development of

P op . . . Chen, J.S., Wu, C.T, Yoon, S., You, Y.: A stabilized conforming nodal integration for Galerkin
problem-specific stabilization techniques. mesh-free methods. Int. J. Num. Meth. Engrg. 50(2), 435-466 (2001).
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10 I Extension of GMLS to approximation of bilinear forms

An abstract setting: Consider a variational problem set in a Hilbert space V:
[ seek u €V suchthat a(u,v)=fw) forall veV J ( a():VxV - R; f():V-NR J ‘
i -
f(+) is a linear functional = can use GMLS to approximate it: f) = fw) =bWw) - f(p) .
a(-,+) is not a linear functional so GMLS does not readily apply. ( a(u,v) = d(u,v) :=bw) - alp,p) - b(w). \
How can we extend GMLS? Here’s the key idea: 1 |

« Holding the test function v € V fixed gives a linear functional a,(-) == a(:,v)

« Holding the trial function fixed gives another linear functional a,(-) == a(u,-) |

[ seek u € RN suchthat b(v)-a(p,p)-b(u) = b(w) - f(p) forall u € RY J The (global) discrete problem ‘




SAND2022-XXXX C I

11 | Application to a model PDEs: |. Setup

1. Variational problem YF‘-_——_.—" ‘

— X
_ ‘
seek uw €V suchthat a(u,v)=fw) forall vevV “\

&S

representing a weak form of —cAu+b-Vu=f in2 and u=0 on I’ \" |
‘,
\_-_-:’--'J '
2. FE mesh 2" with elements {’Ck}é\[:el that may be low-quality. —
3. A quadrature rule on each element that is exact for linear fields. |
4. A point cloud X" C 2 comprising points {wi}fv:pl.
i
* No relationship assumed between the mesh and point cloud. L

» Of course, mesh nodes can be points in the cloud.

« We seek an approximate solution on the point cloud, not the mesh nodes.
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Application to a model PDE: 2.Local discrete problems

1. We start by writing the bilinear form and the RHS functional as sums over the elements:

N. N,
a(u,v) = 3 k5 ar(u,v) flo) = 312y fi(v) Local sampling set

2. We consider a GMLS with P = B, and kernel w(KCy, x;) = (|bk — :1:‘7 where /

« b, is the centroid of element /Cj,.

» p(+) is a radially symmetric, positive kernel function with supp p = O(h).

3. We construct approximations of a; and f; locally from point values:

SF = {uf,...,uf } local approximation space = local DoF set Sk = {0z, | w(K, ;) > 0}

[ ar(u*, v*) == b(v¥) - ar(p, p) - b(u*); fr (%) = b(v*) - fi(D); uk, vk e s, J ‘
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Local stiffness matrix and load vector: p = {p,,-,p,}.  Local GMLS basis - spans P, ‘

13 | Application to a model PDE: 3. Local and global assembly

(A = ar(pjvi)  ax(pppi) = j eVp; - Vp; + (b - Vp;)p; dx
K » Requires only integration of polynomials! I

» Can be performed by any standard rule. §

(fi)i = fi (@) fiw) =| f-pidx

Kk
Global problem discrete problem: |
1S] = Ui, enn Sk global approximation space = union of all local DoF sets
i
a(lu], ) == ) ap(u”, o) |
[ Seek [u] € [S] such that a([u],[v]) = f([v]) V[v] € [S] J Krenh ‘
F(l) = > fru(v")

KreNh
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The global problem is a non-conforming discretization!

One can show that the global discrete problem is equivalent
to a non-conforming discretization in terms of discontinuous
piecewise polynomial shape functions.

The nature of non-conformity is similar to that in, e.g.,
Interior Penalty and Discontinuous Galerkin (DG) methods.

Thus, we can use standard techniques from IP and DG to
stabilize our formulation by adding suitable penalized
jump terms.

Here we shall use the same treatment of advective and
diffusive terms as in the “original” DG method; see

Cockburn, B., Dong, B., Guzman, J.: Optimal convergence of the original
DG method for the transport-reaction equation on special meshes.
SIAM J. Numer. Anal. 46(3), 1250-1265 (2008)
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— Nodal FEM
—— Classical MLS/RKPM
- Proposed GMLS

— Nodal FEM
—— Classical MLS/RKPM
- Proposed GMLS
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15 ‘ A stabilized global formulation using a classical DG approach

Stabilization of the advective term

ai(u,v) = Z Vu - Vodr — /

ub - Vudx + / uwvb - npdS
Kk

oK,

Stabilization of the diffusive term

a;(u,v) = dp(u,v) — ;/f{{vu}} - [v]dS + L'U' [u]dS — %/J-:[[u]] vl FdS {{q}}=%(q1+qz)
(o)) = 5 (01 + 92)

Global stabilized discrete problem [lg]] = q1-m1 + g2 - mz

[[‘P]] = @n; + @n;

[ Seek [u] € [S] such that aP¢([ul,[v]) = f([v]) V[v] € [S]J Average & Jump

Bochev, Kuberry, Trask, Perego. Mesh-hardened finite element analysis through a GMLS approximation of variational problems. Springer LNCS, 2020.
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Numerical examples
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Shape function comparison

Uniform mesh

Non-uniform mesh



17 I Application #2: meshfree mimetic divergence
Challenge: how to be mimetic without a mesh?

Today, most meshfree methods for D“u(x) = f(x) look like this:

uf(x) = Eu(xp)Wg(x -X,)

Local kernel estimate of the field

= DU (x)= ) u(x,)DW,(x-x,)

Derivative approximation

Creates conflicts between consistency and conservation

 SPH is conservative but not PO concistent. RKPM is P1 consistent but not conservative

Mathematically equivalent to node-based (or collocated) methods

« Unsuitable for mixed discretizations needed in Drift-Diffusion, subsurface flow,...

Many such methods perform poorly on the 5-strip problem, which tests their
ability to reproduce fields that are in H(div) but not in H - a critical requirement
for mixed discretizations

— “Compatible” or “mimetic” meshless methods lag behind their mesh-based cousins!

D ux,)DW,(x-x,)=f(x)

PDE discretization

particle of
mterest\

neigh bour ®
particle
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kernel W(r} B

20 . ‘
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18 I What can we do about this problem?

We will build a Meshfree Mimetic Divergence operator (MMD)! How? ‘
By mimicking the construction of a mimetic mesh-based divergence operator DIV :F —C :
I
Divergence theorem Discrete Stokes theorem on cochains Mimetic divergence operator i
1
f V-udV=f udA - j V-udv=2f udA - DIV(,‘T-')|C:—ZTf,uf
C ac c feac S He feac t
The mimetic divergence D/Vis constructed from the following data:
i
= Field data: given by the face fluxes F¢ :
= Topological data: given by the action of the boundary operator o on cells. ‘

= Metric data: given by the measures p; = [C| and ur = |f], of a cell and its faces, respectively
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19 I An abstract Meshfree Mimetic Divergence (MMD) operator

A standard meshfree environment:
A point cloud X c 2 comprising points {x;},.

- Field representations by point samples at x;: u — {u" € R¥|ul' = u(x;)}

An MMD habitat:
. . . . u € RV g
» Notions of virtual cells C = {c;}, indexed by x; € X and virtual faces F = {f;}, "
« A notion of virtual boundary operator 3":C —» F us € RM
€ER
* Aset of real numbers {u.} and a set of real vectors {u,}, indexed by virtual cells and faces, and Br
€ER
 An operator T: X — F mapping point samples {u"*} to real vectors {uf} indexed by virtual faces. He
This MMD habitat provides abstractions of the data needed to construct the mimetic D/V I
i

= Field data: given by the real vectors {u;}: field moments
= Topological data: given by the action of the virtual operator d'on virtual cells.

= Metric data: given by the real numbers {u.} and the real vectors {uf}: metric moments
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20 I Assumptions on the MMD habitat

“Topological” assumptions

“Metric” assumptions

Virtual boundary operator

T.0 9':C - F satisfies 3’ (U,ecc) = 09, i.e., 8’ recovers the physical domain boundary

Metric and field moments
. {n {nr)
T1 pc>0, pu.=0(h?) and Y p. = 9| Metric moments

T.2 My = —H5 anti-symmetry ur = T(uh)

Fi t
T.3 Uz = +u7 symmetry of T ield moments

Local Lipschitz continuity: For any C? vector fields u and v with point samples {u"} and {v"}

|us -y —vp - pg| < CROTH|uh ="

d' is the virtual

The numbers {u }, {u} and the operator T are a P; -reproducing pair: boundary!

1
V'p(xc)=”_zpf'ﬂf Vp € P Vx.€X

cfea’c
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21 I MMD definition and analysis

Define the abstract meshfree mimetic divergence (MMD) operator DIV: X — C as
« u"is a point sample of a vector field u € RN ‘
DIVuy,: = i Z Us - Wy * uy =T(u") are the field moments, Ur € RM
He fea'c * {uc}, {us} are the metric moments, pr € RY |
« @' is the virtual boundary! U: €ER
Theorem.
N
Assume that the metric and field moments satisfy T.1-T.3, the local Lipschitz condition and the P1
reproduction property. Then, the abstract MMD operator is
* Locally conservative: Z pcDIVuy, = z Up - U forany w = U;gc;; [ EX ‘
CEW fed'w
» First-order accurate: |V -u— DIV uy|| < Ch for any u € C?(Q)¢ i
- J
|
We will consider two instances of the abstract MMD operator: ‘

* #1 - with background mesh « #2 - without background mesh



SAND2022-XXXX C I

22 I MMD Instance #I: with a background mesh

An MMD habitat with a background primal-dual mesh having dual cells C and dual faces F: ‘
« Virtual cells C = {c;} — dual mesh cells; Lo
i
. Virtual faces F = {f;} — dual mesh faces, :rx i”. j V-udl = 2 f udA I
(B2 e
 Virtual boundary 0' — geometric boundary 0:C - F ‘ feae™t
GMLS "
* Metric moments {u.} — |c| dual cell volumes
*  Metric moments {us} — t7(p) GMLS basis moments < bf(uh) 15 (p) ~ 17(w)
« Field Moments {us} — bs(u") GMLS coefficients approximation target
A h_ L h ]
— Abstract MMD DiVup:=— Us - Uy DIy u™: = el Z bs(u") - 7:(p) | MMD Instance #1 |
c
fea’c feadc

MMD #1 satisfies a discrete divergence theorem » Useful for poor quality meshes with near singular basis functions.
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23 I MMD Instance #2: without a background mesh

Without a background mesh some of the data necessary to instantiate the abstract MMD is missing:

v’ Field data: ur = bs(u") GMLS coefficients ( ) )

X Topological data: dc;=1{f;} geometric boundary DiVuy: = —c z U - Uy I
/

X Metric data: pe = lc| and p; = 1¢(p) = ff p dA \ feo%C )

= The missing pieces of data are exactly the ones that could be trivially obtained on the mesh!

= We will construct analogues of the missing data that are actually cheaper than building a mesh!

Our plan for the second MMD instance:

i
v’ Field data: ur = br(u") keep the GMLS coefficients |
v Topological data: use the e-ball graph of the point cloud as a mesh surrogate
v Metric data: define by solving a suitable algebraic problem

Ax = Db



SAND2022-XXXX C I

24 I MMD Instance #2: Topological Data |

We endow X with a virtual primal-dual mesh complex (a mesh surrogate) as follows:

Virtual primal mesh: G. (V,E) the e-ball graph of the point cloud

Vertices: V=X (the points in the cloud)

Edges: E:={ey = (xi,z;) €V xV ||z, —xj| <eg4}

Virtual dual mesh: GQQ(C, F') the "formal” dual of G. (V,E)

Cells: assign a virtual cell ¢; to every vertex x;

Faces: assign a virtual face f;; to every edge e;

Virtual boundary: d'c;={f;} |

G.,(V,E) can be constructed with O(N) complexity using binning algorithms.
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25 ‘ MMD Instance #2: Metric Data |

Constructing the metric data on a point cloud X with N points:

Virtual cell volumes: assume quasi-uniform point cloud

Ixq < hXQ,Q < CquldXq I
'__lﬂl hx,q = sup min |z — x| fill .
He:= o xcQ Ti€Xq 1
N —
L. :
qx, = - min|x; — ;]| «— separation
2 i#j

Virtual face areas: seek in terms of a scalar potential

p* kth basis function of P

1f = (GRAD ¢*) p* ¢* scalar function on X

GRAD:V — E topological gradient



SAND2022-XXXX C I

26 I MMD Instance #2: Metric Data |
Equations for the virtual face areas ‘
Recall the P-reproducibility condition on the virtual metric data:
) I
7 p)=— ) BPm; VpEP; Vx €X
Cfea’c B
Inserting the virtual face area ansatz pf = (GRAD ¢*) p* yields
DIV(GRAD ¢*) p*(x.) =V - p*(x,) |
i
[
« A weighted graph Laplacian problem for each basis function. Solution cost O(N) using AMG ‘

« Trades a challenging computational geometry problem (meshing) for a benign algebraic one.



SAND2022-XXXX C I

27 ‘ The two instances of the abstract MMD operator at a glance

#1: MMD with a background mesh: #2: MMD without a background mesh:
1 1
DIVatyi= 2= b(w) 7 (p) DIVay: == 3" b(u) - iy (p)
|C] Hc
feac feac I
« Defined by the GMLS coefficients: Field moments (the map T) « Defined by the GMLS coefficients: "
T: u" > b(u) T: u" - b(u)
« Defined by the GMLS target: Face moments « Defined by a graph Lapacian:
k _ kY k- k_ k
pri=1@); 1@ =[ pdA uy = (GRAD ¢*)p*;  A¢*=7V-p
]
. , _ i
» Defined by actual cell volumes: Cell moments » Defined algebraically:
Q2]
”C: = |C| ”c: -

N
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28 I Application of the abstract MMD theory

Assumptions checklist ‘
Property MMD with mesh MMD without mesh
T1 u.>0, p.= O(hd); Zcﬂc = Q] 4 v _g' I
o
T.2 [17 = _”7 v v U;c:. |
— e D
T.3 up = +ug v v
Local Lipschitz v TBD =
P1 reproduction v TBD A |
MMD with a background mesh: MMD without a background mesh: |
* Locally conservative * Locally conservative :

* Provably first-order accurate * Numerically first-order accurate ‘
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29 I A historical perspective

The idea to construct virtual metric data had been used before in:

The Uncertain Grid Method (UGM) O. Diyankov. Uncertain grid method for numerical solution of PDEs.
Technical report, NeurOK Software, 2008.

« First example of a meshfree “finite volume” scheme
« Uncertain refers to faces between two adjacent points (our virtual face)

« First-order accurate i
The Conservative Meshfree Scheme (CMS) E. Kwan-yu Chiu, Q. Wang, R. Hu, and A. Jameson. A conservative
L . L mesh-free scheme and generalized framework for conservation
« Similar in principle to UGM laws. SISC, 34(6) 2012.

* First-order accurate

The key differences with our approach:

* GMLS enables extension of our scheme to high-order accuracy
« Both UGM and CMS involve expensive global constrained optimization problems:

= UGM w LP solved by primal-dual log-barrier method (involves Newton)
= CMS w QP which requires a specialized QP solver



30 I Numerical examples

The five spot problem : Tests conservation

Sink -1/4

Source +1/4

Pressure
=

20

‘1 -
Dashed: Reference mixed FE method (RTO-PO) /

! | T I ]
Solid:  Globally conservative meshfree

.

]

= T
R
\
N
W
1]

Pressure with varying R = u,/u,.
| | 1

Profile along line y = x

The five strip problem (Hughes et al): Tests H(div) compliance

T.J.R Hughes et al, CMAME

— Exact
== dx =116
-—= dx=1/32
b - dx=1/64
ul — dx=1/128

20
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E
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— Exact
= dx=1/16 1

- dx=1/32
- dx=1/64
— dx=1/128
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31 | Fun numerical examples

Advection-diffusion

Finding your way out of a maze

U Magnitude
1

Fq




32 I MMD with mesh is robust on bad meshes

Mesh size h
1/8
1/16
1/32
1/64
1/128

Mesh size h
1/8
1/16
1/32
1/64
1/128

Uniform

0.0680972

0.0151883
0.00369427
0.000918387
0.000229303

Uniform

0.058615

0.0140316
0.00336336
0.000818044
0.000201421

Mayuni
2.16
2.04
2.01
2.00

Random

0.0696424

0.0153232
0.00373621
0.000926804
0.000231348

Random
0.078694
0.0179227
0.00436033
0.00107166
0.000264927

Myand

2.18
2.04
2.01
2.00

Mrand

2.13
2.04
2.02
2.02

Deformed  myg.y
0.0824282
0.0174445
0.00402815
0.000973081
0.000239727

2.24
2.11
2.05
2.02

Deformed myg.y

0.111007
0.0366452
0.0105518
0.0027877

0.000710059

T

1.60
1.80
1.92
1.97
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We solve the Darcy problem
on 3 meshes with varying
element quality: uniform,

random and deformed

MMD Instance #1

* Maintains best theoretic rate on all grids

P1 Finite Element

» Delay of the asymptotic regime on
deformed mesh.

« Error still 3times larger on the finest
mesh
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Compatible meshfree discretizations on manifolds

h error rate
0.07 7.7998e-05 -

0.035 5.5065e-06 3.82
0.0175 3.7434e-07 3.88

20

---- Co
--- Fin

— Exact
arse
e

(2 pt/strip) ||

Five-strip problem on a cylinder: standard test case for H(div) compatibility
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Steady-state Shallow Water Equations

helght
-2.998e+03

25204

2042,7
#1565,

=1.087e+03




34 I What else have we done with GMLS?
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GMLS Field reconstruction from native degrees-of-freedom for Multiphysics data-transfer (remap)

Typical use cases

A Discrete DeRham Complex (mimetic discretization)

DOF:

= Different codes may employ different discretizations of the same PDE due to different designs, e.g.,

« stabilized vs. compatible

= The same field may be represented differently in a coupled multi-physics simulation, e.g.,
» Raviart-Thomas (H(div)) velocity vs. nodal (H1) velocity in Darcy-Stokes coupling

= The field may be represented by the same type of discretization but on a different cell shape:
» Raviart-Thomas on tets, Raviart-Thomas on hexes and mimetic difference on polyhedrons

Nodal
value

Edge Face Cell
circulation flux average
I—>T B — ®

—) Wy
Ck
A \
cell form

DOF = GMLS target or sample functionals!
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Raviart-Thomas DOF

ive field data transfers for climate models

element fields for coupled Earth system models

Meshless remap between finite volume and spectral

Examples of nat
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36 1 What else have we done with GMLS?

A “Data to Model” workflow for obtaining “Digital Copies” of semiconductor devices directly from data

1. Laboratory measurement Prldge Rect‘|f|er: MAPP‘SlmuIatmn ‘vs Lab Datg
2 e ,4"\‘ /"\‘ .4'"‘
Physical device %\ ;" % LAY g
—~ 1 . N “ .' \‘ 5 |
Force ﬂ . | ~— “‘ ," “‘ .' \ ".’
“o—c" 0 . 0 “So—o0 § . '. % '. " K
- ’ L of 4 ‘.
N Sense w A >_\ “‘ :, “‘ i ammmm Vn: Exp. o .’ I
TN4148 i >E 4L Y g L\ 5| e VD ‘\ .." |
MMSZ5239 N L A Vism | &% 4 I
Source/Measurement SMU Sinking SMU 2 \"“"' | “&”T' V?Ut:Sim \."“’T N I
0 50 100 150 200 250 300
Leakage (LK): -6V to 0.01V
Breakdown (BD): -9.6V to -5.9V I
2. Model generation . ras
40 MMSZ5239 | | | | | Bt
BD : LK : FW 8/ :ggtﬁpact Model | /V\/<+>
207 : : 1 in \= '
|
Z I | e < 47 1N4148 las i
E | £ ol odel ONN) | p—p ¢ - |
c |
=20 F 13 Sweeps of V,,data | ' b ! layer - R
I PN i = 4 25 neurons | Digital copy A
408 ! — tanh activation - \ +
: : 8" « 2500 epochs - /}/\'
|
-60 L \ \ ‘ ‘ ‘ ‘ ‘ out
086 4 2 0 8 4 o 4 8 3. Model model validation
vpn(V) TV(vIon in V)
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37 I Conclusions

GMLS is an extremely flexible and powerful data regression tool ‘
We developed a computationally efficient mimetic meshfree divergence using GMLS
o N I
We extended GMLS to approximation of bilinear forms
» This approximation is equivalent to a non-conforming FE '
» Quality of these shape functions does not depend on the mesh quality
» Their integration can be performed by standard FE quadrature
« Standard DG and IP techniques can be used to stabilize the formulation
We applied GMLS to perform data transfer of native fields between codes ]
|

We applied GMLS to obtain compact models of semiconductor devices directly from lab data



