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/" Disinformation is being used by many nation-states

/

/ o Disinformation is false information Falseness
intentionally used for harm.

o Nation-State and non-state actors use

d ISI nfo rmation. Misinformation Disinformation Malinformation

o Social media platforms a means of disseminating
disinformation.

F

Unintentional Fabricated or Deliberate publication

mistakes such as deliberately of private information
. . e e . inaccurate photo manipulated for personal or
o Machine Learning/Artificial Intelligence captions, dates, audio/visual corporate public
tec h nigues fO r: statistics, content. interest. Deliberate
o Identifylng false info rmation translation, or Intentionally change of context,
7 . ’ . when satire is created conspiracy date or time of
o Predicti ng the spread of information. taken seriously. theories or rumors. genuine content
o Predicting who will adopt information.
o However:
o 1(:Zomplex social system with many interacting Intent to harm
actors.

o Adversaries are changing tactics.
o We can't (ethically) experiment with the real world.

Source: FirstDraft, The essential guide to understanding the information disorder, 2019.

Americans more likely to get news on digital devices

o We have limited ground truth. from news websites, apps and search engines than
. . . from social media
O EnVIronment IS Cha nglng. % oof US. adults who gel news froim .
o Dataset shift problem. “Ohen sSomatmes 0

News websiles or apps “ 35% BEY
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/" We are investigating the use of social simulations as a testbed.
/

o Our approach: Use social simulations as a proxy for the
real world.

*

5

o Social simulations are computational models of real-world

phenomena. | Research Methods |
o Methods include agent-based modeling, systems dynamics, .... 25

o Often used for better understanding a phenomena and
testing interventions in a virtual world.

o Simulations can help solve some of the problems: s 3
 Full ground truth. '
» Can control data bias.
- Can run experiments and counterfactuals.

 Can evaluate performance on varied models, parameterizations,
etc.

Real World

How does the complexity of the environment impact the
learnability and generalizability of ML models?




P Modeling Process

o Create a simple agent-based modeling framework for person-to-
person communication to generate cascade data.

o Can adapt to various theoretical additions at the agent-, network-, or
message-level

o Challenges:

o Many different theories from different disciplines apply (social-psychology,
communications, group theory, etc.).

o Most existing simulations (from information diffusion, epidemic modeling)
do not generate significant data.

o Operationalization of multiple theories within the same model.




/ Berlo (1960) SMCR model of communication

Message

Sender Receiver

-

Channel
(modality)




/ Simple Information Diffusion Model
/.
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Agent model is used for each agent in a social network.
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P Complex Information Diffusion Model

o Sender characteristics

o Credibility or authority, “speech ability” or persuasiveness,
social network centrality, conformity to social norms (i.e.,
“Spiral of Silence”).

o Message characteristics
o Topic salience, message virality, information accuracy.

o Channel characteristics
o Access to communication modality.

o Receiver characteristics
o Trust, cognitive/ideological consistency, “stubbornness”




/" Complex Information Diffusion Model - Social Network Centrality
/
/

o Sender characteristic - a person’s “importance” in the network,

measured by their connectedness to others
o A person’s centrality is positively related with their influence on others

(Ibarra et al., 1993; Kameda et al., 1997; Wang et al., 2015)

o Centrality is operationalized in ABMs in a wide variety of ways from
seeding message (Barbuto et al., 2019), to distinguishing “intluencer”
agents from a general public (Lotito et al., 2021)

o In CIDM, centrality acts as a weight on inbox priority - i.e.,
compared to other messages received, how likely am | to pay
attention to your message; or how much does the algorithm weight
your message compared to others
o Eigenvector centrality, rescaled to {0:1}; model-added messages are

assigned a value of 2 to ensure they are seen




/" Complex Information Diffusion Model - Trust
7 - Directed receiver-to-sender characteristic - a person’s belief in

i another that the information they share is true

o One of many aspects that affects the receiver’s perception of the
believability of a message, and thereby its adoption and resend
probability

o Commonly implemented as a directed edge weight in the agent-to-
a%ent network affecting adoption and spreading rates (e.g., Hui et al.,
2I 15)());1I§)ss commonly operationalized using tie reciprocity (e.g., Fan et
al.,

o In CIDM, trustis an assigned directed edge value at the start of
the model; not permitted to update in this iteration

o Can be distributed randomly, as a function of dyadic ideological
similarity (Sherchan et al., 2013), or as a function of the proportion of
local network overlap (i.e., triadic closure; Igarashi et al., 2008)




P Complex Information Diffusion Model - Ideological Consistency

o Receiver characteristic - the degree to which the opinion
expressed in a message on one topic aligns with the receiver’s

mu
pPro

ti-dimensional ideology; greater similarity increases the
pability of adopting the message, and thereby resending

o Like cognitive dissonance theory (Festinger, 1962), but includes
congruency with beliefs on other, related topics

o Used more often in opinion dynamics models than information
diffusion per se (e.g., Lakkaraju, 2016; Schweighofer, 2020)

o In CIDM, ideological consistency increases resend
probability




o
O

P/ Complex Information Diffusion Model - Ideological Consistency
-
/

o Method

o ldeology is randomly distributed
{0:1}

o Opinions on some parameterized
number of topics are drawn from a
gaussian distribution with mean
set at ideology, parameterized sd,
and opinions beyond 0 and 1 are
rounded to floor/ceiling

o Message asserts some value in
opinion space (random; {0:1}) on a
particular topic

o Consistency is 1 - mean distance

of message opinion from all non-
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P” Complex Information Diffusion Model
/

5

For a message (m), sent by one agent (i) to another (j), the
receiving agent will resend the message with the
probability:

P = Virality,, * Trust; * Ideological.Consistency,

m—outbox




P Complex Information Diffusion Model - Information Accuracy

o Message/receiver characteristic - the degree to which
(receiver’s perception of) information in the message conforms
with (receiver’s perception of) external evidence; true (or
perceived true) information is more likely to be adopted and
reshared
o E.g., “vaccines are safe” message paired with evidence of few
complications

o Fairly novel in agent-based models of information diffusion, but
interesting because information is modeled as both socially- and
externally-supplied

o One excellent example of its use in ABMs is Lewandowsky et al.’s
(2019) model of global warming belief propagation




P Complex Information Diffusion Model - Information Accuracy

o In CIDM, information accuracy is operationalized as a filter
on read messages - perceived true information is passed
through heuristic processing (trust, virality, ideological
consistency), while false information is discarded

o Agents are assigned a knowledge score for each topic (variety
of random distributions, {0:1})

o Each message has a random probability of being false
(parameterized by topic)

o The probability of detecting that a message is false is given by a
sigmoid function tied to knowledge - topic experts are more
likely to accurately detect false information than non-experts
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atter of messages based on length and total popularity
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INBOX

Count
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OUTBOX

Frequency plot of unique population to count for all messages (log-log)
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/" Conclusions
/'

o Disinformation is a complex problem.
o National security relevant problems have many of the same issues:
o Complex interdependencies
o Lack of data and ground truth.
o Adversarial setting.

*

o Social simulations can serve as a testbed:
 Full ground truth.

 Can control data bias.
« Can run experiments and counterfactuals.
» Can evaluate performance on varied models, parameterizations, etc.
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P/ Complex Information Diffusion Model - Trust
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/ Complex Information Diffusion Model - Trust
74
/
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Complex Information Diffusion Model - Trust

Trust Neighborhood (ER) Trust Neighborhood (SF) Trust Neighborhood (SW)
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Complex Information Diffusion Model - Ideological Consistency
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P/ Complex Information Diffusion Model - Social Network Centrality
7




P Complex Information Diffusion Model - Information Accuracy

Lewandowsky et al. (2019)

oThree types of agents: scientists, gen. pop., and

contrarians

o Varied the amount of real-world data (last 15-30 years, no |
data, 3 years) drawn on to form evidence-based opinion on st

M, |

existence of global warming; contrarians apply “skew” (see =t | £ o

cognitive consistency) e il "

o Likelihood ratio drawn from linear regression slope ; al ’__.__,_,'?-3-?‘""'
o LR = 108-S E o1 | W

o Bayesian belief revision ] | };

o Scientists and contrarians confer within groups 3]
o They then spread to the general public 5 times per year & R B B

3 3
Data (revealed over tome) —_—

oEven small amounts of contrarians drastically reduce
overall belief in climate change, both because of skew

and over-reliance on small amount of data




Information Accuracy

Knowledge and the Detection of False Information
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Information Accuracy

Knowledge and the Detection of False Information

P Rejection
0.6 0.8 1.0

0.4

0.2

0.0

I I | I I I
0.0 0.2 0.4 0.6 0.8 1.0

Topic Knowledge




Information Accuracy

Knowledge and the Detection of False Information
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/ Grid Sweep Parameter Settings

/ oNumber of seeded messages: 50, 250
oNumber of agents seeded with each new message: 50
oMessage virality drawn from power distribution with alpha: 4
oNumber of agents: 1,000
oMax number of timesteps: 100
oNumber of topics: 3
oProbability of false message by topic: (0.1, 0.1, 0.1)
oNumber applied to the false detection sigmoid function by topic: (4, 4, 4)
oAdd new messages every x ticks: 5
oEvery x ticks, add mean(SD) messages: 10(2), 50(10)

oNetwork type: random, scale free, small world
o Network density: 0, 0.008, 0.04

o Small world re-wiring probability: 0, 0.1, 0.5

oHow do distribute trust along all directed edges: random uniform, 1-mean distance of opinions (ideological homophily)

oQi mean(SD) - subjective resend probability: 1(0.2)

oKi mean(SD) - subjective attention limit on inbox: 5(1), 15(3)

oHow to distribute ideology: random uniform, random Gaussian (M = 0.3, SD = 0.2)

oHow to distribute topic opinions from ideology: small random Gaussian (M = ideology, SD = 0.05), large random Gaussian (M = ideology, SD = 0.25)
oHow to distribute topic knowledge: triangular distribution with mode (0.2, 0.2, 0.2)

*Highlighted parameters were varied in the grid sweep of every unique parameter combination




