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WASH-1400 identifies a subset of radionuclides to be included in 
a consequence analysis

• Section 3.3 and 8.2.1 of Appendix VI

• This methodology includes consideration of:
• Radionuclide half-life
• Emitted radiation type and energy
• Inventory
• Release fraction
• Elemental chemistry
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Alpert et al. (1986) updated the list of radionuclides identified in 
WASH-1400

• Estimation of release fractions was subject of 
considerable uncertainty at the time

• Alpert et al. developed a method to consider 
relative importance of individual elements to 
reactor accident consequences assuming equal 
release fractions

• Ultimately resulted in a list of 60 radionuclides

• SOARCA updated this list even further
• Explicitly includes short lived decay progeny
• 71 radionuclides in total identified for LWR 

consequence analysis
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Alpert et al., 1986



71 radionuclides were identified as important for LWRs based on 
inventory, half-life and potential biological hazard of radionuclides 
expected to be present in a large LWR
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Chemical Group Isotope T1/2

Noble Gas

Kr-85 10.72 yr
Kr-85m 4.48 hr
Kr-87 76.3 min
Kr-88 2.84 hr

Xe-133 5.25 d
Xe-135 9.09 hr

Xe-135m 15.3 min

Alkali Metals

Rb-86 18.7 d
Rb-88 17.8 min
Cs-134 2.062 yr
Cs-136 13.1 d
Cs-137 30.0 yr

Alkaline Earths

Sr-89 50.5 d
Sr-90 29.1 yr
Sr-91 9.5 hr
Sr-92 2.71 hr

Ba-137m 2.55 min
Ba-139 82.7 min
Ba-140 12.74 d

Halogens

I-131 8.04 d
I-132 2.30 hr
I-133 20.8 hr
I-134 52.6 min
I-135 6.61 hr

Chemical Group Isotope T1/2

Chalcogens

Te-127 9.35 hr
Te-127m 109 d
Te-129 69.6 min

Te-129m 33.6 d
Te-131 25.0 min

Te-131m 30.0 hr
Te-132 78.2 hr

Platinoids

Ru-103 39.3 d
Ru-105 4.44 hr
Ru-106 368.2 d

Rh-103m 56.1 min
Rh-105 35.4 hr
Rh-106 29.9 sec

Early Transition 
Elements

Co-58 70.8 d
Co-60 5.271 yr
Nb-95 35.1 d

Early Transition 
Elements

Nb-97 72.1 min
Nb-97m 1.0 min
Mo-99 66.0 hr
Tc-99m 6.02 hr

Tetravalents

Zr-95 64.0 d
Zr-97 16.9 hr

Ce-141 32.5 d
Ce-143 33.0 hr
Ce-144 284.3 d
Np-239 2.35 d
Pu-238 87.74 yr
Pu-239 2.41E4 yr
Pu-240 6.54E3 yr
Pu-241 14.4 yr

Chemical Group Isotope T1/2

Trivalents

Y-90 64.0 d
Y-91 58.5 d

Y-91m 49.7 min
Y-92 3.54 hr
Y-93 10.1 hr

La-140 40.3 hr
La-141 3.9 hr
La-142 92.5 min
Pr-143 13.56 d
Pr-144 17.3 min

Pr-144m 7.2 min
Nd-147 11.0 d
Am-241 432.2 y
Cm-242 162.8 d
Cm-244 18.11 yr

Cadmium Group
Sb-127 3.85 d
Sb-129 4.32 hr

Source: State of the Art Reactor Consequence 
Analysis (SOARCA)



Advancing reactor technology has motivated an investigation 
into developing a similar subset of radionuclides relevant to 
advanced non-LWRs
• High-temperature gas reactors (HTGR)

• Fluoride-salt-cooled high-temperature reactor (FHR)

• Molten-salt reactors (MSR)

• Sodium fast reactor (SFR)

• Liquid metal fast reactors (LMR)
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The NRC Vision and Strategy Document (Vol. 3) outlines a 
radionuclide screening effort

• Calls for the identification of a subset of radionuclides to be included in MACCS 
calculations for non-LWRs

• Radionuclide selection should be based upon factors such as:
• Core inventory
• Nature of radioactivity
• Specific organ effects

• Expand upon previous qualitative efforts to screen advanced reactor radionuclides in 
Preliminary Radioisotope Screening for Off-site Consequence Assessment of Advaned Non-
LWR Systems (Andrews et al., 2021)
• Developed a preliminary, qualitative list of radionuclides for these reactors (57 

radionuclides)
• Identified knowledge gaps that still exist regarding reactor chemistry and system 

behavior
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57 radionuclides identified in preliminary qualitative screening 
assessment 
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Chemical Group Isotope T1/2 Reactor Type

New Proposed Group
H-3 12.3 y HTGR, FHR, MSR, SFR
C-14 5,730 y HTGR, FHR

Alkali Metals
Na-22 2.6 y SFR
Na-24 15 h SFR

Alkaline Earths Ra-224 3.66 d MSR

Noble Gas

Ar-41 110 m SFR
Kr-83m 1.83 hr MSR

Xe-131m 11.9 d MSR
Xe-133m 2.2 d MSR

Early Transition Elements

Cr-51 27.7 d SFR
Mn-54 312.3 d SFR
Fe-59 44.5 d SFR

Nb-93m 16.13 yr MSR
Ta-182 114.4 d SFR

Cadmium Group

As-77 38.5 hr MSR
Cd-113m 14.1 yr MSR
Cd-115m 44.5 d MSR
Sb-125 2.8 y HTGR, FHR
Sb-126 12.3 d MSR
Sb-128 9.01 hr MSR

Chalcogens

Se-81 18.4 m MSR
Se-81m 57.3 m MSR
Se-83 22.3 m MSR

Te-125m 57.5 d MSR
Te-133m 55.4 min MSR
Te-134 41.8 min MSR

Chemical Group Isotope T1/2 Reactor Type

Halogens
Br-83 2.4 hr MSR
Br-84 31.8 min MSR

Platinoids
Pd-109 13.7 h MSR
Pd-112 21.0 hr MSR

Tin Group

Ag-110m 250 d HTGR, FHR
Ag-111 7.45 d MSR

Sn-117m 13.7 d MSR
Sn-119m 293 d MSR
Sn-121m 43.9 yr MSR
Sn-123 129 d MSR

Trivalents

Pr-146 24.2 hr MSR
Pm-147 2.6 y HTGR, FHR, MSR

Pm-148m 41.3 d MSR
Pm-149 53.1 hr MSR
Pm-151 28.4 hr MSR
Sm-151 88.8 y HTGR, FHR, MSR
Sm-153 46.3 hr MSR
Eu-154 8.6 y HTGR, FHR, MSR
Eu-155 4.8 y HTGR, FHR, MSR
Eu-156 15.2 d MSR
Eu-157 15.2 hr MSR
Cm-243 29 y MSR, LMR
Cm-245 8,500 y HTGR, FHR, MSR, LMR
Cm-246 4700 y MSR, LMR

Am-242m 150 y MSR, LMR
Am-243 7400 y MSR, LMR

Chemical Group Isotope T1/2 Reactor Type

Tetravalents

Th-228 1.91 y MSR

Pa-233 27.0 d MSR, MSR, 
LMR

Pu-242 373,300 y HTGR, FHR, 
MSR, LMR

Uranium Group
U-232 68.9 y MSR

U-237 6.75 d MSR, LMR
Source: Andrews et al., 2021. Preliminary Radioisotope Screening 
for Off-site Consequence Assessment of Advanced Non-LWR 
Systems, SAND2021-11703



Advanced reactor research is still underway, but some 
preliminary information does exist

• Information on half-life and potential biological hazard for 825 radionuclides in MACCS is available

• Still need reliable information for advanced reactors:
• Inventories
• Transport pathways
• Chemistries

• Some preliminary inventories are available
• INL Heat Pipe Reactor Design
• See Walker et al. (2022) SCALE Modeling of the Fast-Spectrum Heat Pipe Reactor 

• Available inventories allow us to illustrate a method that can be applied to identify a list of 
radionuclides for any advanced reactor technology, provided that a quantitative inventory is available
• Method analogous to Alpert et al. to estimate relative importance assuming equal release fraction
• Identify “most important” contributors based on relative importance
• Consider doses to multiple organs, scaled to that of I-131 (early phase) and Cs-137 (long-term 

phase)
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MACCS 4.1 was used to assess the relative importance of 
advanced reactor radionuclide suite

• Step 1: calculate an activity-normalized dose of combined list of 57 preliminary 
radionuclides and heat pipe reactor suite
• Screen heat pipe reactor by eliminating radionuclides with short half-lives (<1 hour) and low 

contribution to the total inventory (<0.0001%)
• > 1200 radionuclides reduced to 108

• EARLY and CHRONC doses from a unit 1-Ci release were modeled for each of these 
radionuclides and normalized to equivalent releases of I-131 and Cs-137, respectively

• In this manner, a relative biological hazard list was developed

• Step 2: illustrate using a heat pipe reactor inventory to scale these “hazard rankings” by 
the inventory (relative to I-131 or Cs-137 as appropriate)
• Identify radionuclides that, if released in sufficient quantities, may be important to early or long

-term dose

• Step 3: additionally screen this list by eliminating radionuclides with effective and organ 
doses less than 1% of those of I-131 (early phase) and Cs-137 (late phase doses)
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The MACCS assumptions used for this analysis mirrored those in 
previous studies

• L-ICRP60ED dosimetric quantity used as surrogate for potential latent health effects from 
both EARLY and CHRONC phase doses. A-RED MARR and A-LUNG used for surrogates of 
early health effects from early phase doses

• Constant, “typical” weather conditions – D stability, 4 m/s windspeed, no rain

• Release occurs outside of the growing season

• Doses from elements/isotopes include the effect of radioactive decay and in-growth or 
decay progeny during transport. 

• Nonbuoyant release from a single plume at 40 m elevation. Uniform 1-hour release 
immediately after accident initiation

• 0.002 m/sec dry dep. velocity, radiation protection factors of 0.75, 0.22, and 0.46 for 
cloudshine, groundshine, and inhalation and skin, respectively

• Uniform population distribution of approximate CONUS average

• No emergency protective actions, exposure duration of 7 days for EARLY, CHRONC 
duration of 1 year, no intermediate phase
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Analysis suggests that 69 heat pipe reactor radionuclides may 
be of importance if released in sufficient quantities

• 48 of these 
radionuclides are 
already considered 
for LWR analyses

• 21 new 
radionuclides listed 
here

• Note: decay 
progeny not listed 
here
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Isotope

EARLY 
Relative 
ICRP60 

Effective 
Dose

EARLY 
Relative Red 
Marrow Dose

EARLY 
Relative Lung 

Dose

CHRONC 
Relative 
ICRP60 

Effective 
Dose

CHRONC 
Relative Red 
Marrow Dose

CHRONC 
Relative Lung 

Dose

Ag-111     0.04      
Ag-112     0.01      
Cd-115     0.03      
Eu-155     0.017      
Eu-156   0.031 0.063      

Nb-95m     0.06      
Nd-149   0.014 0.22      
Pd-109   0.09      
Pm-147 0.34   1.57     0.03

Pm-148m     0.015      
Pm-149 0.035   0.97      
Pm-151 0.012 0.043 0.396      
Pr-145 0.03 1.58      
Sb-125   0.02 0.017 0.04 0.04 0.04
Sm-153     0.173      
Sn-121     0.011      
Sn-125     0.0301      
Sn-127     0.028      

Te-125m     0.0107      
U-234 0.40   0.663     0.03
U-237 0.035 0.041 0.663    



Summary and Limitations

• A method for the identification of radionuclides of potential for advanced reactors – based on half-
life, biological hazard, and relative abundance in a core – is provided and illustrated using a 
radiological inventory developed for a heat pipe reactor
• Provide a traceable and transparent basis for selecting radionuclides for inclusion in advanced reactor 

consequence analysis

• Radionuclides were progressively screened, first based on half-life and relative inventory, and then 
further based upon relative biological hazard to develop a list of 21 new radionuclides to consider 
for the heat pipe reactor

• In theory, this method can be applied to any advanced reactor inventory as they become available

• Some radionuclides did not have dose coefficients in MACCS

• Complexities of H-3 and C-14 are generally unaccounted for in MACCS

• Food ingestion ignored

• Normalizing to doses of volatile isotopes of iodine and cesium means that large releases not 
associated with high elemental volatility may need to be reassessed

• Other thresholds for half-life, relative abundance, or relative biological hazard may be used
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Thank you!
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kaclavi@sandia.gov
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