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Disinformation is being used by many nation-states
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o Disinformation is false information 
intentionally used for harm.

o Nation-State and non-state actors use 
disinformation. 

o Social media platforms a means of disseminating 
disinformation.

o Machine Learning/Artificial Intelligence 
techniques for:

o Identifying false information.
o Predicting the spread of information.
o Predicting who will adopt information.

o However:
o Complex social system with many interacting 

factors.
o Adversaries are changing tactics.
o We can’t (ethically) experiment with the real world.
o We have limited ground truth.
o Environment is changing.
o Dataset shift problem.



We are investigating the use of social simulations as a testbed.
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o Our approach: Use social simulations as a proxy for the 
real world.

o Social simulations are computational models of real-world 
phenomena.

oMethods include agent-based modeling, systems dynamics, ….

o Often used for better understanding a phenomena and 
testing interventions in a virtual world.

o Simulations can help solve some of the problems:
•  Full ground truth.
• Can control data bias.
• Can run experiments and counterfactuals.
• Can evaluate performance on varied models, parameterizations, 

etc.

Research Methods 

Real WorldTest Beds

How does the complexity of the environment impact the 
learnability and generalizability of ML models?



Modeling Process

o Create a simple agent-based modeling framework for person-to-
person communication to generate cascade data.
o Can adapt to various theoretical additions at the agent-, network-, or 

message-level

o Challenges:
o Many different theories from different disciplines apply (social-psychology, 

communications, group theory, etc.).
o Most existing simulations (from information diffusion, epidemic modeling) 

do not generate significant data.
o Operationalization of multiple theories within the same model.



Berlo (1960) SMCR model of communication
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Simple Information Diffusion Model

6

Sent

Outbox

1
3

Agent

Time: 1

K = 3

qi * φ = 0.09

15

11

1

0.1

0.9

0.3

qi * φ = 0.81

qi = 0.9

qi * φ = 0.27

11

Inbox

810 1511 1
0.1 0.9 0.10.30.2

11
0.1

• Capture attentional constraints 
(ki).

• Capture innate virality of 
messages (φ).

• Captures subjective likelihood to 
resend (qi).



Agent model is used for each agent in a social network.
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Complex Information Diffusion Model

o Sender characteristics
o Credibility or authority, “speech ability” or persuasiveness, 

social network centrality, conformity to social norms (i.e., 
“Spiral of Silence”).

o Message characteristics
o Topic salience, message virality, information accuracy.
o Channel characteristics
o Access to communication modality.
o Receiver characteristics
o Trust, cognitive/ideological consistency, “stubbornness”



Complex Information Diffusion Model – Social Network Centrality

o Sender characteristic – a person’s “importance” in the network, 
measured by their connectedness to others
o A person’s centrality is positively related with their influence on others 

(Ibarra et al., 1993; Kameda et al., 1997; Wang et al., 2015)
o Centrality is operationalized in ABMs in a wide variety of ways from 

seeding message (Barbuto et al., 2019), to distinguishing “influencer” 
agents from a general public (Lotito et al., 2021)

o In CIDM, centrality acts as a weight on inbox priority – i.e., 
compared to other messages received, how likely am I to pay 
attention to your message; or how much does the algorithm weight 
your message compared to others
o Eigenvector centrality, rescaled to {0:1}; model-added messages are 

assigned a value of 2 to ensure they are seen



Complex Information Diffusion Model – Trust

o Directed receiver-to-sender characteristic – a person’s belief in 
another that the information they share is true
o One of many aspects that affects the receiver’s perception of the 

believability of a message, and thereby its adoption and resend 
probability

o Commonly implemented as a directed edge weight in the agent-to-
agent network affecting adoption and spreading rates (e.g., Hui et al., 
2010); less commonly operationalized using tie reciprocity (e.g., Fan et 
al., 2018)

o In CIDM, trust is an assigned directed edge value at the start of 
the model; not permitted to update in this iteration
o Can be distributed randomly, as a function of dyadic ideological 

similarity (Sherchan et al., 2013), or as a function of the proportion of 
local network overlap (i.e., triadic closure; Igarashi et al., 2008)



Complex Information Diffusion Model – Ideological Consistency

o Receiver characteristic – the degree to which the opinion 
expressed in a message on one topic aligns with the receiver’s 
multi-dimensional ideology; greater similarity increases the 
probability of adopting the message, and thereby resending
o Like cognitive dissonance theory (Festinger, 1962), but includes 

congruency with beliefs on other, related topics
o Used more often in opinion dynamics models than information 

diffusion per se (e.g., Lakkaraju, 2016; Schweighofer, 2020)

o In CIDM, ideological consistency increases resend 
probability



Complex Information Diffusion Model – Ideological Consistency

0.00 0.25 0.50 0.75 1.00

o Method
o Ideology is randomly distributed 

{0:1}
o Opinions on some parameterized 

number of topics are drawn from a 
gaussian distribution with mean 
set at ideology, parameterized sd, 
and opinions beyond 0 and 1 are 
rounded to floor/ceiling

o Message asserts some value in 
opinion space (random; {0:1}) on a 
particular topic 

o Consistency is 1 – mean distance 
of message opinion from all non-
topic node opinions



For a message (m), sent by one agent (i) to another (j), the 
receiving agent will resend the message with the 

probability:

Pm→outbox = Viralitym * Trustij * Ideological.Consistencyjm

Complex Information Diffusion Model



Complex Information Diffusion Model – Information Accuracy

o Message/receiver characteristic – the degree to which 
(receiver’s perception of) information in the message conforms 
with (receiver’s perception of) external evidence; true (or 
perceived true) information is more likely to be adopted and 
reshared
o E.g., “vaccines are safe” message paired with evidence of few 

complications
o Fairly novel in agent-based models of information diffusion, but 

interesting because information is modeled as both socially- and 
externally-supplied

o One excellent example of its use in ABMs is Lewandowsky et al.’s 
(2019) model of global warming belief propagation



Complex Information Diffusion Model – Information Accuracy

o In CIDM, information accuracy is operationalized as a filter 
on read messages – perceived true information is passed 
through heuristic processing (trust, virality, ideological 
consistency), while false information is discarded

o Agents are assigned a knowledge score for each topic (variety 
of random distributions, {0:1})

o Each message has a random probability of being false 
(parameterized by topic)

o The probability of detecting that a message is false is given by a 
sigmoid function tied to knowledge – topic experts are more 
likely to accurately detect false information than non-experts
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Conclusions
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o Disinformation is a complex problem. 
oNational security relevant problems have many of the same issues:
o Complex interdependencies
o Lack of data and ground truth.
o Adversarial setting.

o Social simulations can serve as a testbed:
•  Full ground truth.
• Can control data bias.
• Can run experiments and counterfactuals.
• Can evaluate performance on varied models, parameterizations, etc.
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Complex Information Diffusion Model – Trust
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Complex Information Diffusion Model – Trust



Complex Information Diffusion Model – Ideological Consistency
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Complex Information Diffusion Model – Social Network Centrality

Order Message Sender Centrality

1 102 i 0.83

2 103 i 0.83

3 106 j 0.55

4 102 k 0.52

5 104 l 0.11

Ki = 3



Lewandowsky et al. (2019)

Complex Information Diffusion Model – Information Accuracy



Information Accuracy



Information Accuracy
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Grid Sweep Parameter Settings

oNumber of seeded messages: 50, 250

oNumber of agents seeded with each new message: 50

oMessage virality drawn from power distribution with alpha: 4

oNumber of agents: 1,000

oMax number of timesteps: 100

oNumber of topics: 3

oProbability of false message by topic: (0.1, 0.1, 0.1)

oNumber applied to the false detection sigmoid function by topic: (4, 4, 4)

oAdd new messages every x ticks: 5

oEvery x ticks, add mean(SD) messages: 10(2), 50(10)

oNetwork type: random, scale free, small world
o Network density: 0, 0.008, 0.04
o Small world re-wiring probability: 0, 0.1, 0.5

oHow do distribute trust along all directed edges: random uniform, 1-mean distance of opinions (ideological homophily)

oQi mean(SD) – subjective resend probability: 1(0.2)

oKi mean(SD) – subjective attention limit on inbox: 5(1), 15(3)

oHow to distribute ideology: random uniform, random Gaussian (M = 0.3, SD = 0.2)

oHow to distribute topic opinions from ideology: small random Gaussian (M = ideology, SD = 0.05), large random Gaussian (M = ideology, SD = 0.25)

oHow to distribute topic knowledge: triangular distribution with mode (0.2, 0.2, 0.2)
*Highlighted parameters were varied in the grid sweep of every unique parameter combination
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