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A GMLS tutorial3

Generalized Moving Least Squares (GMLS) is a non-parametric regression for dual spaces

H. Wendland. Scattered data approximation, Vol. 17. Cambridge university press, 2004.

Statement of the GMLS problem: Given

For every             (target) find an approximation             given by             τ ∈V * τ ∈V *

- P-reproducibility

τ (u) = ai (τ )λi (u)
i=1

N

∑   such that  

τ (p) = τ (p) ∀p∈ P

ω(τ ,λi ) = 0 ⇒ ai (τ ) = 0

a(τ )
L1
≤C ∀τ ∈V *

&

'
((

)
(
(

- local support

- uniform boundedness

- a finite dimensional “consistency” space (usually polynomials)

V, V * - a function space and its dual

ω :V ∗ ×V ∗ →R - a correlation measure between functionals

- a finite set of sampling functionals: 

P = span{pi}i=1
Q ⊂V

Λ = {λ1,…,λN}⊂V
*

i.e., linear functionals!
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A GMLS tutorial4

min 1
2

ai
2 (τ )

ω(τ ,λi )i=1

N

∑     such that  ai (τ )λi (u)
i=1

N

∑ = τ (p) ∀p∈ P(p)

Algebraic form of the QP

Theorem.

min 1
2
a(τ )TW −1(τ )a(τ )   such that  La(τ ) = τ (p)

The GMLS coefficients                 solve a (local) Quadratic Program (QP):ai (τ )∈ R

QP solution: GMLS “basis” functions

a(τ ) =W (τ )LT LW (τ )LT( )
−1
τ (p)

a(τ ) = ai (τ )[ ]∈ RN

W (τ ) = diag ω(τ ,λ j )!" #$∈ R
N×N

τ (p) = τ (pj )!" #$∈ R
Q L = λ j (pi )!" #$∈ R

Q×N

u = λi (u)[ ]∈ RN
- sample vector

GMLS approximation of the action of           on         :  τ ∈V * u∈V We can also group the terms as follows

τ (u) = uT W (τ )LT LW (τ )LT( )
−1
τ (p)"

#$
%
&'= u

Ta(τ ) τ (u) = uTW (τ )LT LW (τ )LT( )
−1"

#$
%
&'τ (p) = b(τ )

T τ (p)

GMLS basis form: sum of field samples        times basis f.λi (u)

b(τ ) = argmin
c∈RN

1
2
LTc−u( )

T
W (τ ) LTc−u( ) = argmin

c∈RN

1
2
LTc−u

W (τ )

2
The coefficients         solve an algebraic WLS problem:b(τ )

GMLS action form: sum of target acting on consist. space.
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GMLS is not a polynomial regression!5

Example: field approximation from point values

pτ (x) = bi (x)pi (x)
i=1

Q

∑
𝑝!(𝑥)

𝑏!(𝑥)

A polynomial basis function 

A coefficient depending on the spatial location 

3

Recipes  (2 equivalent formulations):

2. Constrained Optimization formulation:

1. Least Square formulation:

Generalized Moving Least Squares

Exact

“Frozen” GMLS

GMLS approximant

This is non-parametric regression of the data: approximant not known 

in closed form but can be effectively computed at any given point.

Figure credit: M. Perego

Not a polynomial!
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The Compadre Toolkit6

Particles

Coordinates

Neighborhood

Time-stepping

File 
Reader/Writer

Input Deck Remap

Repartitioning

Problem

Solver

Physics (Assembly)

Local
RBFGMLS

(Point Eval, 
Laplacian)

Boundary Conditions

Source Terms
Parameter 
Manager

Field Manager

Fields

• Everything you need to do particle/meshfree methods
• Developers: P. Kubbery, N. Trask, P. Bosler
• Initial development funded by Sandia’s LDRD program
• Continuing support by the CANGA SciDAC project, NNSA, ASC

Coupling Approaches 
for Next Generation 
Architectures (CANGA)

Leverages Trilinos Tools

• Trilinos/Zoltan2 particles over processor partitioning 
• Trilinos solvers (Amesos2, Ifpack2, MueLu, Belos, Teko, Thyra, 

Stratimikos) for stationary problems (time-dependent pending)

Manages

• Input deck parsing
• Parallel file reading/writing (ASCII CSV, VTK, and Netcdf)
• Neighborhood searches (k-d tree)
• Euclidean & Spherical coordinate systems 
• Registering fields of various dimensions 
• Sets of particles
• Data transfer between sets (remap)
• Partitioning/repartitioning particle sets over multiple processors (Zoltan2)

https://github.com/SNLComputation/compadre

Compadre Toolkit v. 1.0 DOI: 10.11578/dc.20190411.1

https://www.osti.gov/doecode

Distribution

A modern, performant software library for meshfree and particle methods on different architectures. 

https://github.com/SNLComputation/compadre
https://doi.org/10.11578/dc.20190411.1
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Application #1: “mesh-hardened” DG7

http://cubit.sandia.govTzanio Kolev (BLAST hydro code, LLNL), M. Shashkov (LANL)

Sometimes we have no choice but compute on highly 
distorted meshes as in Lagrangian and ALE hydro codes:

Generation of high-quality grids can take up to 75% of the 
total time-to-solution (Dart System Analysis: SAND2005-4647)

What is the problem? Finite Element Methods (FEM) work best on shape-regular meshes. But…
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What can we do about this problem?8

Quality of standard FEM shape functions is tied to mesh quality

Solution:

How can we do this? 

Go Meshless!

Problem:

FEM solution quality depends on shape function quality:

Divorce shape function quality from the mesh quality! 

• We will use the mesh only for integration which can be done accurately even on a bad mesh

• We will extend Generalized Moving Least Squares (GMLS) to approximate bilinear forms

I. Babuska and A. Aziz. On the angle condition in the finite element 
method. SIAM Journal on Numerical Analysis, 13(2):214–226, 1976
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A little bit of history9

T. Most, C. Bucher, Structural engineering and mechanics, 21/3, pp.315-332

A (G)MLS shape function and its derivative for Gaussian and 
regularized 𝜔(.,.) and a standard P1 shape function on triangles. 

The GMLS “basis” functions           have been used 
as FE shape functions by Nayroles (1992), Belytschko
(1994), Atluri (1998), Mirzaei (2013) and others.

ai (τ )

However,            is non-polynomial and requires 
expensive quadrature. 

ai (τ )

J.S. Chen uses under-integration to avoid this 
problem and obtain computationally efficient 
methods for large deformation solid mechanics. 

Chen, J.S., Hillman, M., Rüter, M.: An arbitrary order variationally consistent integration for 
Galerkin meshfree methods. Int. J. Num. Meth. Engrg. 95(5), 387– 418 (2013). 

Chen, J.S., Wu, C.T., Yoon, S., You, Y.: A stabilized conforming nodal integration for Galerkin
mesh-free methods. Int. J. Num. Meth. Engrg. 50(2), 435–466 (2001).

However, under-integration introduces 
instabilities and requires development of 
problem-specific stabilization techniques.
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Extension of GMLS to approximation of bilinear forms10

An abstract setting:

𝑠𝑒𝑒𝑘 𝑢 ∈ 𝑉 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑎 𝑢, 𝑣 = 𝑓 𝑣 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣 ∈ 𝑉

Consider a variational problem set in a Hilbert space V:

𝑎 8,8 : 𝑉×𝑉 → ℝ; 𝑓 8 : 𝑉 → ℝ

𝑓 8 is a linear functional ⇒ can use GMLS to approximate it:  𝑓 𝑣 ≈ @𝑓 𝑣 ≔ 𝒃 𝒗 8 𝑓 𝒑

𝑎 8,8 is not a linear functional so GMLS does not readily apply. 

• Holding the test function 𝑣 ∈ 𝑉 fixed gives a linear functional 𝑎! 8 ≔ 𝑎 8, 𝑣

• Holding the trial function fixed gives another linear functional 𝑎" 8 ≔ 𝑎 𝑢,8

How can we extend GMLS? Here’s the key idea:

𝑎 𝑢, 𝑣 ≈ E𝑎 𝑢, 𝑣 ≔ 𝑏 𝒗 8 𝑎 𝒑, 𝒑 8 𝒃 𝒖 .

𝑠𝑒𝑒𝑘 𝒖 ∈ 𝑹# 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝒃 𝒗 8 𝑎 𝒑, 𝒑 8 𝒃 𝒖 = 𝒃 𝒗 8 𝑓 𝒑 𝑓𝑜𝑟 𝑎𝑙𝑙 𝒖 ∈ 𝑹# The (global) discrete problem
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Application to a model PDEs:                                                1. Setup11

𝑠𝑒𝑒𝑘 𝑢 ∈ 𝑉 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑎 𝑢, 𝑣 = 𝑓 𝑣 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣 ∈ 𝑉

1. Variational problem

2. FE mesh with elements               that may be low-quality.  

Title Suppressed Due to Excessive Length 5

scheme. This has to do with the fact that in the PDE context a(·, ·) and f
usually involve integration over a domain ⌦. In such a case one would have to
consider a GMLS regression with a kernel w whose support contains the entire
problem domain. Unfortunately, this renders (8) dense, making the discretization
impractical for all but small academic problems.

The key to obtaining computationally e�cient discretizations from (6), resp.
(8) is to apply the GMLS formulation locally. In the following section we spe-
cialize the approach to generate a non-conforming scheme for a model PDE.

3.1 Application to a model PDE

Consider the advection-di↵usion equation with homogeneous Dirichlet boundary
conditions

�"�u+ b ·ru = f in ⌦ and u = 0 on � , (9)

where ⌦ ⇢ Rd, d = 1, 2, 3 is a bounded region with Lipschitz continuous bound-
ary � , b is a solenoidal vector field, and f is a given function. The weak form
of (9) is given by the abstract problem (3) with U = V = H1

0
(⌦),

a(u, v) =

Z

⌦
"ru ·rv + (b ·ru)vdx and f(v) =

Z

⌦
fvdx.

Let ⌦h and X⌘ ⇢ ⌦ denote a conforming partition of the computational do-
main into finite elements {Kk}Ne

k=1
and a point cloud comprising points {xi}

Np

i=1
,

respectively. We seek an approximation of u on the point cloud, i.e., the DoFs
are associated with X⌘ rather than the underlying mesh. Furthermore, no rela-
tionship is assumed between ⌦h and X⌘, in practice though one may define X⌘

using mesh entities such as element vertices, element centroids, etc..
Using the additive property of the integral a(u, v) =

PNe

k=1
ak(u, v) and

f(v) =
PNe

k=1
fk(v), where ak(·, ·) and fk(·) are restrictions of a(·, ·) and f(·)

to element Kk. To discretize (9) we will apply GMLS locally to approximate
ak(·, ·) and fk(·). Since U = V we can use the same regression process for the
trial and test spaces and drop the sub/superscripts used earlier to distinguish
between them. We define the local GMLS kernel as w(Kk,xj) := ⇢(|bk � xj |),
where bk is the centroid of Kk and ⇢(·) is a radially symmetric function with
supp ⇢ = O(h). This kernel satisfies the assumption W (ak(u, ·)) = W (fk). The
GMLS approximants of ak(·, ·) and fk(·) will be constructed from point samples
close to bk using the local sampling set Sk = {�xj

��w(Kk,xj) > 0} with cardi-
nality nk. We assume that the support of ⇢ is large enough to ensure that Sk is
Pm-unisolvent. We also have the GMLS recirpocal set Sk = {uk

1
, . . . , uk

nk
} with

uk
i := c(eki ; bk) · � and eki 2 Rnk . We obtain the local GMLS approximants of

the elemental forms by restricting each ak(·, ·) to Sk ⇥ Sk, i.e.,

eak(uk
j , u

k
i ) := c(eki ; bk) · ak(�,�) · c(ekj ; bk)

Tha matrix ak(�,�) 2 Rnq⇥nq has element

(ak(�,�))st =

Z

Kk

r�s ·r�tdx
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3. A quadrature rule on each element that is exact for linear fields.

4. A point cloud comprising points              .
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• No relationship assumed between the mesh and point cloud.

• Of course, mesh nodes can be points in the cloud.

• We seek an approximate solution on the point cloud, not the mesh nodes.
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between them. We define the local GMLS kernel as w(Kk,xj) := ⇢(|bk � xj |),
where bk is the centroid of Kk and ⇢(·) is a radially symmetric function with
supp ⇢ = O(h). This kernel satisfies the assumption W (ak(u, ·)) = W (fk). The
GMLS approximants of ak(·, ·) and fk(·) will be constructed from point samples
close to bk using the local sampling set Sk = {�xj

��w(Kk,xj) > 0} with cardi-
nality nk. We assume that the support of ⇢ is large enough to ensure that Sk is
Pm-unisolvent. We also have the GMLS recirpocal set Sk = {uk

1
, . . . , uk

nk
} with

uk
i := c(eki ; bk) · � and eki 2 Rnk . We obtain the local GMLS approximants of

the elemental forms by restricting each ak(·, ·) to Sk ⇥ Sk, i.e.,

eak(uk
j , u

k
i ) := c(eki ; bk) · ak(�,�) · c(ekj ; bk)

Tha matrix ak(�,�) 2 Rnq⇥nq has element

(ak(�,�))st =

Z

Kk

r�s ·r�tdx

representing a weak form of 
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1. We start by writing the bilinear form and the RHS functional as sums over the elements:
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scheme. This has to do with the fact that in the PDE context a(·, ·) and f
usually involve integration over a domain ⌦. In such a case one would have to
consider a GMLS regression with a kernel w whose support contains the entire
problem domain. Unfortunately, this renders (8) dense, making the discretization
impractical for all but small academic problems.

The key to obtaining computationally e�cient discretizations from (6), resp.
(8) is to apply the GMLS formulation locally. In the following section we spe-
cialize the approach to generate a non-conforming scheme for a model PDE.

3.1 Application to a model PDE

Consider the advection-di↵usion equation with homogeneous Dirichlet boundary
conditions

�"�u+ b ·ru = f in ⌦ and u = 0 on � , (9)

where ⌦ ⇢ Rd, d = 1, 2, 3 is a bounded region with Lipschitz continuous bound-
ary � , b is a solenoidal vector field, and f is a given function. The weak form
of (9) is given by the abstract problem (3) with U = V = H1

0
(⌦),

a(u, v) =

Z

⌦
"ru ·rv + (b ·ru)vdx and f(v) =

Z

⌦
fvdx.

Let ⌦h and X⌘ ⇢ ⌦ denote a conforming partition of the computational do-
main into finite elements {Kk}Ne

k=1
and a point cloud comprising points {xi}

Np

i=1
,

respectively. We seek an approximation of u on the point cloud, i.e., the DoFs
are associated with X⌘ rather than the underlying mesh. Furthermore, no rela-
tionship is assumed between ⌦h and X⌘, in practice though one may define X⌘

using mesh entities such as element vertices, element centroids, etc..
Using the additive property of the integral a(u, v) =

PNe

k=1
ak(u, v) and

f(v) =
PNe

k=1
fk(v), where ak(·, ·) and fk(·) are restrictions of a(·, ·) and f(·)

to element Kk. To discretize (9) we will apply GMLS locally to approximate
ak(·, ·) and fk(·). Since U = V we can use the same regression process for the
trial and test spaces and drop the sub/superscripts used earlier to distinguish
between them. We define the local GMLS kernel as w(Kk,xj) := ⇢(|bk � xj |),
where bk is the centroid of Kk and ⇢(·) is a radially symmetric function with
supp ⇢ = O(h). This kernel satisfies the assumption W (ak(u, ·)) = W (fk). The
GMLS approximants of ak(·, ·) and fk(·) will be constructed from point samples
close to bk using the local sampling set Sk = {�xj

��w(Kk,xj) > 0} with cardi-
nality nk. We assume that the support of ⇢ is large enough to ensure that Sk is
Pm-unisolvent. We also have the GMLS recirpocal set Sk = {uk

1
, . . . , uk

nk
} with

uk
i := c(eki ; bk) · � and eki 2 Rnk . We obtain the local GMLS approximants of

the elemental forms by restricting each ak(·, ·) to Sk ⇥ Sk, i.e.,

eak(uk
j , u

k
i ) := c(eki ; bk) · ak(�,�) · c(ekj ; bk)

Tha matrix ak(�,�) 2 Rnq⇥nq has element

(ak(�,�))st =

Z

Kk

r�s ·r�tdx
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scheme. This has to do with the fact that in the PDE context a(·, ·) and f
usually involve integration over a domain ⌦. In such a case one would have to
consider a GMLS regression with a kernel w whose support contains the entire
problem domain. Unfortunately, this renders (8) dense, making the discretization
impractical for all but small academic problems.

The key to obtaining computationally e�cient discretizations from (6), resp.
(8) is to apply the GMLS formulation locally. In the following section we spe-
cialize the approach to generate a non-conforming scheme for a model PDE.

3.1 Application to a model PDE

Consider the advection-di↵usion equation with homogeneous Dirichlet boundary
conditions

�"�u+ b ·ru = f in ⌦ and u = 0 on � , (9)

where ⌦ ⇢ Rd, d = 1, 2, 3 is a bounded region with Lipschitz continuous bound-
ary � , b is a solenoidal vector field, and f is a given function. The weak form
of (9) is given by the abstract problem (3) with U = V = H1

0
(⌦),

a(u, v) =

Z

⌦
"ru ·rv + (b ·ru)vdx and f(v) =

Z

⌦
fvdx.

Let ⌦h and X⌘ ⇢ ⌦ denote a conforming partition of the computational do-
main into finite elements {Kk}Ne

k=1
and a point cloud comprising points {xi}

Np

i=1
,

respectively. We seek an approximation of u on the point cloud, i.e., the DoFs
are associated with X⌘ rather than the underlying mesh. Furthermore, no rela-
tionship is assumed between ⌦h and X⌘, in practice though one may define X⌘

using mesh entities such as element vertices, element centroids, etc..
Using the additive property of the integral a(u, v) =

PNe

k=1
ak(u, v) and

f(v) =
PNe

k=1
fk(v), where ak(·, ·) and fk(·) are restrictions of a(·, ·) and f(·)

to element Kk. To discretize (9) we will apply GMLS locally to approximate
ak(·, ·) and fk(·). Since U = V we can use the same regression process for the
trial and test spaces and drop the sub/superscripts used earlier to distinguish
between them. We define the local GMLS kernel as w(Kk,xj) := ⇢(|bk � xj |),
where bk is the centroid of Kk and ⇢(·) is a radially symmetric function with
supp ⇢ = O(h). This kernel satisfies the assumption W (ak(u, ·)) = W (fk). The
GMLS approximants of ak(·, ·) and fk(·) will be constructed from point samples
close to bk using the local sampling set Sk = {�xj

��w(Kk,xj) > 0} with cardi-
nality nk. We assume that the support of ⇢ is large enough to ensure that Sk is
Pm-unisolvent. We also have the GMLS recirpocal set Sk = {uk

1
, . . . , uk

nk
} with

uk
i := c(eki ; bk) · � and eki 2 Rnk . We obtain the local GMLS approximants of

the elemental forms by restricting each ak(·, ·) to Sk ⇥ Sk, i.e.,

eak(uk
j , u

k
i ) := c(eki ; bk) · ak(�,�) · c(ekj ; bk)

Tha matrix ak(�,�) 2 Rnq⇥nq has element

(ak(�,�))st =

Z

Kk

r�s ·r�tdx
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scheme. This has to do with the fact that in the PDE context a(·, ·) and f
usually involve integration over a domain ⌦. In such a case one would have to
consider a GMLS regression with a kernel w whose support contains the entire
problem domain. Unfortunately, this renders (8) dense, making the discretization
impractical for all but small academic problems.

The key to obtaining computationally e�cient discretizations from (6), resp.
(8) is to apply the GMLS formulation locally. In the following section we spe-
cialize the approach to generate a non-conforming scheme for a model PDE.

3.1 Application to a model PDE

Consider the advection-di↵usion equation with homogeneous Dirichlet boundary
conditions

�"�u+ b ·ru = f in ⌦ and u = 0 on � , (9)

where ⌦ ⇢ Rd, d = 1, 2, 3 is a bounded region with Lipschitz continuous bound-
ary � , b is a solenoidal vector field, and f is a given function. The weak form
of (9) is given by the abstract problem (3) with U = V = H1

0
(⌦),

a(u, v) =

Z

⌦
"ru ·rv + (b ·ru)vdx and f(v) =

Z

⌦
fvdx.

Let ⌦h and X⌘ ⇢ ⌦ denote a conforming partition of the computational do-
main into finite elements {Kk}Ne

k=1
and a point cloud comprising points {xi}

Np

i=1
,

respectively. We seek an approximation of u on the point cloud, i.e., the DoFs
are associated with X⌘ rather than the underlying mesh. Furthermore, no rela-
tionship is assumed between ⌦h and X⌘, in practice though one may define X⌘

using mesh entities such as element vertices, element centroids, etc..
Using the additive property of the integral a(u, v) =

PNe

k=1
ak(u, v) and

f(v) =
PNe

k=1
fk(v), where ak(·, ·) and fk(·) are restrictions of a(·, ·) and f(·)

to element Kk. To discretize (9) we will apply GMLS locally to approximate
ak(·, ·) and fk(·). Since U = V we can use the same regression process for the
trial and test spaces and drop the sub/superscripts used earlier to distinguish
between them. We define the local GMLS kernel as w(Kk,xj) := ⇢(|bk � xj |),
where bk is the centroid of Kk and ⇢(·) is a radially symmetric function with
supp ⇢ = O(h). This kernel satisfies the assumption W (ak(u, ·)) = W (fk). The
GMLS approximants of ak(·, ·) and fk(·) will be constructed from point samples
close to bk using the local sampling set Sk = {�xj

��w(Kk,xj) > 0} with cardi-
nality nk. We assume that the support of ⇢ is large enough to ensure that Sk is
Pm-unisolvent. We also have the GMLS recirpocal set Sk = {uk

1
, . . . , uk

nk
} with

uk
i := c(eki ; bk) · � and eki 2 Rnk . We obtain the local GMLS approximants of

the elemental forms by restricting each ak(·, ·) to Sk ⇥ Sk, i.e.,

eak(uk
j , u

k
i ) := c(eki ; bk) · ak(�,�) · c(ekj ; bk)

Tha matrix ak(�,�) 2 Rnq⇥nq has element

(ak(�,�))st =

Z

Kk

r�s ·r�tdx

2. We consider a GMLS with 𝑃 = 𝑃$ and kernel                                                where 
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scheme. This has to do with the fact that in the PDE context a(·, ·) and f
usually involve integration over a domain ⌦. In such a case one would have to
consider a GMLS regression with a kernel w whose support contains the entire
problem domain. Unfortunately, this renders (8) dense, making the discretization
impractical for all but small academic problems.

The key to obtaining computationally e�cient discretizations from (6), resp.
(8) is to apply the GMLS formulation locally. In the following section we spe-
cialize the approach to generate a non-conforming scheme for a model PDE.

3.1 Application to a model PDE

Consider the advection-di↵usion equation with homogeneous Dirichlet boundary
conditions

�"�u+ b ·ru = f in ⌦ and u = 0 on � , (9)

where ⌦ ⇢ Rd, d = 1, 2, 3 is a bounded region with Lipschitz continuous bound-
ary � , b is a solenoidal vector field, and f is a given function. The weak form
of (9) is given by the abstract problem (3) with U = V = H1

0
(⌦),

a(u, v) =

Z

⌦
"ru ·rv + (b ·ru)vdx and f(v) =

Z

⌦
fvdx.

Let ⌦h and X⌘ ⇢ ⌦ denote a conforming partition of the computational do-
main into finite elements {Kk}Ne

k=1
and a point cloud comprising points {xi}

Np

i=1
,

respectively. We seek an approximation of u on the point cloud, i.e., the DoFs
are associated with X⌘ rather than the underlying mesh. Furthermore, no rela-
tionship is assumed between ⌦h and X⌘, in practice though one may define X⌘

using mesh entities such as element vertices, element centroids, etc..
Using the additive property of the integral a(u, v) =

PNe

k=1
ak(u, v) and

f(v) =
PNe

k=1
fk(v), where ak(·, ·) and fk(·) are restrictions of a(·, ·) and f(·)

to element Kk. To discretize (9) we will apply GMLS locally to approximate
ak(·, ·) and fk(·). Since U = V we can use the same regression process for the
trial and test spaces and drop the sub/superscripts used earlier to distinguish
between them. We define the local GMLS kernel as w(Kk,xj) := ⇢(|bk � xj |),
where bk is the centroid of Kk and ⇢(·) is a radially symmetric function with
supp ⇢ = O(h). This kernel satisfies the assumption W (ak(u, ·)) = W (fk). The
GMLS approximants of ak(·, ·) and fk(·) will be constructed from point samples
close to bk using the local sampling set Sk = {�xj

��w(Kk,xj) > 0} with cardi-
nality nk. We assume that the support of ⇢ is large enough to ensure that Sk is
Pm-unisolvent. We also have the GMLS recirpocal set Sk = {uk

1
, . . . , uk

nk
} with

uk
i := c(eki ; bk) · � and eki 2 Rnk . We obtain the local GMLS approximants of

the elemental forms by restricting each ak(·, ·) to Sk ⇥ Sk, i.e.,

eak(uk
j , u

k
i ) := c(eki ; bk) · ak(�,�) · c(ekj ; bk)

Tha matrix ak(�,�) 2 Rnq⇥nq has element

(ak(�,�))st =

Z

Kk

r�s ·r�tdx

• is the centroid of element       .
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scheme. This has to do with the fact that in the PDE context a(·, ·) and f
usually involve integration over a domain ⌦. In such a case one would have to
consider a GMLS regression with a kernel w whose support contains the entire
problem domain. Unfortunately, this renders (8) dense, making the discretization
impractical for all but small academic problems.

The key to obtaining computationally e�cient discretizations from (6), resp.
(8) is to apply the GMLS formulation locally. In the following section we spe-
cialize the approach to generate a non-conforming scheme for a model PDE.

3.1 Application to a model PDE

Consider the advection-di↵usion equation with homogeneous Dirichlet boundary
conditions

�"�u+ b ·ru = f in ⌦ and u = 0 on � , (9)

where ⌦ ⇢ Rd, d = 1, 2, 3 is a bounded region with Lipschitz continuous bound-
ary � , b is a solenoidal vector field, and f is a given function. The weak form
of (9) is given by the abstract problem (3) with U = V = H1

0
(⌦),

a(u, v) =

Z

⌦
"ru ·rv + (b ·ru)vdx and f(v) =

Z

⌦
fvdx.

Let ⌦h and X⌘ ⇢ ⌦ denote a conforming partition of the computational do-
main into finite elements {Kk}Ne

k=1
and a point cloud comprising points {xi}

Np

i=1
,

respectively. We seek an approximation of u on the point cloud, i.e., the DoFs
are associated with X⌘ rather than the underlying mesh. Furthermore, no rela-
tionship is assumed between ⌦h and X⌘, in practice though one may define X⌘

using mesh entities such as element vertices, element centroids, etc..
Using the additive property of the integral a(u, v) =

PNe

k=1
ak(u, v) and

f(v) =
PNe

k=1
fk(v), where ak(·, ·) and fk(·) are restrictions of a(·, ·) and f(·)

to element Kk. To discretize (9) we will apply GMLS locally to approximate
ak(·, ·) and fk(·). Since U = V we can use the same regression process for the
trial and test spaces and drop the sub/superscripts used earlier to distinguish
between them. We define the local GMLS kernel as w(Kk,xj) := ⇢(|bk � xj |),
where bk is the centroid of Kk and ⇢(·) is a radially symmetric function with
supp ⇢ = O(h). This kernel satisfies the assumption W (ak(u, ·)) = W (fk). The
GMLS approximants of ak(·, ·) and fk(·) will be constructed from point samples
close to bk using the local sampling set Sk = {�xj

��w(Kk,xj) > 0} with cardi-
nality nk. We assume that the support of ⇢ is large enough to ensure that Sk is
Pm-unisolvent. We also have the GMLS recirpocal set Sk = {uk

1
, . . . , uk

nk
} with

uk
i := c(eki ; bk) · � and eki 2 Rnk . We obtain the local GMLS approximants of

the elemental forms by restricting each ak(·, ·) to Sk ⇥ Sk, i.e.,

eak(uk
j , u

k
i ) := c(eki ; bk) · ak(�,�) · c(ekj ; bk)

Tha matrix ak(�,�) 2 Rnq⇥nq has element

(ak(�,�))st =

Z

Kk

r�s ·r�tdx
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scheme. This has to do with the fact that in the PDE context a(·, ·) and f
usually involve integration over a domain ⌦. In such a case one would have to
consider a GMLS regression with a kernel w whose support contains the entire
problem domain. Unfortunately, this renders (8) dense, making the discretization
impractical for all but small academic problems.

The key to obtaining computationally e�cient discretizations from (6), resp.
(8) is to apply the GMLS formulation locally. In the following section we spe-
cialize the approach to generate a non-conforming scheme for a model PDE.

3.1 Application to a model PDE

Consider the advection-di↵usion equation with homogeneous Dirichlet boundary
conditions

�"�u+ b ·ru = f in ⌦ and u = 0 on � , (9)

where ⌦ ⇢ Rd, d = 1, 2, 3 is a bounded region with Lipschitz continuous bound-
ary � , b is a solenoidal vector field, and f is a given function. The weak form
of (9) is given by the abstract problem (3) with U = V = H1

0
(⌦),

a(u, v) =

Z

⌦
"ru ·rv + (b ·ru)vdx and f(v) =

Z

⌦
fvdx.

Let ⌦h and X⌘ ⇢ ⌦ denote a conforming partition of the computational do-
main into finite elements {Kk}Ne

k=1
and a point cloud comprising points {xi}

Np

i=1
,

respectively. We seek an approximation of u on the point cloud, i.e., the DoFs
are associated with X⌘ rather than the underlying mesh. Furthermore, no rela-
tionship is assumed between ⌦h and X⌘, in practice though one may define X⌘

using mesh entities such as element vertices, element centroids, etc..
Using the additive property of the integral a(u, v) =

PNe

k=1
ak(u, v) and

f(v) =
PNe

k=1
fk(v), where ak(·, ·) and fk(·) are restrictions of a(·, ·) and f(·)

to element Kk. To discretize (9) we will apply GMLS locally to approximate
ak(·, ·) and fk(·). Since U = V we can use the same regression process for the
trial and test spaces and drop the sub/superscripts used earlier to distinguish
between them. We define the local GMLS kernel as w(Kk,xj) := ⇢(|bk � xj |),
where bk is the centroid of Kk and ⇢(·) is a radially symmetric function with
supp ⇢ = O(h). This kernel satisfies the assumption W (ak(u, ·)) = W (fk). The
GMLS approximants of ak(·, ·) and fk(·) will be constructed from point samples
close to bk using the local sampling set Sk = {�xj

��w(Kk,xj) > 0} with cardi-
nality nk. We assume that the support of ⇢ is large enough to ensure that Sk is
Pm-unisolvent. We also have the GMLS recirpocal set Sk = {uk

1
, . . . , uk

nk
} with

uk
i := c(eki ; bk) · � and eki 2 Rnk . We obtain the local GMLS approximants of

the elemental forms by restricting each ak(·, ·) to Sk ⇥ Sk, i.e.,

eak(uk
j , u

k
i ) := c(eki ; bk) · ak(�,�) · c(ekj ; bk)

Tha matrix ak(�,�) 2 Rnq⇥nq has element

(ak(�,�))st =

Z

Kk

r�s ·r�tdx
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scheme. This has to do with the fact that in the PDE context a(·, ·) and f
usually involve integration over a domain ⌦. In such a case one would have to
consider a GMLS regression with a kernel w whose support contains the entire
problem domain. Unfortunately, this renders (8) dense, making the discretization
impractical for all but small academic problems.

The key to obtaining computationally e�cient discretizations from (6), resp.
(8) is to apply the GMLS formulation locally. In the following section we spe-
cialize the approach to generate a non-conforming scheme for a model PDE.

3.1 Application to a model PDE

Consider the advection-di↵usion equation with homogeneous Dirichlet boundary
conditions

�"�u+ b ·ru = f in ⌦ and u = 0 on � , (9)

where ⌦ ⇢ Rd, d = 1, 2, 3 is a bounded region with Lipschitz continuous bound-
ary � , b is a solenoidal vector field, and f is a given function. The weak form
of (9) is given by the abstract problem (3) with U = V = H1

0
(⌦),

a(u, v) =

Z

⌦
"ru ·rv + (b ·ru)vdx and f(v) =

Z

⌦
fvdx.

Let ⌦h and X⌘ ⇢ ⌦ denote a conforming partition of the computational do-
main into finite elements {Kk}Ne

k=1
and a point cloud comprising points {xi}

Np

i=1
,

respectively. We seek an approximation of u on the point cloud, i.e., the DoFs
are associated with X⌘ rather than the underlying mesh. Furthermore, no rela-
tionship is assumed between ⌦h and X⌘, in practice though one may define X⌘

using mesh entities such as element vertices, element centroids, etc..
Using the additive property of the integral a(u, v) =

PNe

k=1
ak(u, v) and

f(v) =
PNe

k=1
fk(v), where ak(·, ·) and fk(·) are restrictions of a(·, ·) and f(·)

to element Kk. To discretize (9) we will apply GMLS locally to approximate
ak(·, ·) and fk(·). Since U = V we can use the same regression process for the
trial and test spaces and drop the sub/superscripts used earlier to distinguish
between them. We define the local GMLS kernel as w(Kk,xj) := ⇢(|bk � xj |),
where bk is the centroid of Kk and ⇢(·) is a radially symmetric function with
supp ⇢ = O(h). This kernel satisfies the assumption W (ak(u, ·)) = W (fk). The
GMLS approximants of ak(·, ·) and fk(·) will be constructed from point samples
close to bk using the local sampling set Sk = {�xj

��w(Kk,xj) > 0} with cardi-
nality nk. We assume that the support of ⇢ is large enough to ensure that Sk is
Pm-unisolvent. We also have the GMLS recirpocal set Sk = {uk

1
, . . . , uk

nk
} with

uk
i := c(eki ; bk) · � and eki 2 Rnk . We obtain the local GMLS approximants of

the elemental forms by restricting each ak(·, ·) to Sk ⇥ Sk, i.e.,

eak(uk
j , u

k
i ) := c(eki ; bk) · ak(�,�) · c(ekj ; bk)

Tha matrix ak(�,�) 2 Rnq⇥nq has element

(ak(�,�))st =

Z

Kk

r�s ·r�tdx

• is a radially symmetric, positive kernel function with                          .  

3. We construct approximations of 𝑎% and 𝑓% locally from point values: 
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scheme. This has to do with the fact that in the PDE context a(·, ·) and f
usually involve integration over a domain ⌦. In such a case one would have to
consider a GMLS regression with a kernel w whose support contains the entire
problem domain. Unfortunately, this renders (8) dense, making the discretization
impractical for all but small academic problems.

The key to obtaining computationally e�cient discretizations from (6), resp.
(8) is to apply the GMLS formulation locally. In the following section we spe-
cialize the approach to generate a non-conforming scheme for a model PDE.

3.1 Application to a model PDE

Consider the advection-di↵usion equation with homogeneous Dirichlet boundary
conditions

�"�u+ b ·ru = f in ⌦ and u = 0 on � , (9)

where ⌦ ⇢ Rd, d = 1, 2, 3 is a bounded region with Lipschitz continuous bound-
ary � , b is a solenoidal vector field, and f is a given function. The weak form
of (9) is given by the abstract problem (3) with U = V = H1

0
(⌦),

a(u, v) =

Z

⌦
"ru ·rv + (b ·ru)vdx and f(v) =

Z

⌦
fvdx.

Let ⌦h and X⌘ ⇢ ⌦ denote a conforming partition of the computational do-
main into finite elements {Kk}Ne

k=1
and a point cloud comprising points {xi}

Np

i=1
,

respectively. We seek an approximation of u on the point cloud, i.e., the DoFs
are associated with X⌘ rather than the underlying mesh. Furthermore, no rela-
tionship is assumed between ⌦h and X⌘, in practice though one may define X⌘
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Local sampling set

E𝑎% 𝑢% , 𝑣% ≔ 𝒃 𝑣% 8 𝑎% 𝒑, 𝒑 8 𝒃 𝑢% ; @𝑓% 𝑣% ≔ 𝒃 𝑣% 8 𝑓% 𝒑 ; 𝑢%, 𝑣% ∈ 𝑆%
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Application to a model PDE:                  3. Local and global assembly13

Local stiffness matrix and load vector:

𝑨% &' = 𝑎% 𝑝' , 𝑝&

𝒑 = 𝑝(, ⋯ , 𝑝) .

𝑎% 𝑝' , 𝑝& = M
𝒦!

𝜀𝛻𝑝' 8 𝛻𝑝& + 𝐛 8 𝛻𝑝' 𝑝& 𝑑𝑥

𝒇% & = 𝑓% 𝑝& 𝑓% 𝑝& = M
𝒦!

𝑓 8 𝑝& 𝑑𝑥

Local GMLS basis – spans 𝑃$

Global problem discrete problem:

• Requires only integration of polynomials! 

• Can be performed by any standard rule.

6 P. Bochev et al.

Fig. 1. Comparison of a Moving Least Squares basis function (black) and a composite
reciprocal basis function [u]i (red) in one-dimensions for � = P 2 and two di↵erent
kernels.

Likewise, we have that efk(uk
i ) = c(eki ; bk) · fk(�) where fk(�) 2 Rnq with

(fk(�))s =

Z

Kk

f �sdx .

The local approximants eak(·, ·) and efk(·) give rise to a local matrix Kk
ij =

c(eki ; bk) · ak(�,�) · c(ekj ; bk) and a local vector F k
i = cV (ei; ⌧) · f(�) , respec-

tively, which are analogues of the element sti↵ness matrix and load vector in
FEA.

To define the global approximants of a(·, ·) and f(·) from the local ones we
first need to define a global discrete space to supply the global test and trial
functions. We construct this space as [S] = [Kk2⌦hSk and denote its elements
by [u]. Stacking all local DoF in a single vector [a] := {a1, . . . ,aNe} produces
the global DoF set for [u]. We now define the global approximants by summing
over all elements, i.e.,

ea([u], [v]) :=
X

Kk2⌦h

eak(uk, vk) and ef([v]) :=
X

Kk2⌦h

efk(vk) ,

where uk, vk 2 Sk. In general, a sampling functional �xj can belong to multiple
local sampling sets Sk, which means that [u] will be multivalued at xj . In fact,

one can show that the global approximants ea(·, ·) and ef(·) can be generated
by using a composite “basis” of the global space [S] assembled from the local
reciprocal bases as

[u]i :=
X

Kk2⌦h

�ku
k
i ,

where �k is the characteristic function of element Kk. Figure 1 shows an example
of a composite global basis function in one dimension and compares it to a
Moving Least Squares basis function used in many meshfree Galerkin methods;
see, e.g., [5, 11].

The multivalued character of the global approximation space [S] means that

ea(·, ·) and ef(·) are non-conforming approximations of a(·, ·) and f(·), resembling
the type of “broken” forms one sees in Discontinuous Galerkin (DG) and interior
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global approximation space = union of all local DoF sets
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Seek  𝑢 ∈ 𝑆 such that   E𝑎 𝑢 , 𝑣 = @𝑓 𝑣 ∀ 𝑣 ∈ 𝑆
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The global problem is a non-conforming discretization!14

One can show that the global discrete problem is equivalent 
to a non-conforming discretization in terms of discontinuous 
piecewise polynomial shape functions. 

The nature of non-conformity is similar to that in, e.g., 
Interior Penalty and Discontinuous Galerkin (DG) methods.

Thus, we can use standard techniques from IP and DG to 
stabilize our formulation by adding suitable penalized 
jump terms.

Cockburn, B., Dong, B., Guzman, J.: Optimal convergence of the original 
DG method for the transport-reaction equation on special meshes. 
SIAM J. Numer. Anal. 46(3), 1250–1265 (2008) 

Here we shall use the same treatment of advective and 
diffusive terms as in the “original” DG method; see
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A stabilized global formulation using a classical DG approach15

Global stabilized discrete problem

𝒒 =
1
2 𝒒! + 𝒒"

𝜑 =
1
2 𝜑! + 𝜑"

𝒒 = 𝒒! ' 𝒏! + 𝒒" ' 𝒏"

𝜑 = 𝜑!𝒏! + 𝜑"𝒏"

Average & Jump

Stabilization of the advective term

Title Suppressed Due to Excessive Length 7

penalty methods. The similarity between ea(·, ·) and a broken DG form indicates
that the former may not be stable without any additional modifications. At the
same time, this similarity also suggests that standard DG terms could be used
to stabilize ea(·, ·). Below we describe one possible scheme that results from this
approach, focusing on the handling of the local bilinear forms and skipping for
brevity the modifications to fk(·)

Following [8] we integrate the advective term in the element forms ak(·, ·) and
use the uwpind trace ~u on each boundary facet to obtain the upwind element
form

~ak(u, v) =
X

Kk2⌦h

Z

Kk

ru ·rvdx�
Z

Kk

ub ·rvdx+

Z

@Kk

~u vb · nkdS

To stabilize the di↵usive term we use the interior penalty method [1]. These
steps transform the element forms into the following stabilized, “DG” versions

aDG
k (u, v) = ~ak(u, v)�

X

F

Z

F
{{ru}} · [[v]]dS +

Z

F
v · [[u]]dS � �

h

Z

F
[[u]] · [[v]]iFdS,

where the sum is over all element facets in the mesh, {{·}} is the average operator,
[[·]] is the jump operator, and � is stabilization parameter; see [8, p.1261].

We then restrict the elemental DG forms aDG
k (u, v) to the composite recipro-

cal space, i.e., [S]⇥ [S] to obtain their local GMLS approximants eaDG
k (·, ·). Sum-

mation of the latter over all elements then yields the global DG form eaDG(·, ·).

4 Numerical examples

To demonstrate the approach we have implemented the “DG” scheme from §3.1
in one-dimension using the element centroids to define the point cloud X⌘. The
left plot in Fig. 2 highlights the optimal convergence of the scheme for several
di↵erent polynomial reproduction spaces. We see that in each case the numerical
solution attains the best approximation-theoretic rate for the respective polyno-
mial order.

The right plot in Fig. 2 demonstrates the scheme for increasing Péclet num-
bers. Solution plots in this figure reveal that the simple upwind strategy adopted
in our implementation is adequate for low to moderate Péclet numbers. Future
work will consider improved upwinding for strong advection-dominated prob-
lems, alternatives to the interior penalty stabilization, and extension to higher
dimensions.

Acknowledgments

This material is based upon work supported by the U.S. Department of En-
ergy, O�ce of Science, O�ce of Advanced Scientific Computing Research under
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same time, this similarity also suggests that standard DG terms could be used
to stabilize ea(·, ·). Below we describe one possible scheme that results from this
approach, focusing on the handling of the local bilinear forms and skipping for
brevity the modifications to fk(·)

Following [8] we integrate the advective term in the element forms ak(·, ·) and
use the uwpind trace ~u on each boundary facet to obtain the upwind element
form

~ak(u, v) =
X

Kk2⌦h

Z

Kk

ru ·rvdx�
Z

Kk

ub ·rvdx+

Z

@Kk

~u vb · nkdS

To stabilize the di↵usive term we use the interior penalty method [1]. These
steps transform the element forms into the following stabilized, “DG” versions

aDG
k (u, v) = ~ak(u, v)�

X

F

Z

F
{{ru}} · [[v]]dS +

Z

F
v · [[u]]dS � �

h

Z

F
[[u]] · [[v]]iFdS,

where the sum is over all element facets in the mesh, {{·}} is the average operator,
[[·]] is the jump operator, and � is stabilization parameter; see [8, p.1261].

We then restrict the elemental DG forms aDG
k (u, v) to the composite recipro-

cal space, i.e., [S]⇥ [S] to obtain their local GMLS approximants eaDG
k (·, ·). Sum-

mation of the latter over all elements then yields the global DG form eaDG(·, ·).

4 Numerical examples

To demonstrate the approach we have implemented the “DG” scheme from §3.1
in one-dimension using the element centroids to define the point cloud X⌘. The
left plot in Fig. 2 highlights the optimal convergence of the scheme for several
di↵erent polynomial reproduction spaces. We see that in each case the numerical
solution attains the best approximation-theoretic rate for the respective polyno-
mial order.

The right plot in Fig. 2 demonstrates the scheme for increasing Péclet num-
bers. Solution plots in this figure reveal that the simple upwind strategy adopted
in our implementation is adequate for low to moderate Péclet numbers. Future
work will consider improved upwinding for strong advection-dominated prob-
lems, alternatives to the interior penalty stabilization, and extension to higher
dimensions.
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Seek  𝑢 ∈ 𝑆 such that   E𝑎+, 𝑢 , 𝑣 = @𝑓 𝑣 ∀ 𝑣 ∈ 𝑆

Bochev, Kuberry, Trask, Perego. Mesh-hardened finite element analysis through a GMLS approximation of variational problems. Springer LNCS, 2020. 
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Numerical examples16
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Fig. 2. Left: convergence of the nonconforming “DG” scheme for di↵erent polynomial
orders. Right: nonconforming “DG” solution of one-dimensional advection-di↵usion
problem for increasing Péclet numbers.
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Application #2: meshfree mimetic divergence17

Challenge: how to be mimetic without a mesh?

uε
h (x) = u(xp )Wε (x − xp )

p
∑ Dαuε

h (x) = u(xp )D
αWε (x − xp )

p
∑

Today, most meshfree methods for                     look like this:Dαu(x) = f (x)

u(xp )D
αWε (x − xp )

p
∑ = f (x)

Local kernel estimate of the field Derivative approximation PDE discretization

Creates conflicts between consistency and conservation

• SPH is conservative but not P0 concistent. RKPM is P1 consistent but not conservative

Mathematically equivalent to node-based (or collocated) methods

• Unsuitable for mixed discretizations needed in Drift-Diffusion, subsurface flow,…

! “Compatible” or “mimetic” meshless methods lag behind their mesh-based cousins! 

Many such methods perform poorly on the 5-strip problem, which tests their 
ability to reproduce fields that are in H(div) but not in H1 – a critical requirement 

for mixed discretizations
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What can we do about this problem?18

𝐷𝐼𝑉(ℱ)|- =
1
𝜇-

[
.∈0-

ℱ.𝜇.M
-
𝛻 8 𝒖𝑑𝑉 = M

0-
𝒖𝑑𝐴

By mimicking the construction of a mimetic mesh-based divergence operator                    :DIV :F→C

Divergence theorem Discrete Stokes theorem on cochains Mimetic divergence operator

§ Field data: given by the face fluxes ℱ.
§ Topological data: given by the action of the boundary operator 𝜕 on cells.

§ Metric data: given by the measures 𝜇- = 𝐶 and 𝜇. = 𝑓 , of a cell and its faces, respectively

The mimetic divergence DIV is constructed from the following data:

We will build a Meshfree Mimetic Divergence operator  (MMD)! How?

M
𝒄
𝛻 8 𝒖𝑑𝑉 = [

.∈0𝒄

M
.
𝒖𝑑𝐴



SAND2022-XXXX C

An abstract Meshfree Mimetic Divergence (MMD) operator19

A standard meshfree environment: 

• A point cloud 𝑋 ⊂ 𝛺 comprising points 𝒙) )*+, .

• Field representations by point samples at 𝒙): 𝒖 → 𝒖- ∈ 𝑹,|𝒖)- = 𝒖 𝒙)

An MMD habitat: 

• Notions of virtual cells 𝐶 = 𝑐) , indexed by 𝒙) ∈ 𝑋 and virtual faces 𝐹 = 𝑓) , 

• A notion of virtual boundary operator 𝜕.: 𝐶 → 𝐹

• A set of real numbers 𝝁𝒄 and a set of real vectors 𝝁0 , indexed by virtual cells and faces, and

• An operator 𝑇: 𝑋 → 𝐹 mapping point samples 𝒖- to real vectors 𝒖0 indexed by virtual faces.

𝒖2 ∈ 𝑹#

𝒖. ∈ 𝑹3

𝝁. ∈ 𝑹3

𝝁4 ∈ 𝑹

§ Field data: given by the real vectors 𝒖. : field moments

§ Topological data: given by the action of the virtual operator 𝜕5on virtual cells.

§ Metric data: given by the real numbers 𝝁𝒄 and the real vectors 𝝁. : metric moments

This MMD habitat provides abstractions of the data needed to construct the mimetic DIV
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Assumptions on the MMD habitat20

T.1 𝝁𝒄 > 0, 𝝁𝒄 = 𝑂 ℎ1 and  ∑2𝝁𝒄 = Ω

T.2 𝝁𝒇 = −𝝁𝒇 anti-symmetry

T.3 𝒖𝒇 = +𝒖𝒇 symmetry of 𝑇

Metric and field moments

Local Lipschitz continuity:

𝒖0 ; 𝝁0 − 𝒗0 ; 𝝁0 ≤ 𝐶ℎ14+ 𝒖- − 𝒗- 5

For any 𝐶6 vector fields 𝒖 and 𝒗 with point samples 𝒖2 and 𝒗2

The numbers 𝝁𝒄 , 𝝁. and the operator 𝑇 are a 𝑃( -reproducing pair:   

𝛻 ; 𝒑 𝒙𝒄 =
1
𝝁𝒄

A
0∈7!2

𝒑0 ; 𝝁0 ∀𝒑 ∈ 𝑃+; ∀𝒙𝒄 ∈ 𝑋

𝜕" is the virtual 
boundary!

𝒑# = 𝑇(𝒑𝒉)

𝝁𝒄 , 𝝁0
Metric moments

𝒖# = 𝑇(𝒖𝒉)
Field moments

“T
op

ol
og

ic
al

” 
as

su
m

pt
io

ns

Virtual boundary operator

T.0 𝜕.: 𝐶 → 𝐹 satisfies 𝜕. ⋃2∈8 𝑐 = 𝜕Ω, i.e., 𝜕. recovers the physical domain boundary

“M
et

ri
c”

 a
ss

um
pt

io
ns
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MMD definition and analysis21

Define the abstract meshfree mimetic divergence (MMD) operator 𝐷𝐼𝑉: 𝑋 → 𝐶 as 

• 𝒖- is a point sample of a vector field

• 𝒖0 = 𝑇(𝒖-) are the field moments,   

• 𝝁𝒄 , 𝝁0 are the metric moments, 

• 𝜕. is the virtual boundary!

Theorem.

𝛻 ; 𝒖 − 𝐷𝐼𝑉 𝒖- ≤ 𝐶ℎ

Assume that the metric and field moments satisfy T.1-T.3, the local Lipschitz condition and the P1 
reproduction property. Then, the abstract MMD operator is

A
2∈9

𝝁𝒄DIV 𝒖- = A
0∈7!9

𝒖0 ; 𝝁0

• First-order accurate:

• Locally conservative:

DIV 𝒖2: =
1
𝝁𝒄

[
.∈0"-

𝒖. 8 𝝁.

We will consider two instances of the abstract MMD operator:

• #1 – with background mesh

𝒖2 ∈ 𝑹#

𝒖. ∈ 𝑹3

𝝁. ∈ 𝑹3

𝝁4 ∈ 𝑹

for any 𝜔 = ⋃&∈7 𝑐&; 𝐼 ⊆𝑋

for any 𝒖 ∈ 𝐶6(Ω)8

• #2 – without background mesh
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MMD Instance #1: with a background mesh22

𝒙% = 𝒗%
𝒄%

𝑓

Abstract MMD

M
𝒄
𝛻 8 𝒖𝑑𝑉 = [

.∈0𝒄

M
.
𝒖𝑑𝐴

DIV( 𝒖2: =
1
|𝒄| [

.∈0𝒄

𝒃.(𝒖2) 8 𝜏.(𝒑)

𝒃. 𝒖2 8 𝜏.(𝒑) ≈ 𝜏. 𝒖

targetapproximation

• Virtual cells 𝐶 = 𝑐) ⟶ dual mesh cells; 

• Virtual faces 𝐹 = 𝑓) ⟶ dual mesh faces, 

• Virtual boundary 𝜕. ⟶ geometric boundary 𝜕: 𝐶 → 𝐹

• Metric moments 𝝁𝒄 ⟶ |𝒄| dual cell volumes

• Metric moments 𝝁0 ⟶ 𝜏0(𝒑) GMLS basis moments

• Field Moments   𝒖0 ⟶ 𝒃0 (𝒖-) GMLS coefficients

An MMD habitat with a background primal-dual mesh having dual cells C and dual faces F: 

DIV 𝒖2: =
1
𝝁𝒄

[
.∈0"-

𝒖. 8 𝝁.

• MMD #1 satisfies a discrete divergence theorem

MMD Instance #1

• Useful for poor quality meshes with near singular basis functions.

GMLS
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MMD Instance #2: without a background mesh23

DIV 𝒖2: =
1
𝝁𝒄

[
.∈0"-

𝒖. 8 𝝁.

Without a background mesh some of the data necessary to instantiate the abstract MMD is missing:

ü Field data: 𝒖0 = 𝒃0 𝒖- GMLS coefficients 

✗ Topological data: 𝜕𝒄)= fij geometric boundary

✗ Metric data: 𝝁𝒄 = 𝒄 and 𝝁0 = 𝜏0(𝒑) = ∫0 𝒑𝑑A

§ The missing pieces of data are exactly the ones that could be trivially obtained on the mesh!

§ We will construct analogues of the missing data that are actually cheaper than building a mesh!

Our plan for the second MMD instance:

ü Field data: 𝒖0 = 𝒃0 𝒖- keep the GMLS coefficients 

✓ Topological data: use the 𝜺-ball graph of the point cloud as a mesh surrogate

✓ Metric data: define by solving a suitable algebraic problem

𝐴𝑥 = 𝑏
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MMD Instance #2:                                                 Topological Data24

We endow X with a virtual primal-dual mesh complex (a mesh surrogate) as follows:

Virtual primal mesh: the 𝜺-ball graph of the point cloud 

given scalar field on �. We denote by Sh
� the subset of all fields in Sh whose values at the barycenters of the

segments �j 2 � are completely determined by s. Likewise, V h
� is the subspace of all discrete vector fields

whose values on �j 2 � are completely determined by a given smooth vector field v 2 Cm(�).
We complete the construction of the necessary discrete structures by endowing X⌦ with a virtual primal-

dual grid complex as follows. Given a real number "g > 0 we construct the "g-ball graph G"g (V,E) of the
point cloud with vertices V := X⌦ and edges

E :=
�
eij = (xi,xj) 2 V ⇥ V

�� |xi � xj | < "g
 
.

The midpoint of an edge eij is denoted by xij , that is xij = (xi +xj)/2. We view G"g (V,E) as a surrogate
for a primal mesh. We then define a virtual dual mesh G0

"g (C,F ) with virtual cells C and virtual faces F by
assigning a virtual cell ci to every vertex xi 2 V and a virtual face fij , with barycenter xij , to every edge
eij 2 E. Finally, we define the virtual boundary operator @ : C 7! F which returns the set of all virtual
faces whose primal edges are incident with a given node.

We note that construction of the virtual primal-dual complex does not introduce a significant com-
putational burden as G"g (V,E) may be trivially constructed with O(p⌦) computational complexity using
standard binning algorithms.

2.1. GMLS essentials

Generalized moving least squares (GMLS) is a non-parametric regression framework for the approximate
reconstruction of bounded linear functionals from scattered samples of their arguments. GMLS has been
used in meshfree collocation schemes to approximate point values of derivatives; see, e.g., [12], [13], [8] and
the references therein. Here we shall apply GMLS to approximate integrals as our goal is to develop a
meshfree divergence operator based on the definition (3).

We provide a brief summary of the GMLS framework, specialized to our needs. The abstract GMLS
setting comprises the following key ingredients; see [7, Section 4.3]:

• a function space U with a dual U⇤;

• a finite dimensional space � = span{�1, . . . ,�q} ⇢ U ;

• a finite set of linear functionals ⇤ = {�1, . . . ,�n} ⇢ U⇤; and

• a correlation (weight) function w : U⇤ ⇥ U⇤ 7! R+ [ {0}.

The set ⇤ is assumed to be �-unisolvent, that is

{� 2 � |�i(�) = 0, i = 1, . . . , n} = {0}. (5)

Given a target functional ⌧ 2 U⇤ and an arbitrary u 2 U , GMLS seeks an approximation e⌧(u) of ⌧(u) in
terms of the sample set �(u) = (�1(u), . . . ,�n(u)) 2 Rn, such that e⌧(�) = ⌧(�) for all � 2 �. We call such
a GMLS approximation �-reproducing. To describe the GMLS solution to this problem we introduce the
vector ⌧ (�) 2 Rq with elements

(⌧ (�))i = ⌧(�i), i = 1, . . . , q,

the diagonal weight matrix W (⌧) 2 Rn⇥n with element Wii(⌧) = w(⌧ ;�i), and the basis sample matrix
B 2 Rn⇥q with element

Bij = �i(�j); i = 1, . . . , n; j = 1, . . . , q.

In what follows, | · |W (⌧) denotes the Euclidean norm on Rn weighted by W (⌧), i.e.,

|b|2W (⌧) = b|W (⌧)b 8b 2 Rn .

One can then show that the �-reproducing GMLS approximation of the target functional is given by

e⌧(u) := c|(u)⌧ (�), (6)

5

Vertices:  V=X (the points in the cloud)

Edges:

given scalar field on �. We denote by Sh
� the subset of all fields in Sh whose values at the barycenters of the
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� is the subspace of all discrete vector fields
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.
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for a primal mesh. We then define a virtual dual mesh G0

"g (C,F ) with virtual cells C and virtual faces F by
assigning a virtual cell ci to every vertex xi 2 V and a virtual face fij , with barycenter xij , to every edge
eij 2 E. Finally, we define the virtual boundary operator @ : C 7! F which returns the set of all virtual
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putational burden as G"g (V,E) may be trivially constructed with O(p⌦) computational complexity using
standard binning algorithms.

2.1. GMLS essentials

Generalized moving least squares (GMLS) is a non-parametric regression framework for the approximate
reconstruction of bounded linear functionals from scattered samples of their arguments. GMLS has been
used in meshfree collocation schemes to approximate point values of derivatives; see, e.g., [12], [13], [8] and
the references therein. Here we shall apply GMLS to approximate integrals as our goal is to develop a
meshfree divergence operator based on the definition (3).

We provide a brief summary of the GMLS framework, specialized to our needs. The abstract GMLS
setting comprises the following key ingredients; see [7, Section 4.3]:

• a function space U with a dual U⇤;

• a finite dimensional space � = span{�1, . . . ,�q} ⇢ U ;

• a finite set of linear functionals ⇤ = {�1, . . . ,�n} ⇢ U⇤; and

• a correlation (weight) function w : U⇤ ⇥ U⇤ 7! R+ [ {0}.

The set ⇤ is assumed to be �-unisolvent, that is

{� 2 � |�i(�) = 0, i = 1, . . . , n} = {0}. (5)

Given a target functional ⌧ 2 U⇤ and an arbitrary u 2 U , GMLS seeks an approximation e⌧(u) of ⌧(u) in
terms of the sample set �(u) = (�1(u), . . . ,�n(u)) 2 Rn, such that e⌧(�) = ⌧(�) for all � 2 �. We call such
a GMLS approximation �-reproducing. To describe the GMLS solution to this problem we introduce the
vector ⌧ (�) 2 Rq with elements

(⌧ (�))i = ⌧(�i), i = 1, . . . , q,

the diagonal weight matrix W (⌧) 2 Rn⇥n with element Wii(⌧) = w(⌧ ;�i), and the basis sample matrix
B 2 Rn⇥q with element

Bij = �i(�j); i = 1, . . . , n; j = 1, . . . , q.

In what follows, | · |W (⌧) denotes the Euclidean norm on Rn weighted by W (⌧), i.e.,
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One can then show that the �-reproducing GMLS approximation of the target functional is given by
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logarithmic barrier method, whereas in [11] it is a quadratic program (QP) requiring a QP-specific solver.
In contrast, by expressing the virtual face areas in terms of virtual area potentials, our approach leads to
a graph Laplacian problem for these quantities. This problem can be solved in an e�cient and scalable
manner by using, e.g., standard multigrid preconditioners.

We have organized the rest of the paper as follows. Section 2 introduces the relevant notation and reviews
the basics of the GMLS theory. In Section §3 we provide a motivating example of a mimetic divergence
operator on a point cloud derived using a background mesh. The purpose of this example is twofold: we
use it to highlight the role played by the metric data and to provide a template for the development of
a meshfree divergence in the absence of a background grid. We use this template in Section 4 to develop
a formal setting for MSBP along with a set of requirements for the metric data, ensuring conservation
and optimal order of convergence. Section 5 is the core of the paper where we develop a computationally
e�cient and scalable approach to construct metric data satisfying these requirements. In Section 6 we use
the resulting mimetic meshfree divergence theorem to discretize a model conservation law problem and then
in Section 7 we provide some representative numerical examples. We summarize our findings and discuss
future work in Section 8.

2. Preliminaries and notation

Throughout the paper upper case fonts are reserved for function spaces, operators and sets of various
entities, while lower case fonts stand for scalar fields, linear functionals, indices, etc. We use bold face fonts
to denote vector quantities, e.g., x = (x1, . . . , xd) is a point in the Euclidean space Rd, eij = (xi,xj) is an
edge connecting two such points, u = (u1, . . . , ud) is a vector field in Rd, and n = (n1, . . . , nd) is a unit
normal vector.

As usual, Cm(⌦) will stand for the space of all continuous functions whose derivatives of order less
than or equal to m are also continuous. We denote the norm on this space by k · km and to avoid possible
confusion use | · | for the standard Euclidean norm on Rd. Finally, Pm(Rd), or simply Pm will be the space
of all multivariate polynomials of degree less than or equal to m.

Let ⌦ ⇢ Rd, d = 2, 3 be a bounded connected region with Lipschitz continuous boundary � = @⌦. We
assume that � may be partitioned into a collection of pB faces � = [�j , each having maximal diameter h,
centroid xj and outward unit normal nj . The collection of the boundary face centroids forms the set XB of
all boundary particles. In the interior of the domain, we assume a collection of pI interior particles XI , and
define the point cloud discretization of ⌦ as X⌦ = XI [XB . This representation of the domain contains a
total of p⌦ = pI + pB particles. Since by assumption ⌦ is a bounded region we can choose the coordinate
system in such a way that the point cloud is strictly contained in the first quadrant, i.e., xk > 0, k = 1, . . . , d
for all x 2 X⌦.

The quality of the point cloud X⌦ can be characterized by its fill distance [7, p.14] defined as

hX⌦,⌦ = sup
x2⌦

min
xi2X⌦

|x� xi|,

and its separation distance [7, p.41] defined as

qX⌦ =
1

2
min
i 6=j

|xi � xj |,

We shall assume that X⌦ is quasi-uniform, namely that there exists cqu > 0 such that

qX⌦  hX⌦,⌦  cquqX⌦ . (4)

We denote the space of all discrete scalar fields on the point cloud by Sh. An element sh 2 Sh represents
a scalar function by its values at the particles xi 2 Xh and so, Sh ⌘ Rp⌦ . We define the space of all
discrete vector fields on Xh as V h = (Sh)d and denote the coordinate functions of vh 2 V h by vhk 2 Sh,
i.e., vh = (vh1 , . . . , v

h
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⟵ fill 

⟵ separation

Virtual cell volumes: assume quasi-uniform point cloud

𝝁𝒄: =
|𝛀|
𝑁

Virtual face areas: seek in terms of a scalar potential

𝝁.% = 𝐺𝑅𝐴𝐷 𝜙% 𝒑%

𝑝< kth basis function of P

𝜙< scalar function on X

𝐺𝑅𝐴𝐷: 𝑉 ⟶ 𝐸 topological gradient

Constructing the metric data on a point cloud X with N points:
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• Trades a challenging computational geometry problem (meshing) for a benign algebraic one.

𝛻 ; 𝒑 𝒙𝒄 =
1
𝝁𝒄

A
0∈7!8

𝒃> 𝒑 𝝁0 ∀𝒑 ∈ 𝑃+; ∀𝒙𝒄 ∈ 𝑋

Recall the P-reproducibility condition on the virtual metric data:

Inserting the virtual face area ansatz  𝝁.% = 𝐺𝑅𝐴𝐷 𝜙% 𝑝% yields

𝐷𝐼𝑉 𝐺𝑅𝐴𝐷 𝜙% 𝒑% 𝒙𝒄 = 𝛻 8 𝒑% 𝒙𝒄

• A weighted graph Laplacian problem for each basis function. Solution cost O(N) using AMG

Equations for the virtual face areas 
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The two instances of the abstract MMD operator at a glance27

DIV 𝒖2: =
1
|𝐶| [

.∈0-

𝒃(𝒖) 8 𝜏.(𝒑)

#1: MMD with a background mesh:

• Defined by the GMLS coefficients:

DIV 𝒖2: =
1
𝝁𝒄

[
.∈0-

𝒃(𝒖) 8 𝝁.(𝒑)

#2: MMD without a background mesh:

• Defined by the GMLS target:

Field moments (the map 𝑇) 

Face moments

𝝁.% = 𝐺𝑅𝐴𝐷 𝜙% 𝑝%; ∆ 𝜙%= 𝛻 8 𝒑%𝝁.: = 𝜏. 𝒑 ;     𝜏.(𝒑) = ∫. 𝒑𝑑A

𝑇: 𝒖- → 𝒃 𝒖

• Defined by the GMLS coefficients:

𝑇: 𝒖- → 𝒃 𝒖

• Defined by a graph Lapacian:

Cell moments• Defined by actual cell volumes: • Defined algebraically:

𝝁𝒄: = |𝑪| 𝝁𝒄: =
|𝛀|
𝑁
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Application of the abstract MMD theory28

Property MMD with mesh MMD without mesh

T.1 𝝁𝒄 > 0, 𝝁𝒄 = 𝑂 ℎ8 ; ∑4 𝝁𝒄 = Ω ✓ ✓

T.2 𝝁𝒇 = −𝝁𝒇 ✓ ✓

T.3 𝒖𝒇 = +𝒖𝒇 ✓ ✓

Local Lipschitz ✓ TBD

P1 reproduction ✓ TBD

Topological
M

etric

• Locally conservative

• Provably first-order accurate

• Locally conservative

• Numerically first-order accurate

MMD with a background mesh: MMD without a background mesh:

Assumptions checklist
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A historical perspective29

The Uncertain Grid Method (UGM)

The idea to construct virtual metric data had been used before in:

O. Diyankov. Uncertain grid method for numerical solution of PDEs. 
Technical report, NeurOK Software, 2008.

E. Kwan-yu Chiu, Q. Wang, R. Hu, and A. Jameson. A conservative 
mesh-free scheme and generalized framework for conservation 
laws. SISC, 34(6) 2012.

• First example of a meshfree “finite volume” scheme

• Uncertain refers to faces between two adjacent points (our virtual face)

• First-order accurate

The Conservative Meshfree Scheme (CMS)

• Similar in principle to UGM

• First-order accurate

The key differences with our approach:

• GMLS enables extension of our scheme to high-order accuracy

• Both UGM and CMS involve expensive global constrained optimization problems:

§ UGM  ☛ LP solved by primal-dual log-barrier method (involves Newton)
§ CMS  ☛ QP which requires a specialized QP solver
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Numerical examples30

Figure 9: Five spot problem with µ1 = µ2. (left): Neumann condition driving flow (right): Streamlines of resulting flow.

Figure 10: Results from five-spot problem with comparison to analytic solution for µ = 1
2 . Streamlines of flow (left), potential

along x = y diagonal (center), velocity along x = y diagonal (right).

7.3. Singularly perturbed advection-di↵usion

Finally, we evaluate the schemes performance for the steady advection-di↵usion problem in the singularly
perturbed regime, where the Peclet number Pe := ||a||

µ > O(1), and the problem is dominated by di↵usion
e↵ects. We do not advocate that particle methods are an ideal choice for this type of problem. Rather,
we include this section to illustrate that schemes requiring notions of upwinding may be implement in this
framework, despite the ambiguity of understanding precisely what is meant by upwinding at a virtual face.
This scheme will be important for handling advection in a Lagrangian framework, which we will investigate
in a subsequent work.

We first use manufactured solutions to demonstrate the consistency of the approach, using both the
centered reconstruction (Equation 44) and upwind reconstruction (Equation 42) for the advection term. We
consider again the unit square with randomly perturbed particles, and construct a manufactured solution
as follows.
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Source +1/4

Sink -1/4

Figure 11: Pressure for five-spot problem with varying R = µ1/µ2. Left: Profile along line y = x for increasing ratio
R. Conservative GMLS (solid lines) is compared to reference Raviart-Thomas mixed finite element solid (dashed). Right:

Resulting GMLS pressure field for large ratio R = 1000, illustrating stability of method.

� = sin 2⇡x sin 2⇡y (51)

F (�) = �µr�+ a� (52)

fB = r · F (�) (53)

We apply the manufactured solution as a Dirichlet condition at boundary particles. We present conver-
gence rates for increasing Peclet numbers in Tables 7.3 and 7.3 corresponding to convergence of the centered
and upwind reconstructions, respectively. As we see, the centered scheme is able to maintain O(h) conver-
gence for Pe = 1, however as Pe increased and the problem becomes advection dominated, the problem
becomes ill-conditioned. With the upwind reconstruction on the other hand, which only incorporates data
from upwind locations, we see that optimal convergence is obtained for Pe = 10000.

Finally, we consider the advection of a point-discontinuity in the boundary data. We consider again the
unit square, and denote the top, right, bottom, and left sides of the domain �t,�r,�b and �l, respectively.
We impose Dirichlet conditions on the bottom and left boundaries

�|x2�l = 1

�|x2�b =

(
1, x  1

4

0, x > 1
4

.

On the remaining boundary we impose either Dirichlet conditions

�|x2�t = 1

�|x2�r = 0

or the following outflow condition, derived by taking @n� = 0 in the flux definition.

n̂ · F |xi2�t[�r = n̂ · a�i (54)

We present the resulting solution for both the pure Dirichlet and Dirichet/outflow cases in Figure 7.3
for Pe 2 {1, 10, 100}. As Pe is increased further, the solution approaches a line singularity, and the linear
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Pressure field for large ratio R 
= 1000, illustrates stability of 

method. 

Pressure with varying R = μ1/μ2. 

Figure 6: Profile of @�
@x along y = 0.5 line for increasing di↵usivity ratios, for arithmetic average (left) and harmonic average

(right). Exact solution is given by dashed line.

Figure 7: Profiles of fluxes for five strip problem for Cartesian (left) and non-uniform (right) particle distributions for dx = 1/96.

Figure 8: Fluxes along the x = 0.5 line for five strip problem for Cartesian (left) and non-uniform (right) particle distributions
as discretization is refined.

problem identical to Massud (see Figure 26, CMAME 2002); we apply a flux of 1
8 to both faces coincident

to the bottom left corner, and � 1
8 to those coincident with the top right (Figure 7.2). In the case where

µ1 = µ2, this problem may be solved analytically via superposition of Greens function solutions, assuming
a periodic domain. We demonstrate convergence to the analytic solution for both the pressure and velocity
in Figure 7.2.
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T.J.R Hughes et al, CMAME

The five spot problem : Tests conservation

The five strip problem (Hughes et al): Tests H(div) compliance 
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N Pe = 1 Pe = 10 Pe = 100 Pe = 1000
162 0.0535674 0.0959928 n/a n/a
322 0.0301618 0.060635 n/a n/a
642 0.0152526 0.0333928 0.0590015 n/a
1282 0.00756073 0.0175604 0.0314838 n/a
2562 0.00376267 0.00901208 0.0161104 n/a
m 1.006 0.957 0.963 n/a

Table 4: Convergence rate in `2-norm to manufactured solution, using centered reconstruction. An entry of n/a denotes that
the linear solver failed to converge due to ill-conditioning.

N Pe = 1 Pe = 10 Pe = 100 Pe = 1000 Pe = 10000
162 0.061851 0.11673 0.146463 0.153675 0.15467
322 0.031884 0.0633952 0.0911815 0.0971759 0.0979677
642 0.0155568 0.0339481 0.0550493 0.0595179 0.0600997
1282 0.00762096 0.0177066 0.0304351 0.0331474 0.0337972
2562 0.00377766 0.009056 0.0158462 0.0172527 0.0174534
m 1.02 0.967 0.944 0.944 0.954

Table 5: Convergence rate in `2-norm to manufactured solution, using upwind information only.

reconstruction leads to Gibbs phenomena normal to the jump (Figure ??). This suggests that in the high
Peclet number regime, either some degree of stabilization or limiting would need to be applied, or the
GMLS reconstruction of the scalar variable, which assumes C1 regularity, be altered to better handle this
discontinuous setting. Such exploration is beyond the scope of this work.

Figure 12: Advection of point discontinuity at boundary for Peclet numbers using Dirichlet (top) and inflow/outflow (bottom)
boundary conditions: Pe = 1 (left), Pe = 10 (center), Pe = 100 (right).
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22

N Pe = 1 Pe = 10 Pe = 100 Pe = 1000
162 0.0535674 0.0959928 n/a n/a
322 0.0301618 0.060635 n/a n/a
642 0.0152526 0.0333928 0.0590015 n/a
1282 0.00756073 0.0175604 0.0314838 n/a
2562 0.00376267 0.00901208 0.0161104 n/a
m 1.006 0.957 0.963 n/a

Table 4: Convergence rate in `2-norm to manufactured solution, using centered reconstruction. An entry of n/a denotes that
the linear solver failed to converge due to ill-conditioning.

N Pe = 1 Pe = 10 Pe = 100 Pe = 1000 Pe = 10000
162 0.061851 0.11673 0.146463 0.153675 0.15467
322 0.031884 0.0633952 0.0911815 0.0971759 0.0979677
642 0.0155568 0.0339481 0.0550493 0.0595179 0.0600997
1282 0.00762096 0.0177066 0.0304351 0.0331474 0.0337972
2562 0.00377766 0.009056 0.0158462 0.0172527 0.0174534
m 1.02 0.967 0.944 0.944 0.954

Table 5: Convergence rate in `2-norm to manufactured solution, using upwind information only.

reconstruction leads to Gibbs phenomena normal to the jump (Figure ??). This suggests that in the high
Peclet number regime, either some degree of stabilization or limiting would need to be applied, or the
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Figure 12: Advection of point discontinuity at boundary for Peclet numbers using Dirichlet (top) and inflow/outflow (bottom)
boundary conditions: Pe = 1 (left), Pe = 10 (center), Pe = 100 (right).
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MMD with mesh is robust on bad meshes32

Mesh size h Uniform muni Random mrand Deformed mdef

1/8 0.0680972 - 0.0696424 - 0.0824282 -
1/16 0.0151883 2.16 0.0153232 2.18 0.0174445 2.24
1/32 0.00369427 2.04 0.00373621 2.04 0.00402815 2.11
1/64 0.000918387 2.01 0.000926804 2.01 0.000973081 2.05
1/128 0.000229303 2.00 0.000231348 2.00 0.000239727 2.02

Table 3: `2-norm solution errors and convergence rates (muni, mrand, mdef ) of the virtual finite volume scheme.

Mesh size h Uniform muni Random mrand Deformed mdef

1/8 0.058615 - 0.078694 - 0.111007 -
1/16 0.0140316 2.06 0.0179227 2.13 0.0366452 1.60
1/32 0.00336336 2.06 0.00436033 2.04 0.0105518 1.80
1/64 0.000818044 2.04 0.00107166 2.02 0.0027877 1.92
1/128 0.000201421 2.02 0.000264927 2.02 0.000710059 1.97

Table 4: `2-norm solution errors and convergence rates (muni, mrand, mdef ) of the P1 finite element method.

consistency and the accuracy of the virtual finite volume scheme for both the centered e�a(uh) and the

upwind ~e�a(uh) reconstructions of the advective flux defined in (46). Our second goal is to confirm that the

construction of ~e�a(uh) does provide an appropriate notion of upwinding in the advection-dominated regime.
In both cases we consider the unit square with a quasi-uniform point cloud X defined according to the

procedure described at the beginning of §6. To study the accuracy of the virtual finite volume scheme we use
the same manufactured solution as in §6.1, i.e., uex(x, y) = sin 2⇡x sin 2⇡y, and apply Dirichlet boundary
conditions at all particles in X�.

Tables 5 and 6 present convergence rates for increasing Péclet numbers using the centered e�a(uh) and

the upwind ~e�a(uh) flux reconstructions, respectively. The results in Table 5 show that virtual finite volume
scheme with the centered advective flux reconstruction is able to maintain O(h) convergence for small
to moderate Péclet numbers. However, as the problem becomes strongly advection-dominated, using the
centered flux leads to ill-conditioned discrete equations and failure of the iterative solver to converge. On
the other hand, Table 6 reveals that with the upwind reconstruction ~e�a(uh) the virtual finite volume scheme
remains first-order accurate over a wide range of Péclet numbers.

To further study the appropriateness of ~e�a(uh) in the advection-dominated case we consider an example
with discontinuous boundary data and velocity field a = (1, 2) similar to the skew advection test in [34]. To
describe the problem setup let �t, �r, �b and �l denote the top, right, bottom, and left sides of the unit
square domain, respectively. On the bottom and left boundaries we impose Dirichlet boundary conditions

N Pe = 1 Pe = 10 Pe = 100 Pe = 1000
16 0.0535674 0.0959928 n.c. n.c.
32 0.0301618 0.060635 n.c. n.c.
64 0.0152526 0.0333928 0.0590015 n.c.
128 0.00756073 0.0175604 0.0314838 n.c.
256 0.00376267 0.00901208 0.0161104 n.c.

Rate 1.006 0.957 0.963 n.c.

Table 5: Convergence rates in `2-norm of the virtual finite volume approximation to uex(x, y) = sin 2⇡x sin 2⇡y using the
centered advective flux reconstruction e�a(uh). An entry of n.c. denotes that the linear solver failed to converge due to
ill-conditioning.
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We solve the Darcy problem 
on 3 meshes with varying 
element quality: uniform, 

random and deformed

MMD Instance #1

P1 Finite Element

• Maintains best theoretic rate on all grids

• Delay of the asymptotic regime on 
deformed mesh.

• Error still 3times larger on the finest 
mesh
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What else have we done with GMLS?33

High-order convergence for uniform coe�cients

Figure 3: Laplace-Beltrami sphere

harmonic solution.

Grid (h) Error Rate

0.07 7.7998e-05 -

0.035 5.5065e-06 3.82

0.0175 3.7434e-07 3.88

Table 2: l2 convergence using P4

h error rate

0.07 7.7998e-05 -

0.035 5.5065e-06 3.82

0.0175 3.7434e-07 3.88

Laplace-Beltrami on a sphere: harmonic solution. L2 convergence using P4Monotone fluxes for non-uniform coe�cients
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Table 4: h1 semi-norm for rs�

Monotone fluxes for non-uniform coe�cients
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Five-strip problem on a cylinder: standard test case for H(div) compatibility

Steady-state Shallow Water Equations

Compatible meshfree discretizations on manifolds
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What else have we done with GMLS?34

GMLS Field reconstruction from native degrees-of-freedom for Multiphysics data-transfer (remap)

Ty
pi

ca
l u

se
 c

as
es

Nodal 
value

Cell 
average

Face 
flux

Edge 
circulation

DOF:
γ

Stokes

Darcy
A Discrete DeRham Complex (mimetic discretization)

§ Different codes may employ different discretizations of the same PDE due to different designs, e.g.,
• stabilized vs. compatible

§ The same field may be represented differently in a coupled multi-physics simulation, e.g.,
• Raviart-Thomas (H(div)) velocity vs. nodal (H1) velocity in Darcy-Stokes coupling

§ The field may be represented by the same type of discretization but on a different cell shape:
• Raviart-Thomas on tets, Raviart-Thomas on hexes and mimetic difference on polyhedrons

M
-!
𝜔%

cell form

DOF = GMLS target or sample functionals!
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Examples of native field data transfers for climate models35

Coupling Approaches 
for Next Generation 

Architectures 
(CANGA)

MPAS HOMME

Raviart-Thomas DOF

P1 Lagrange DOF
Target (HOMME)Source (MPAS)

Meshless remap between finite volume and spectral 
element fields for coupled Earth system models
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What else have we done with GMLS?36

A “Data to Model” workflow for obtaining “Digital Copies” of semiconductor devices directly from data

Forward (FW):    -0.01V to  0.85V
Leakage (LK):           -6V to 0.01V
Breakdown (BD): -9.6V to  -5.9V

1. Laboratory measurement

2. Model generation

3. Model model validation
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Conclusions37

We extended GMLS to approximation of bilinear forms

• This approximation is equivalent to a non-conforming FE

• Quality of these shape functions does not depend on the mesh quality

• Their integration can be performed by standard FE quadrature

• Standard DG and IP techniques can be used to stabilize the formulation

We developed a computationally efficient mimetic meshfree divergence using GMLS

We applied GMLS to perform data transfer of native fields between codes 

GMLS is an extremely flexible and powerful data regression tool 

We applied GMLS to obtain compact models of semiconductor devices directly from lab data


