

Sandia
National
Laboratories

Exceptional service in the national interest

A Complex, Integrative Agent-Based Model of Disinformation Cascades.

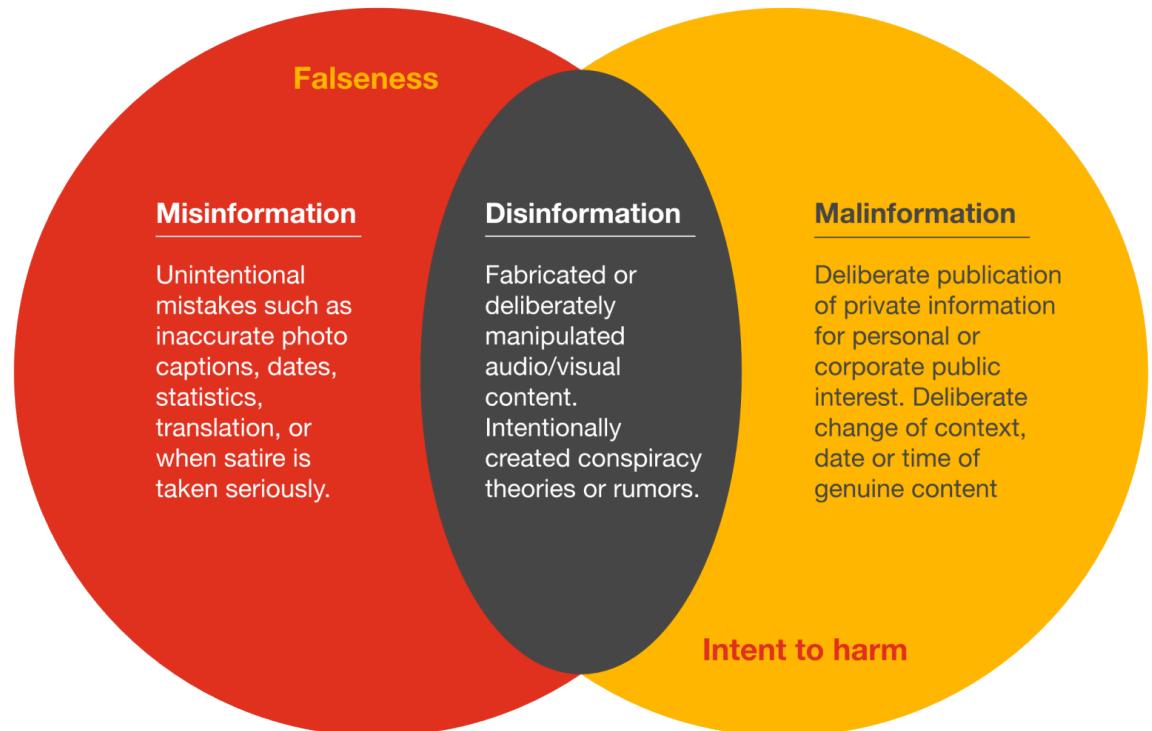
Matthew Sweitzer, 1462

September 20th, 2022

SBB-BRIMS 2022

Disinformation is being used by many nation-states

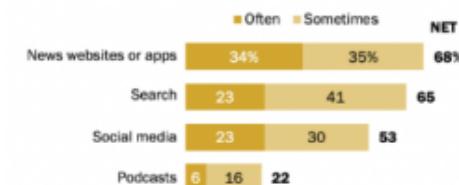
- Disinformation is false information intentionally used for harm.
- Nation-State and non-state actors use disinformation.
- Social media platforms a means of disseminating disinformation.
- Machine Learning/Artificial Intelligence techniques for:
 - Identifying false information.
 - Predicting the spread of information.
 - Predicting who will adopt information.
- However:
 - Complex social system with many interacting factors.
 - Adversaries are changing tactics.
 - We can't (ethically) experiment with the real world.
 - We have limited ground truth.
 - Environment is changing.
 - Dataset shift problem.



Source: FirstDraft, The essential guide to understanding the information disorder, 2019.

Americans more likely to get news on digital devices from news websites, apps and search engines than from social media

% of U.S. adults who get news ____ from ...

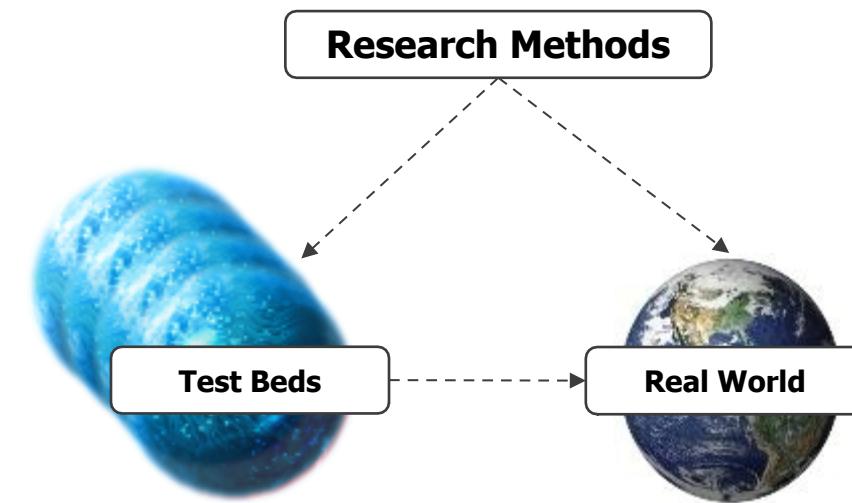


Source: Survey of U.S. adults conducted Aug. 31-Sept. 7, 2020.

PEW RESEARCH CENTER

We are investigating the use of social simulations as a testbed.

- Our approach: Use social simulations as a proxy for the real world.
- Social simulations are computational models of real-world phenomena.
 - Methods include agent-based modeling, systems dynamics,
- Often used for better understanding a phenomena and testing interventions in a virtual world.
- Simulations can help solve some of the problems:
 - Full ground truth.
 - Can control data bias.
 - Can run experiments and counterfactuals.
 - Can evaluate performance on varied models, parameterizations, etc.

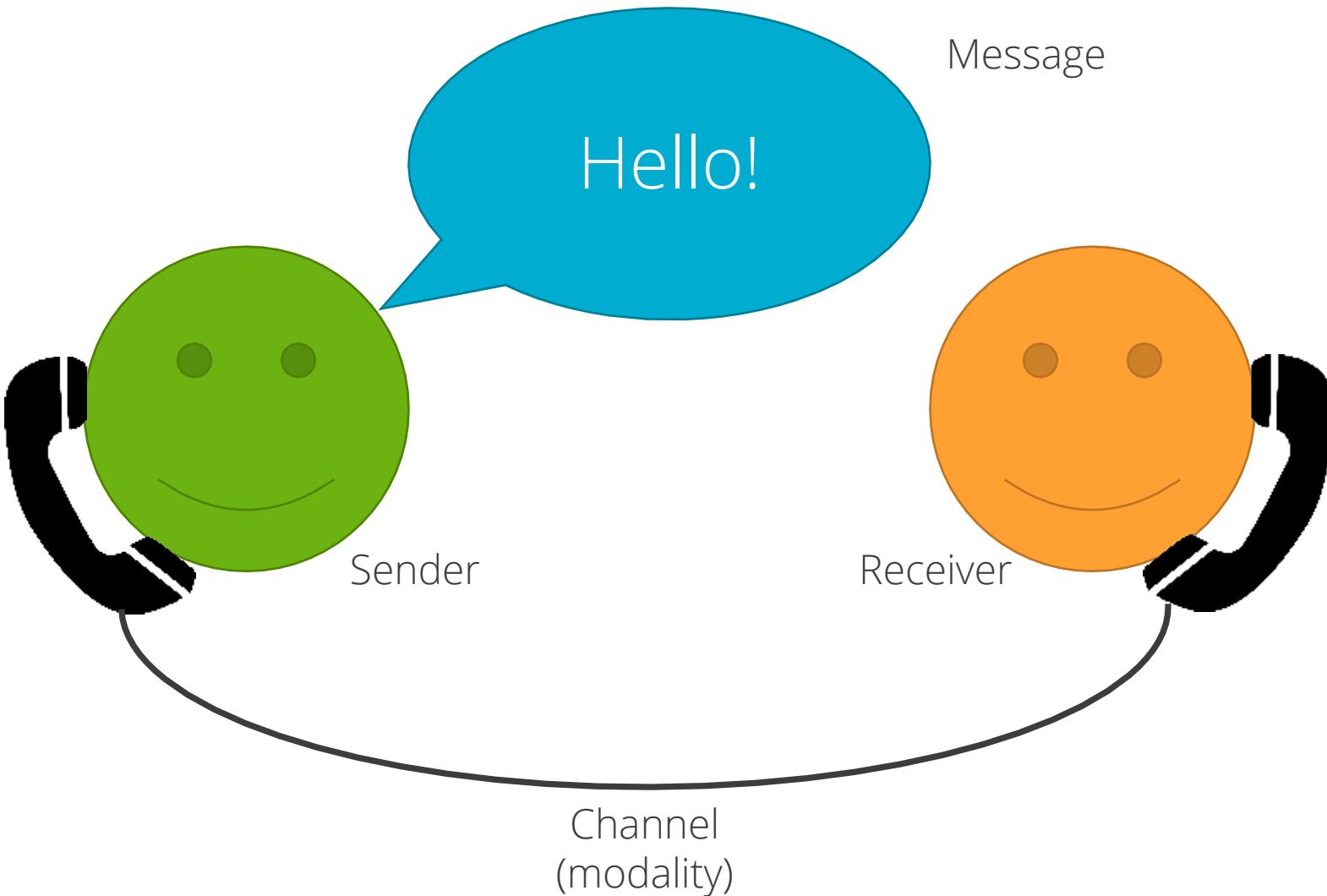


How does the complexity of the environment impact the learnability and generalizability of ML models?

Modeling Process

- Create a simple agent-based modeling framework for person-to-person communication to **generate cascade data**.
 - Can adapt to various theoretical additions at the agent-, network-, or message-level
- Challenges:
 - Many different theories from different disciplines apply (social-psychology, communications, group theory, etc.).
 - Most existing simulations (from information diffusion, epidemic modeling) do not generate significant data.
 - Operationalization of multiple theories within the same model.

Berlo (1960) SMCR model of communication



Simple Information Diffusion Model

Time: 1

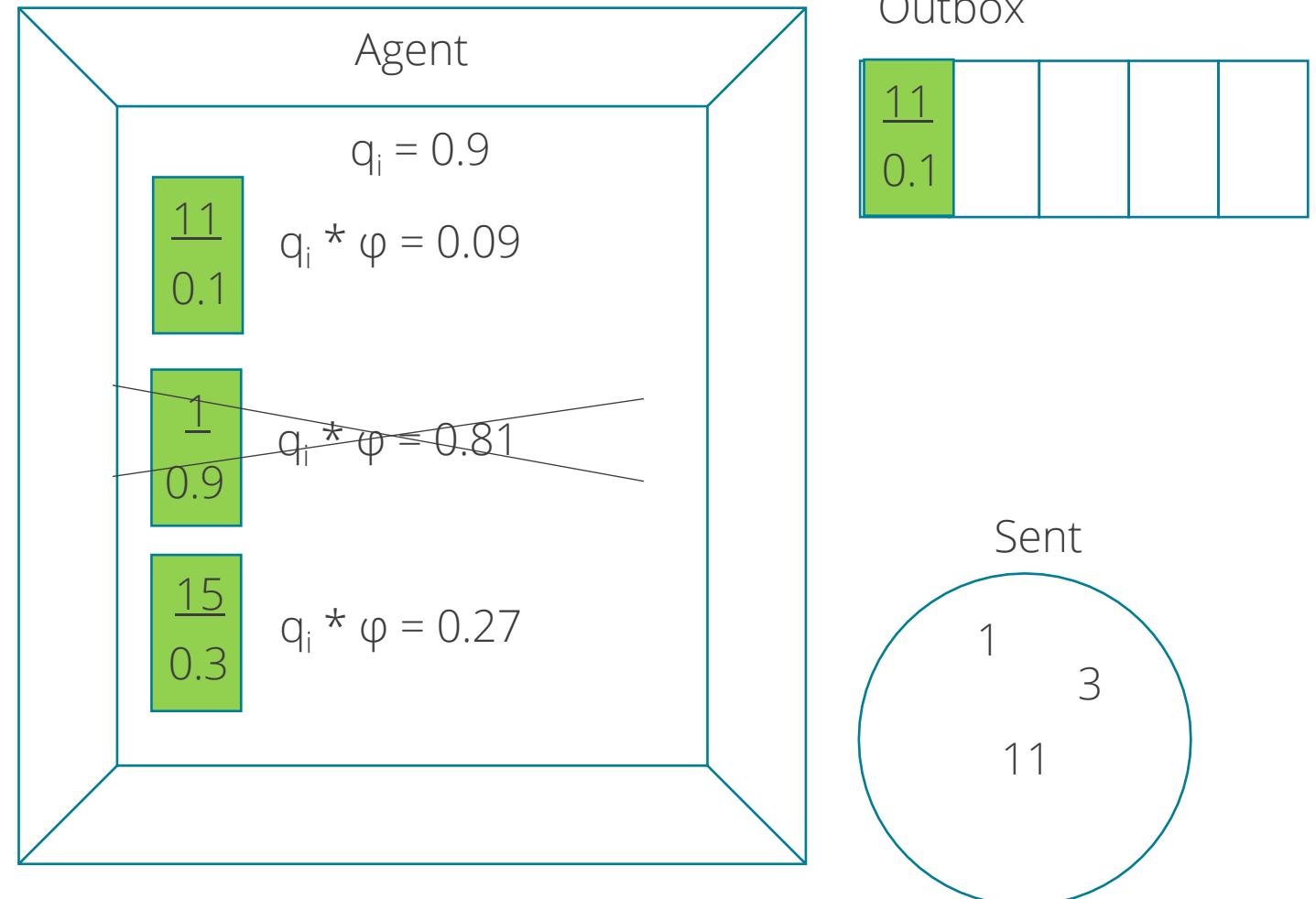
Inbox

$\frac{11}{0.1}$	$\frac{1}{0.9}$	$\frac{10}{0.2}$	$\frac{15}{0.3}$	$\frac{8}{0.1}$
------------------	-----------------	------------------	------------------	-----------------

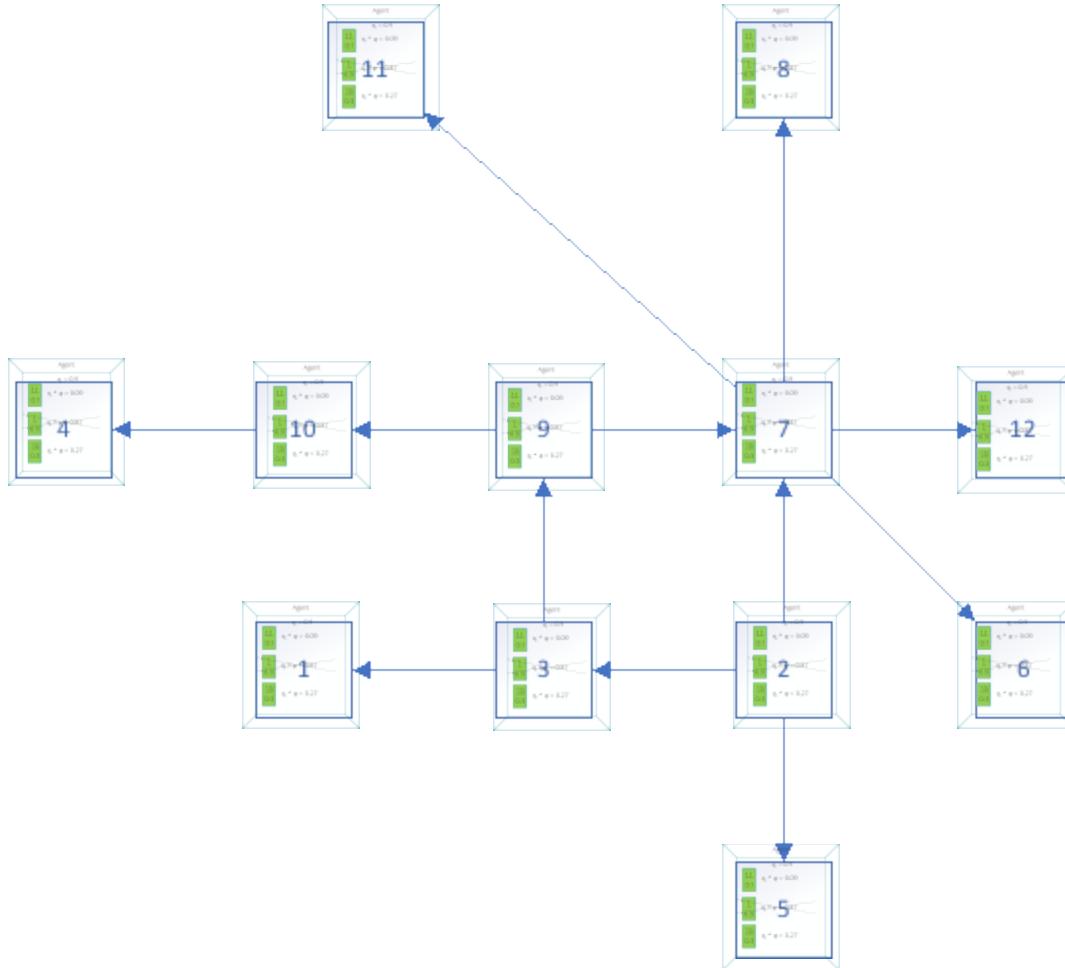
ϕ

$K = 3$

- Capture attentional constraints (k_i).
- Capture innate virality of messages (ϕ).
- Captures subjective likelihood to resend (q_i).



Agent model is used for each agent in a social network.



Complex Information Diffusion Model

- **Sender characteristics**
 - Credibility or authority, “speech ability” or persuasiveness, social network centrality, conformity to social norms (i.e., “Spiral of Silence”).
- **Message characteristics**
 - Topic salience, message virality, information accuracy.
- **Channel characteristics**
 - Access to communication modality.
- **Receiver characteristics**
 - Trust, cognitive/ideological consistency, “stubbornness”

Complex Information Diffusion Model – Social Network Centrality

- **Sender characteristic** – a person's "importance" in the network, measured by their connectedness to others
 - A person's centrality is positively related with their influence on others (Ibarra et al., 1993; Kameda et al., 1997; Wang et al., 2015)
 - Centrality is operationalized in ABMs in a wide variety of ways from seeding message (Barbuto et al., 2019), to distinguishing "influencer" agents from a general public (Lotito et al., 2021)
- **In CIDM, centrality acts as a weight on inbox priority** – i.e., compared to other messages received, how likely am I to pay attention to *your* message; or how much does the algorithm weight your message compared to others
 - Eigenvector centrality, rescaled to {0:1}; model-added messages are assigned a value of 2 to ensure they are seen

Complex Information Diffusion Model – Trust

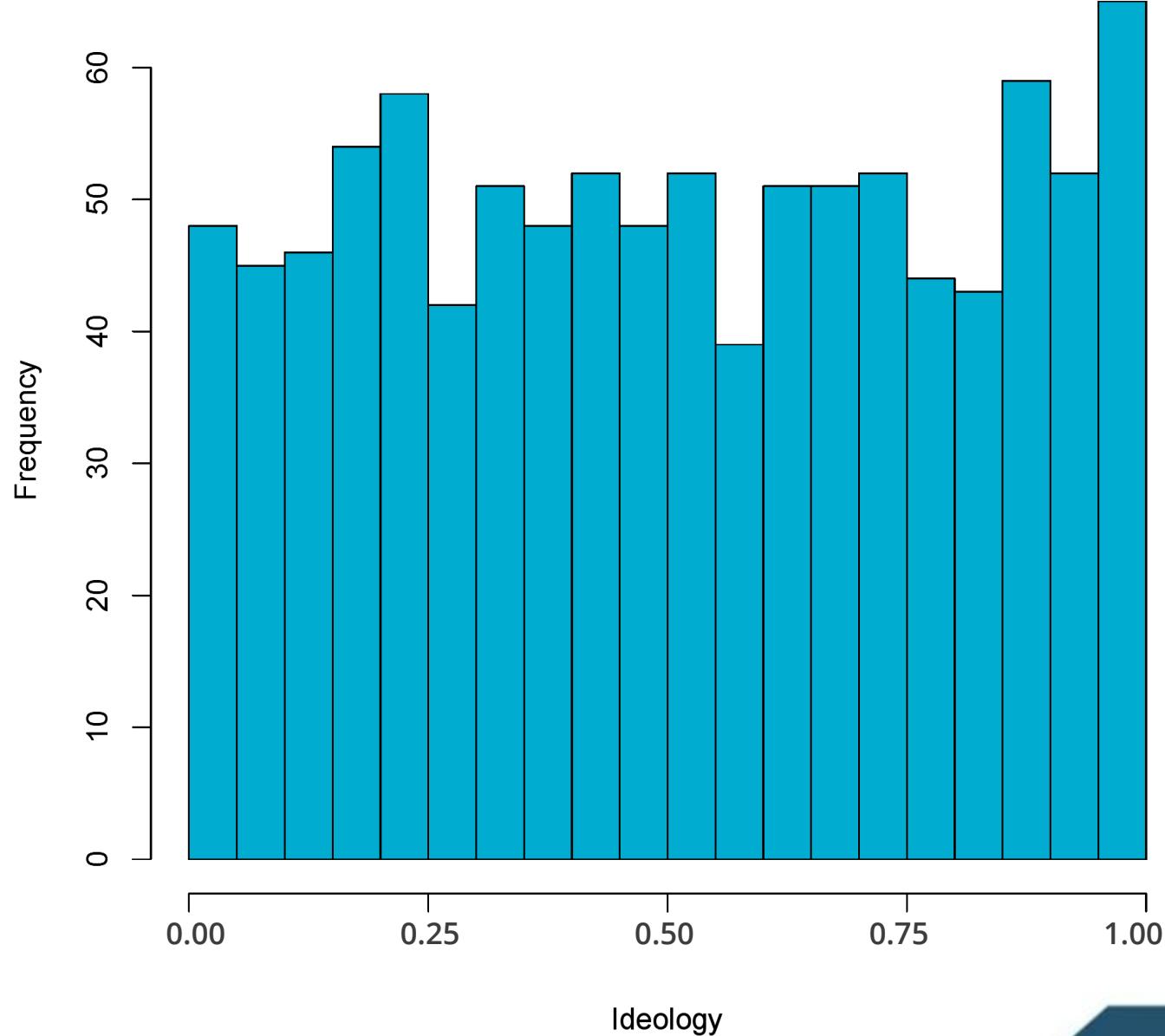
- **Directed receiver-to-sender characteristic** – a person's belief in another that the information they share is true
 - One of many aspects that affects the receiver's perception of the believability of a message, and thereby its adoption and resend probability
 - Commonly implemented as a directed edge weight in the agent-to-agent network affecting adoption and spreading rates (e.g., Hui et al., 2010); less commonly operationalized using tie reciprocity (e.g., Fan et al., 2018)
- **In CIDM, trust is an assigned directed edge value at the start of the model**; not permitted to update in this iteration
 - Can be distributed randomly, as a function of dyadic ideological similarity (Sherchan et al., 2013), or as a function of the proportion of local network overlap (i.e., triadic closure; Igarashi et al., 2008)

Complex Information Diffusion Model – Ideological Consistency

- **Receiver characteristic** – the degree to which the opinion expressed in a message on one topic aligns with the receiver's multi-dimensional ideology; greater similarity increases the probability of adopting the message, and thereby resending
 - Like cognitive dissonance theory (Festinger, 1962), but includes congruency with beliefs on other, related topics
 - Used more often in opinion dynamics models than information diffusion per se (e.g., Lakkaraju, 2016; Schweighofer, 2020)
- **In CIDM, ideological consistency increases resend probability**

Complex Information Diffusion Model – Ideological Consistency

- **Method**
 - Ideology is randomly distributed {0:1}
 - Opinions on some parameterized number of topics are drawn from a gaussian distribution with mean set at ideology, parameterized sd, and opinions beyond 0 and 1 are rounded to floor/ceiling
 - Message asserts some value in opinion space (random; {0:1}) on a particular topic
 - Consistency is 1 – mean distance of message opinion from all non-topic node opinions



Complex Information Diffusion Model

For a message (m), sent by one agent (i) to another (j), the receiving agent will resend the message with the probability:

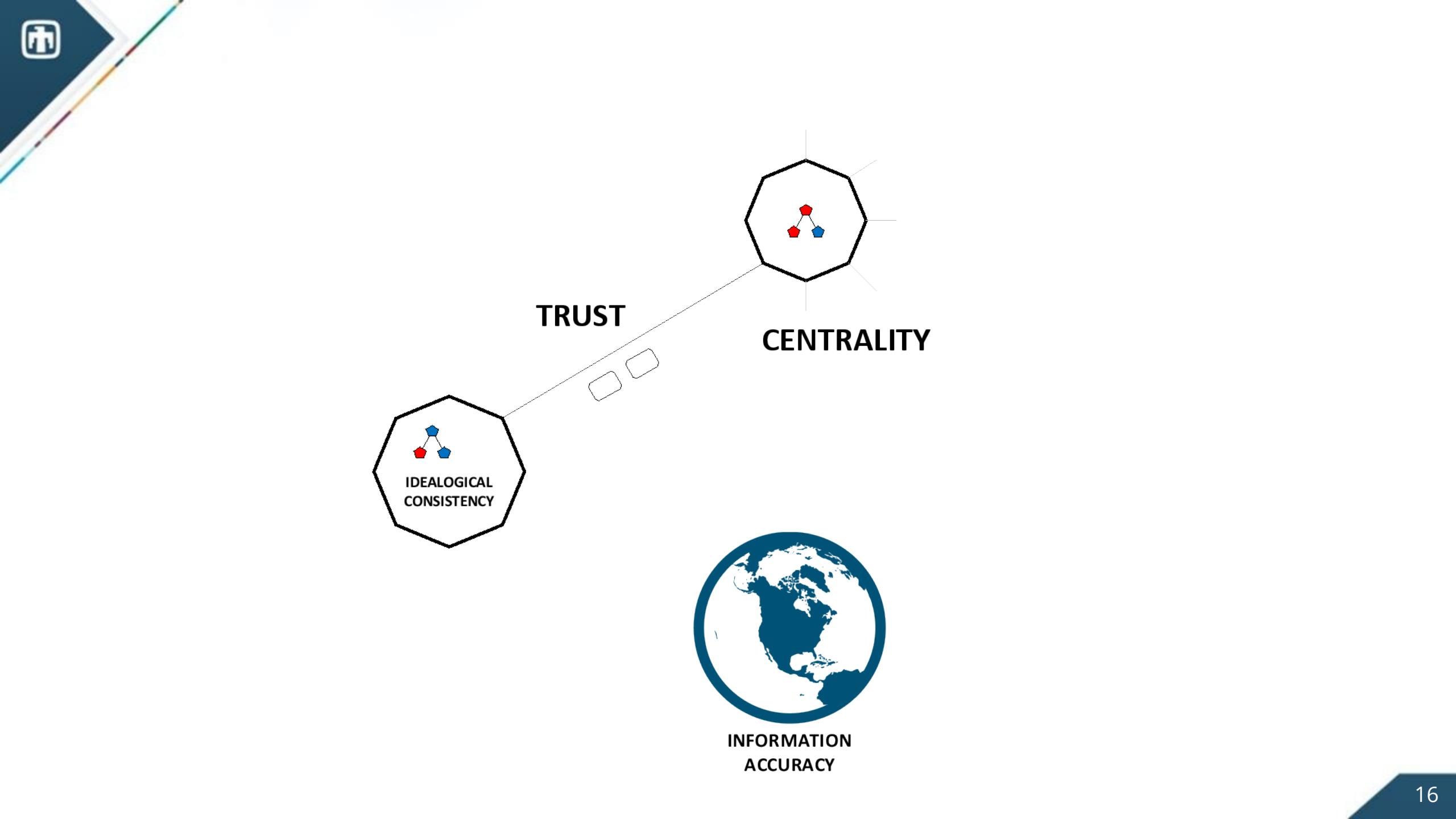
$$P_{m \rightarrow \text{outbox}} = \text{Virality}_m * \text{Trust}_{ij} * \text{Ideological.Consistency}_{jm}$$

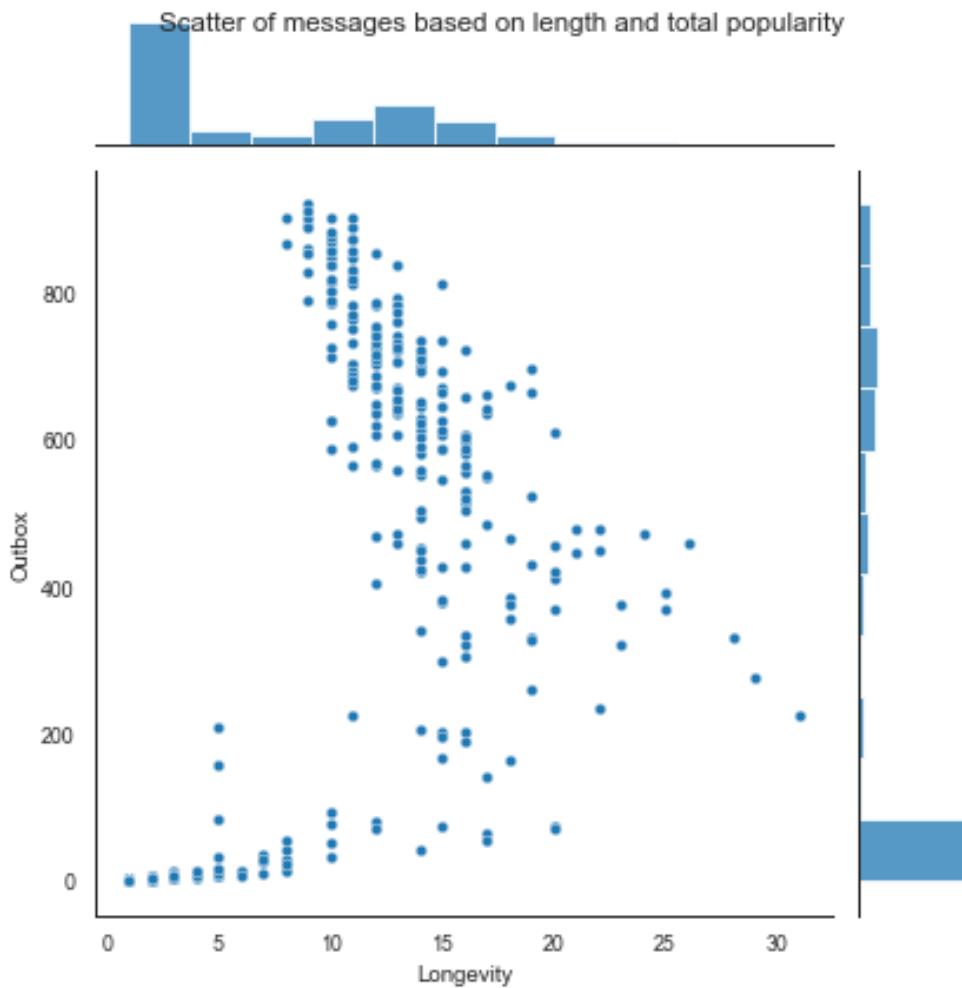
Complex Information Diffusion Model – Information Accuracy

- **Message/receiver characteristic** – the degree to which (receiver's perception of) information in the message conforms with (receiver's perception of) external evidence; true (or perceived true) information is more likely to be adopted and reshared
 - E.g., “vaccines are safe” message paired with evidence of few complications
 - Fairly novel in agent-based models of information diffusion, but interesting because information is modeled as both socially- and externally-supplied
 - One excellent example of its use in ABMs is Lewandowsky et al.’s (2019) model of global warming belief propagation

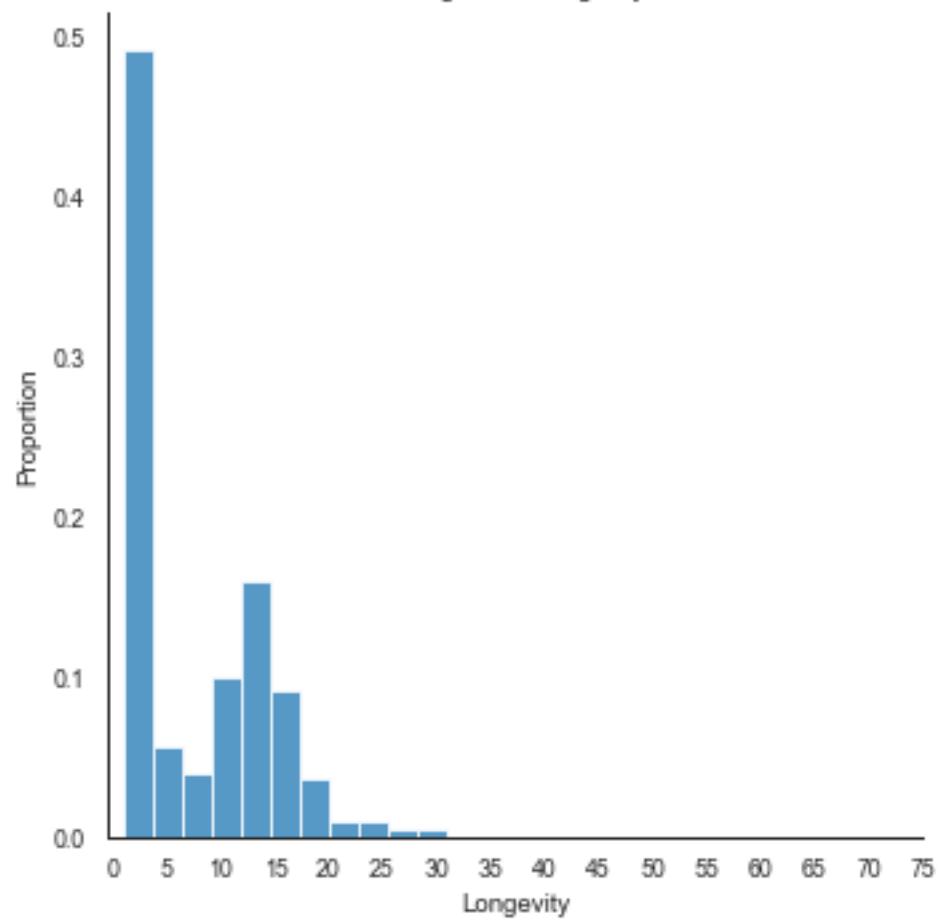
Complex Information Diffusion Model – Information Accuracy

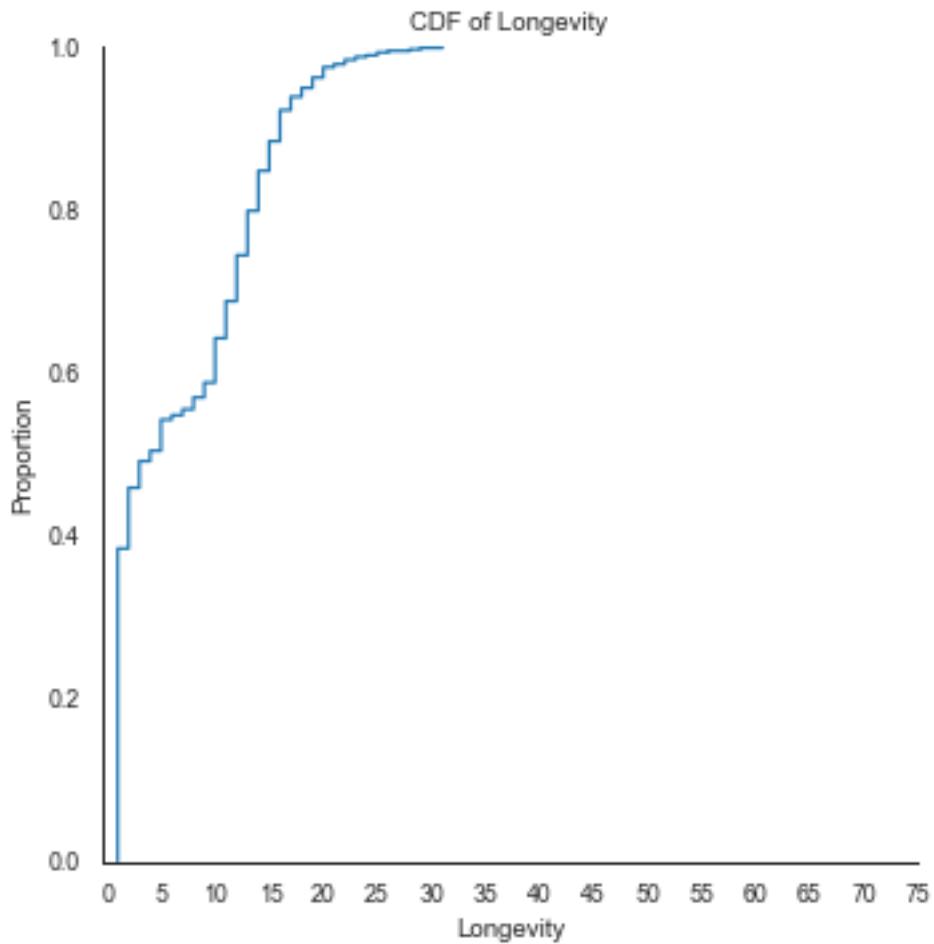
- In CIDM, **information accuracy is operationalized as a filter on read messages** – perceived true information is passed through heuristic processing (trust, virality, ideological consistency), while false information is discarded
- Agents are assigned a knowledge score for each topic (variety of random distributions, {0:1})
- Each message has a random probability of being false (parameterized by topic)
- The probability of detecting that a message is false is given by a sigmoid function tied to knowledge – topic experts are more likely to accurately detect false information than non-experts



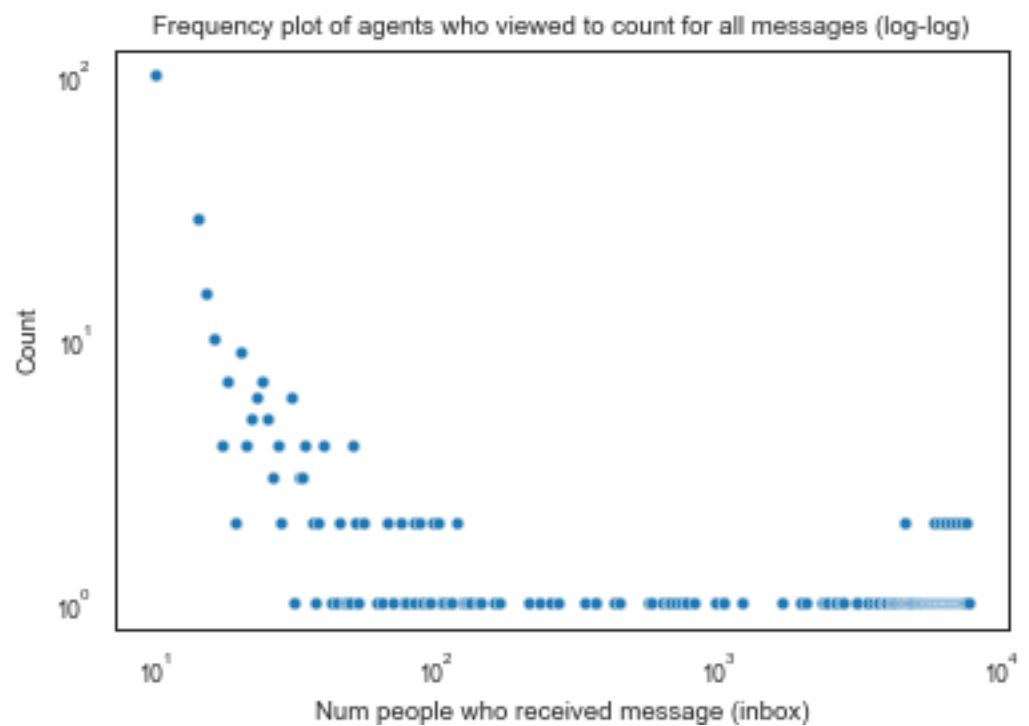


Histogram of Longevity

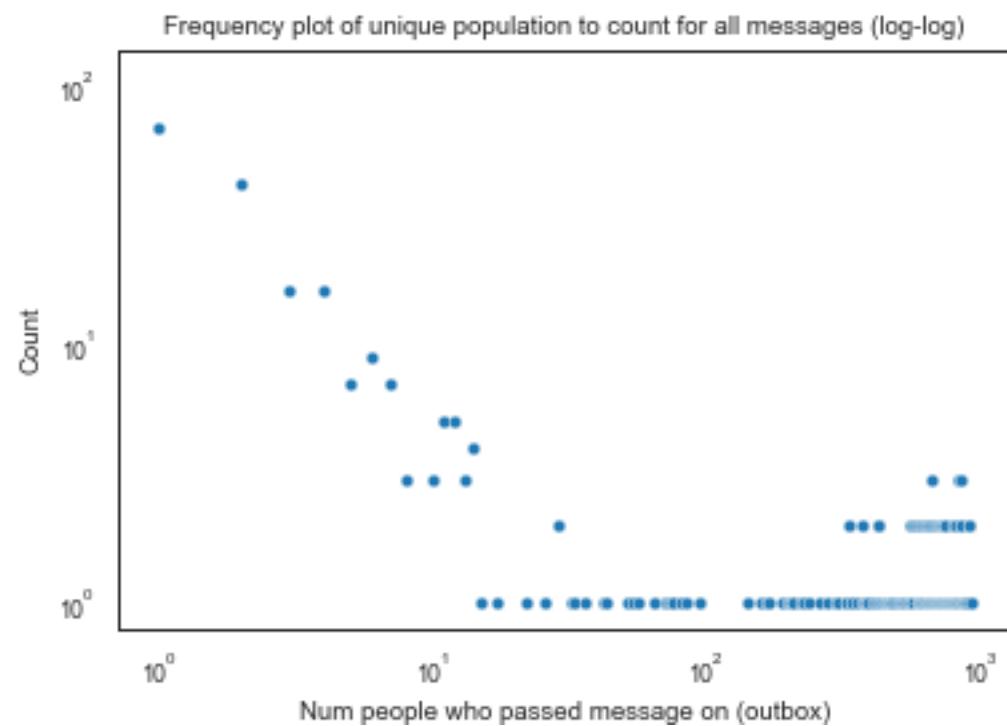




INBOX



OUTBOX



Conclusions

- Disinformation is a complex problem.
 - National security relevant problems have many of the same issues:
 - Complex interdependencies
 - Lack of data and ground truth.
 - Adversarial setting.
- Social simulations can serve as a testbed:
 - Full ground truth.
 - Can control data bias.
 - Can run experiments and counterfactuals.
 - Can evaluate performance on varied models, parameterizations, etc.

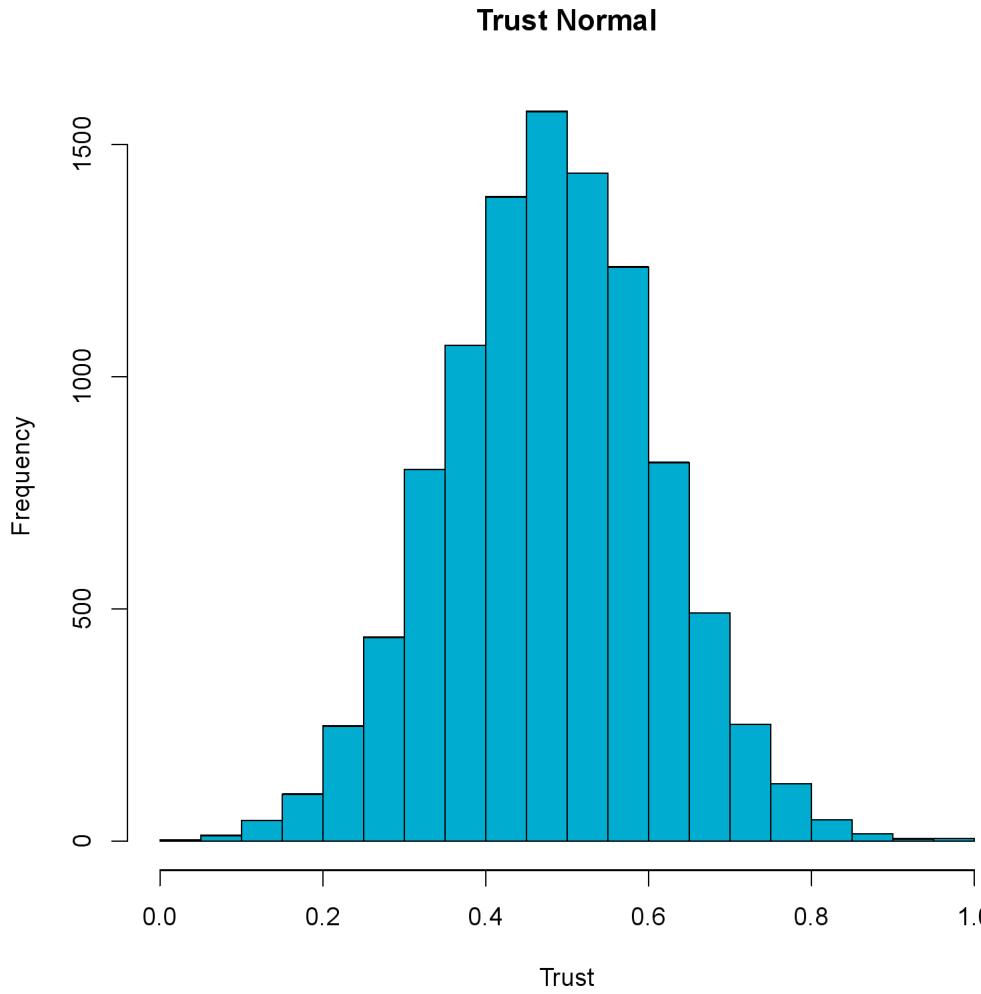
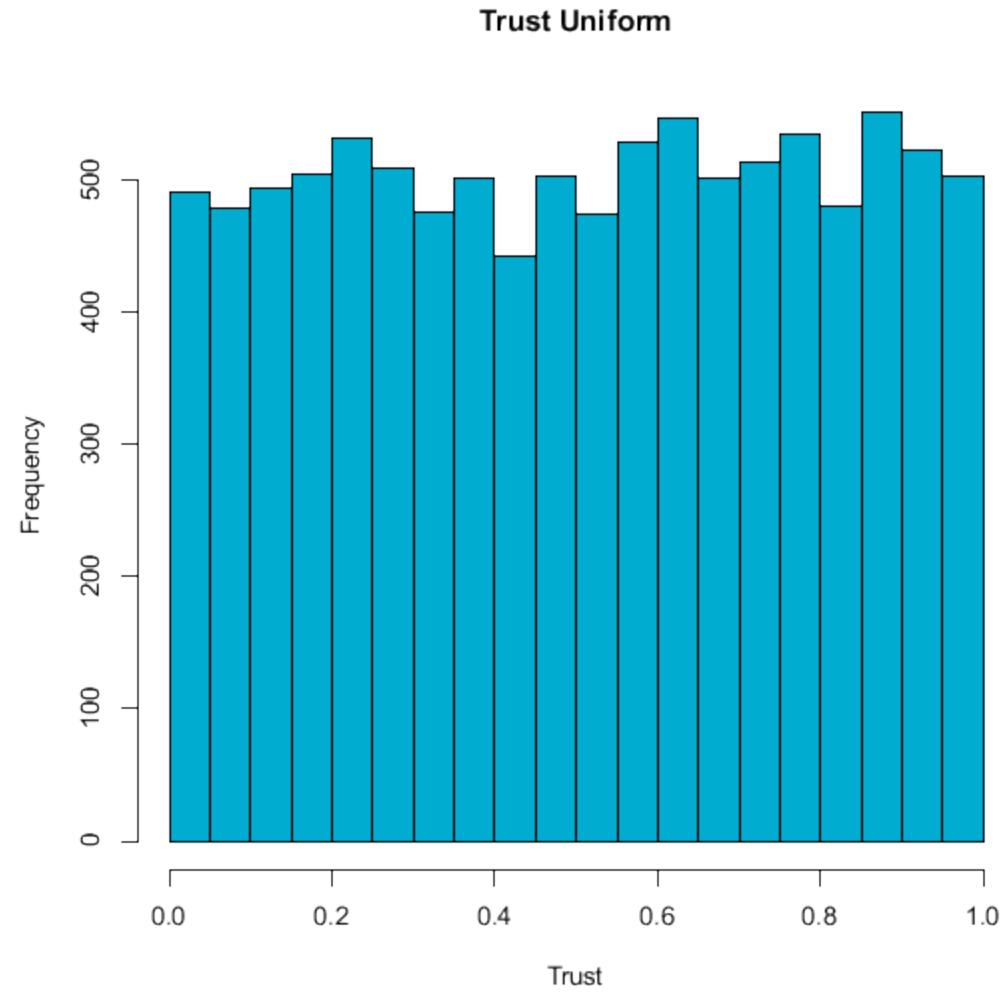
References

- Bradshaw S, Bailey H, Howard PN (2021) Industrialized Disinformation: 2020 Global Inventory of Organized Social Media Manipulation. Programme on Democracy & Technology, Oxford, UK
- Nguyen CV, Hassner T, Seeger M, Archambeau C (2020) LEEP: a new measure to evaluate transferability of learned representations. In: Proceedings of the 37th International Conference on Machine Learning. JMLR.org, pp 7294–7305
- Pogorelov K, Schroeder DT, Filkuková P, et al (2021) WICO Text: A Labeled Dataset of Conspiracy Theory and 5G-Corona Misinformation Tweets. In: Proceedings of the 2021 Workshop on Open Challenges in Online Social Networks. Association for Computing Machinery, New York, NY, USA, pp 21–25
- Vosoughi S, Roy D, Aral S (2018) The spread of true and false news online. *Science* 359:1146–1151. <https://doi.org/10.1126/science.aap9559>
- Zhou F, Xu X, Trajcevski G, Zhang K (2021) A Survey of Information Cascade Analysis: Models, Predictions, and Recent Advances. *ACM Comput Surv* 54:27:1–27:36. <https://doi.org/10.1145/3433000>
- Zhuang F, Qi Z, Duan K, et al (2021) A Comprehensive Survey on Transfer Learning. *Proceedings of the IEEE* 109:43–76. <https://doi.org/10.1109/JPROC.2020.3004555>

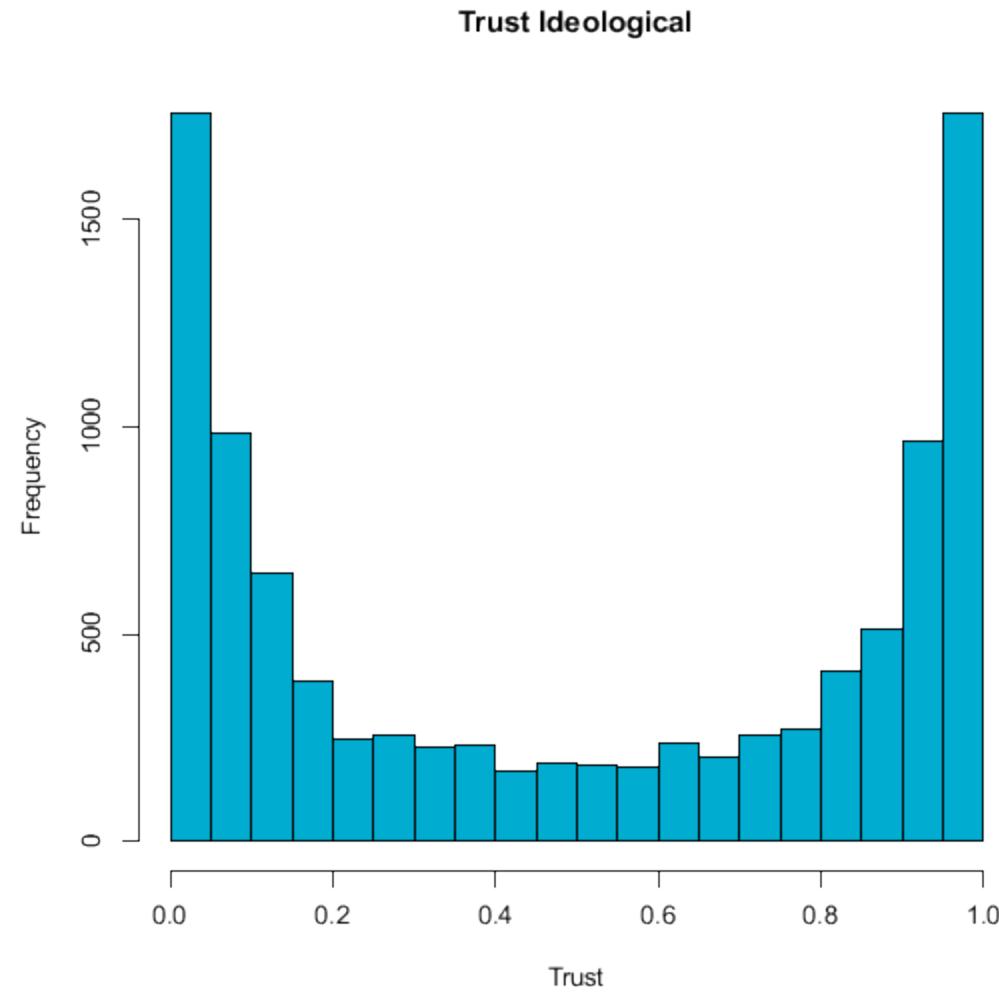
References cont..

- Barbuto A, Lopolito A, Santeramo FG (2019) Improving diffusion in agriculture: an agent-based model to find the predictors for efficient early adopters. *Agricultural and food economics* 7(1):1-12
- Berlo DK (1960) The process of communication. New York: Holt, Rinehart, and Winston
- Fan R, Xu K, Zhao J (2018) An agent-based model for emotion contagion and competition in online social media. *Physica a: statistical mechanics and its applications* 495:245-259
- Festinger L (1962) Cognitive dissonance. *Scientific American* 207(4):93-106
- Hui C, Goldberg M, Magdon-Ismail M, Wallace WA (2010) Simulating the diffusion of information: An agent-based modeling approach. *International Journal of Agent Technologies and Systems (IJATS)* 2(3):31-46
- Ibarra H, Andrews SB (1993) Power, social influence, and sense making: Effects of network centrality and proximity on employee perceptions. *Administrative science quarterly* pp 277-303
- Igarashi T, Kashima Y, Kashima ES, Farsides T, Kim U, Strack F, Werth L, Yuki M (2008) Culture, trust, and social networks. *Asian Journal of Social Psychology* 11(1):88-101
- Kameda T, Ohtsubo Y, Takezawa M (1997) Centrality in sociocognitive networks and social influence: An illustration in a group decision-making context. *Journal of personality and social psychology* 73(2):296
- Lakkaraju K (2016) Modeling attitude diffusion and agenda setting: the mama model. *Social Network Analysis and Mining* 6(1):1-13
- Lewandowsky S, Pilditch TD, Madsen JK, Oreskes N, Risbey JS (2019) Influence and seepage: An evidence-resistant minority can affect public opinion and scientific belief formation. *Cognition* 188:124-139
- Lotito QF, Zanella D, Casari P (2021) Realistic aspects of simulation models for fake news epidemics over social networks. *Future Internet* 13(3):76
- Lu Y, Zhang P, Cao Y, Hu Y, Guo L (2014) On the frequency distribution of retweets. *Procedia Computer Science* 31:747-753
- Schweighofer S, Garcia D, Schweitzer F (2020) An agent-based model of multi-dimensional opinion dynamics and opinion alignment. *Chaos: An Interdisciplinary Journal of Nonlinear Science* 30(9):093,139
- Sherchan W, Nepal S, Paris C (2013) A survey of trust in social networks. *ACM Computing Surveys (CSUR)* 45(4):1-33
- Wang H, Zhao J, Li Y, Li C (2015) Network centrality, organizational innovation, and performance: A meta-analysis. *Canadian Journal of Administrative Sciences/Revue Canadienne des Sciences de l'Administration* 32(3):146-159

Complex Information Diffusion Model – Trust



Complex Information Diffusion Model – Trust

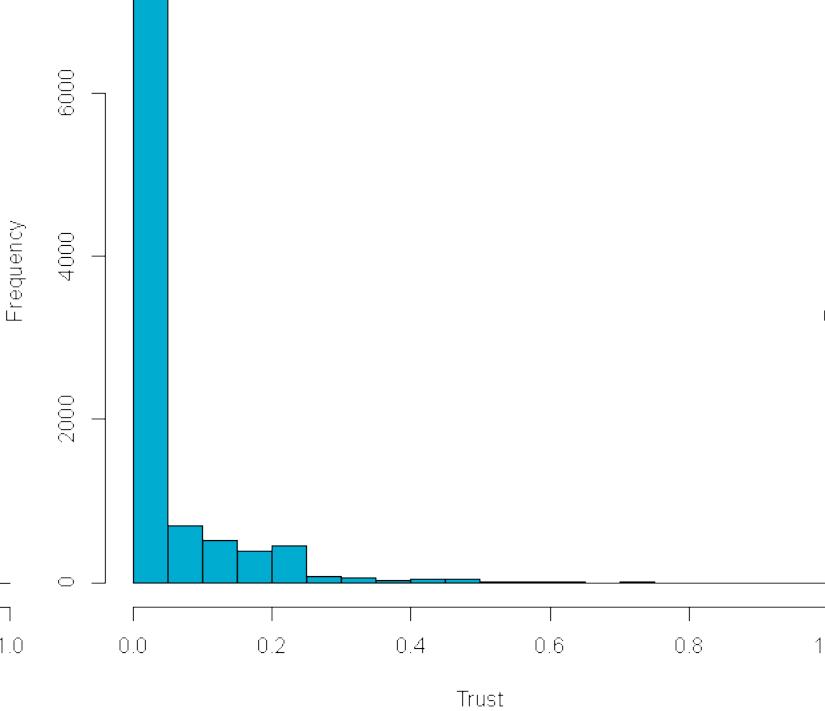


Complex Information Diffusion Model – Trust

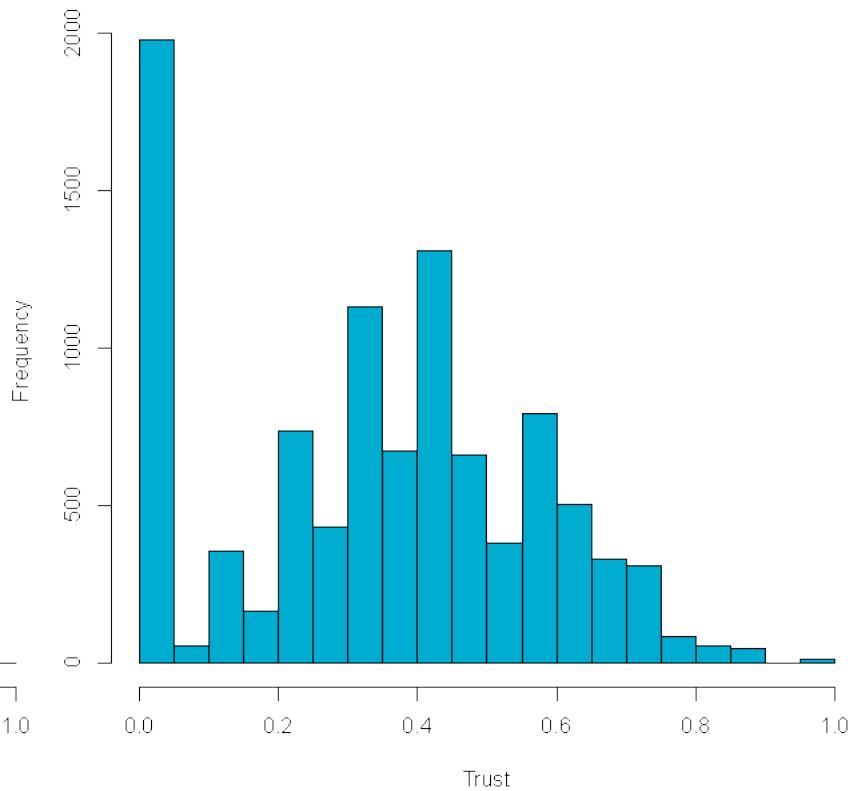
Trust Neighborhood (ER)



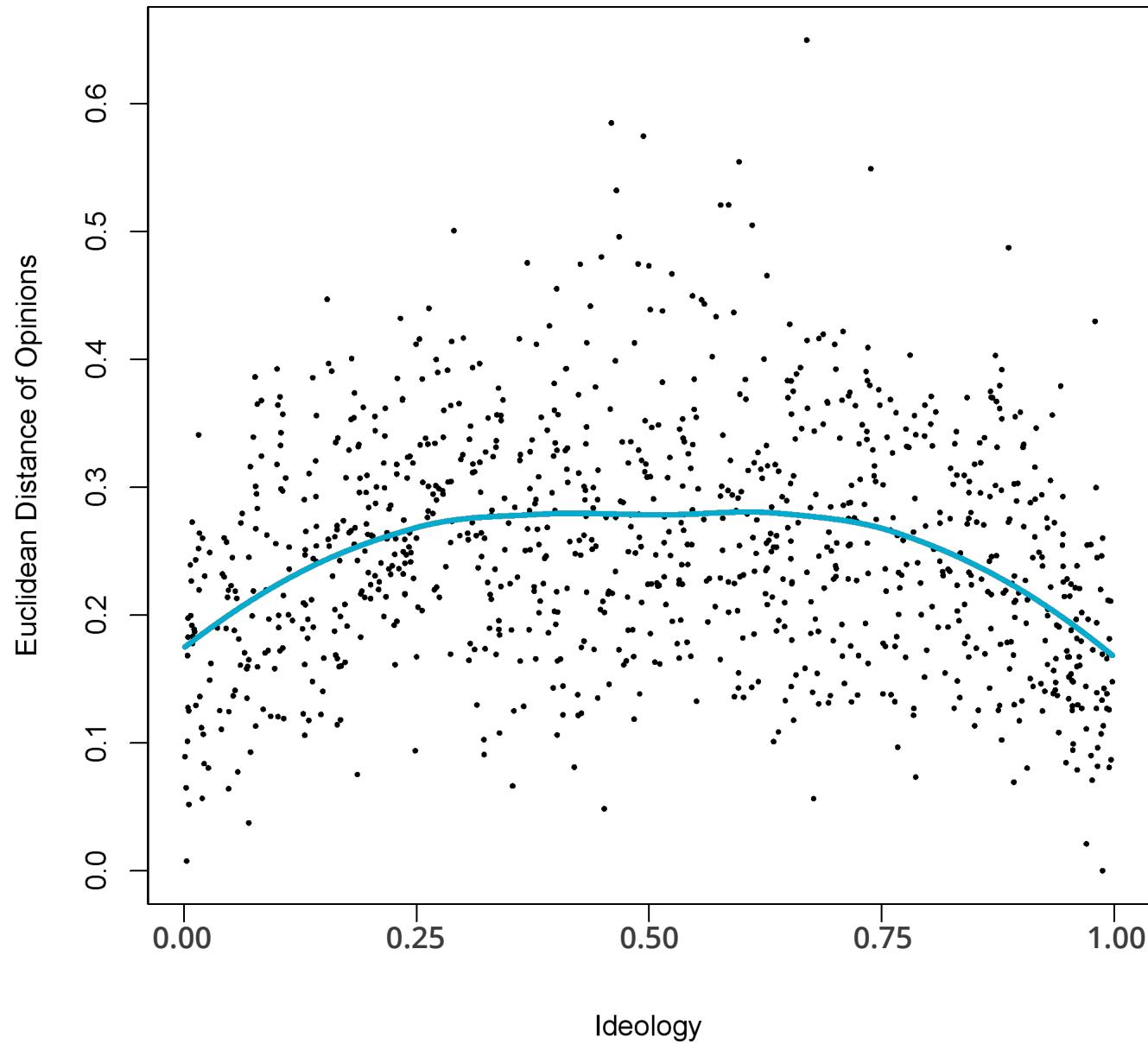
Trust Neighborhood (SF)



Trust Neighborhood (SW)



Complex Information Diffusion Model – Ideological Consistency



Complex Information Diffusion Model – Social Network Centrality

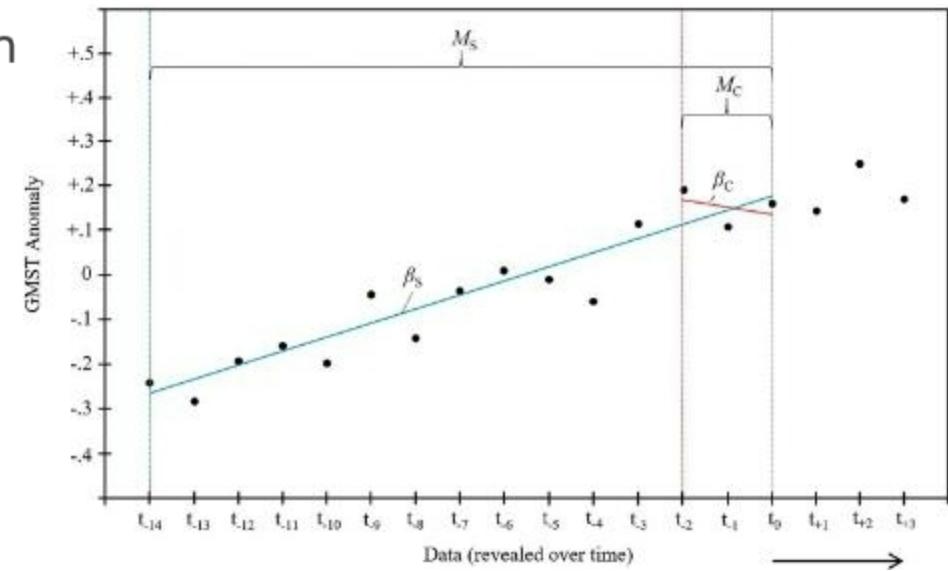
Order	Message	Sender	Centrality
1	102	i	0.83
2	103	i	0.83
3	106	j	0.55
4	102	k	0.52
5	104	l	0.11

$K_i = 3$

Complex Information Diffusion Model – Information Accuracy

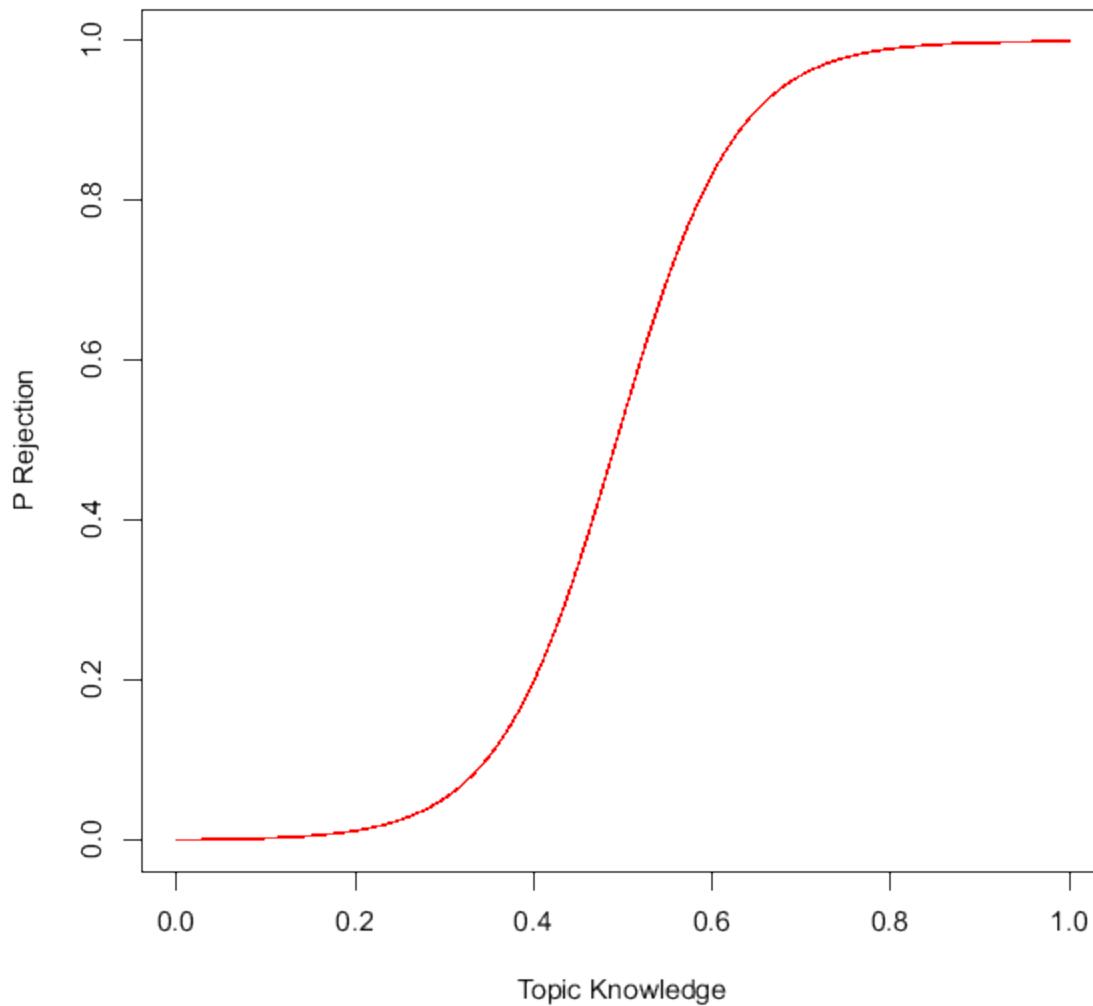
Lewandowsky et al. (2019)

- Three types of agents: scientists, gen. pop., and contrarians
 - Varied the amount of real-world data (last 15-30 years, no data, 3 years) drawn on to form evidence-based opinion on existence of global warming; contrarians apply “skew” (see cognitive consistency)
 - Likelihood ratio drawn from linear regression slope
 - $LR = 10^{\beta - S}$
 - Bayesian belief revision
 - Scientists and contrarians confer within groups
 - They then spread to the general public 5 times per year
- Even small amounts of contrarians drastically reduce overall belief in climate change, both because of skew and over-reliance on small amount of data



Information Accuracy

Knowledge and the Detection of False Information

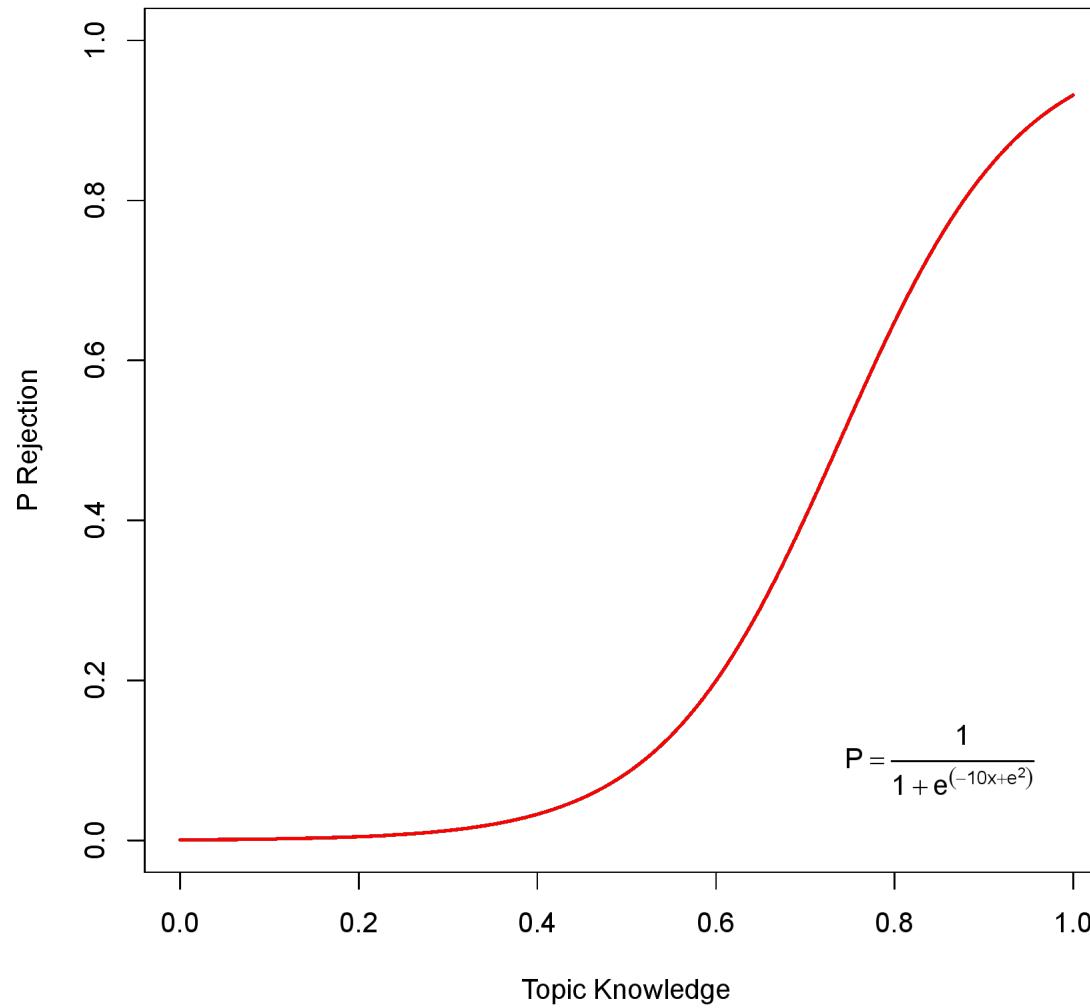


$$P = \frac{1}{1 + e^{(-15x+e^2)}}$$

A red arrow points to the term $e^{(-15x+e^2)}$ in the denominator of the equation.

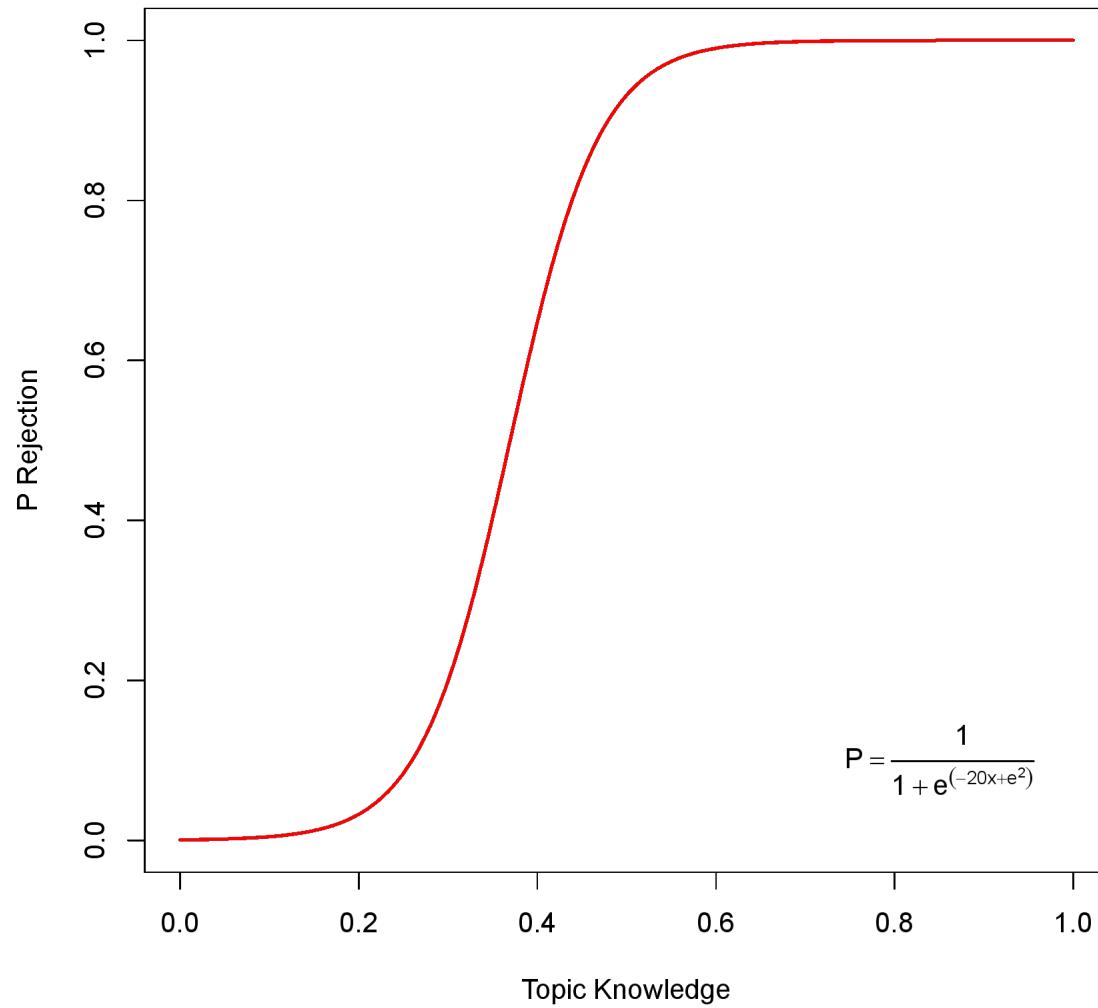
Information Accuracy

Knowledge and the Detection of False Information



Information Accuracy

Knowledge and the Detection of False Information



Grid Sweep Parameter Settings

- **Number of seeded messages:** 50, 250
- **Number of agents seeded with each new message:** 50
- **Message virality drawn from power distribution with alpha:** 4
- **Number of agents:** 1,000
- **Max number of timesteps:** 100
- **Number of topics:** 3
- **Probability of false message by topic:** (0.1, 0.1, 0.1)
- **Number applied to the false detection sigmoid function by topic:** (4, 4, 4)
- **Add new messages every x ticks:** 5
- **Every x ticks, add mean(SD) messages:** 10(2), 50(10)
- **Network type:** random, scale free, small world
 - **Network density:** 0, 0.008, 0.04
 - **Small world re-wiring probability:** 0, 0.1, 0.5
- **How do distribute trust along all directed edges:** random uniform, 1-mean distance of opinions (ideological homophily)
- **Qi mean(SD) – subjective resend probability:** 1(0.2)
- **Ki mean(SD) – subjective attention limit on inbox:** 5(1), 15(3)
- **How to distribute ideology:** random uniform, random Gaussian ($M = 0.3$, $SD = 0.2$)
- **How to distribute topic opinions from ideology:** small random Gaussian ($M = \text{ideology}$, $SD = 0.05$), large random Gaussian ($M = \text{ideology}$, $SD = 0.25$)
- **How to distribute topic knowledge:** triangular distribution with mode (0.2, 0.2, 0.2)

*Highlighted parameters were varied in the grid sweep of every unique parameter combination