

Sandia
National
Laboratories

Developing a Method to Quantitatively Screen Advanced Reactor Radionuclides Using a Heat Pipe Reactor Inventory

Kyle Clavier, PhD, SNL

Dan Clayton, PhD, SNL

Keith Compton, PhD, US NRC

2022 International MACCS User Group (IMUG) Conference

September 19-21, 2022

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Outline

- Introduction and Background
- Screening Methodology
- Important Findings
- Conclusions, Limitations and Opportunities for Future Work

WASH-1400 identifies a subset of radionuclides to be included in a consequence analysis

- Section 3.3 and 8.2.1 of Appendix VI
- This methodology includes consideration of:
 - Radionuclide half-life
 - Emitted radiation type and energy
 - Inventory
 - Release fraction
 - Elemental chemistry

Alpert et al. (1986) updated the list of radionuclides identified in WASH-1400

- Estimation of release fractions was subject of considerable uncertainty at the time
- Alpert et al. developed a method to consider relative importance of individual elements to reactor accident consequences assuming equal release fractions
- Ultimately resulted in a list of 60 radionuclides
- SOARCA updated this list even further
 - Explicitly includes short lived decay progeny
 - 71 radionuclides in total identified for LWR consequence analysis

60 Nuclides Used for Offsite Consequence Assessment in MACCS

<u>Element</u>	<u>Nuclides</u>
Cobalt	58 60
Krypton	85 85m 87 88
Rubidium	86
Strontium	89 90 91 92
Yttrium	90 91 92 93
Zirconium	95 97
Niobium	95
Molybdenum	99
Technetium	99m
Ruthenium	103 105 106
Rhodium	105
Antimony	127 129
Tellurium	127 127m 129 129m 131m 132
Iodine	131 132 133 134 135
Xenon	133 135
Cesium	134 136 137
Barium	139 140
Lanthanum	140 141 142
Cerium	141 143 144
Praseodymium	143
Neodymium	147
Neptunium	239
Plutonium	238 239 240 241
Americium	241
Curium	242 244

* The 60 nuclides are the same as those examined in WASH-1400 [1] and in the CRAC2 computer code [9] except for the addition of six nuclides: Sr-92, Y-92, Y-93, Ba-139, La-141, and La-142.

Alpert et al., 1986

71 radionuclides were identified as important for LWRs based on inventory, half-life and potential biological hazard of radionuclides expected to be present in a large LWR

Chemical Group	Isotope	T _{1/2}
Noble Gas	Kr-85	10.72 yr
	Kr-85m	4.48 hr
	Kr-87	76.3 min
	Kr-88	2.84 hr
	Xe-133	5.25 d
	Xe-135	9.09 hr
	Xe-135m	15.3 min
Alkali Metals	Rb-86	18.7 d
	Rb-88	17.8 min
	Cs-134	2.062 yr
	Cs-136	13.1 d
	Cs-137	30.0 yr
Alkaline Earths	Sr-89	50.5 d
	Sr-90	29.1 yr
	Sr-91	9.5 hr
	Sr-92	2.71 hr
	Ba-137m	2.55 min
	Ba-139	82.7 min
	Ba-140	12.74 d
Halogens	I-131	8.04 d
	I-132	2.30 hr
	I-133	20.8 hr
	I-134	52.6 min
	I-135	6.61 hr

Chemical Group	Isotope	T _{1/2}
Chalcogens	Te-127	9.35 hr
	Te-127m	109 d
	Te-129	69.6 min
	Te-129m	33.6 d
	Te-131	25.0 min
	Te-131m	30.0 hr
	Te-132	78.2 hr
Platinoids	Ru-103	39.3 d
	Ru-105	4.44 hr
	Ru-106	368.2 d
	Rh-103m	56.1 min
	Rh-105	35.4 hr
	Rh-106	29.9 sec
	Co-58	70.8 d
Early Transition Elements	Co-60	5.271 yr
	Nb-95	35.1 d
	Nb-97	72.1 min
	Nb-97m	1.0 min
	Mo-99	66.0 hr
	Tc-99m	6.02 hr
	Zr-95	64.0 d
Tetravalents	Zr-97	16.9 hr
	Ce-141	32.5 d
	Ce-143	33.0 hr
	Ce-144	284.3 d
	Np-239	2.35 d
	Pu-238	87.74 yr
	Pu-239	2.41E4 yr
Cadmium Group	Pu-240	6.54E3 yr
	Pu-241	14.4 yr

Chemical Group	Isotope	T _{1/2}
Trivalents	Y-90	64.0 d
	Y-91	58.5 d
	Y-91m	49.7 min
	Y-92	3.54 hr
	Y-93	10.1 hr
	La-140	40.3 hr
	La-141	3.9 hr
	La-142	92.5 min
	Pr-143	13.56 d
	Pr-144	17.3 min
	Pr-144m	7.2 min
	Nd-147	11.0 d
Cadmium Group	Am-241	432.2 y
	Cm-242	162.8 d
	Cm-244	18.11 yr
	Sb-127	3.85 d
	Sb-129	4.32 hr

Source: State of the Art Reactor Consequence Analysis (SOARCA)

Advancing reactor technology has motivated an investigation into developing a similar subset of radionuclides relevant to advanced non-LWRs

- High-temperature gas reactors (HTGR)
- Fluoride-salt-cooled high-temperature reactor (FHR)
- Molten-salt reactors (MSR)
- Sodium fast reactor (SFR)
- Liquid metal fast reactors (LMR)

The NRC Vision and Strategy Document (Vol. 3) outlines a radionuclide screening effort

- Calls for the identification of a subset of radionuclides to be included in MACCS calculations for non-LWRs
- Radionuclide selection should be based upon factors such as:
 - Core inventory
 - Nature of radioactivity
 - Specific organ effects
- Expand upon previous qualitative efforts to screen advanced reactor radionuclides in *Preliminary Radioisotope Screening for Off-site Consequence Assessment of Advanced Non-LWR Systems* (Andrews et al., 2021)
 - Developed a preliminary, qualitative list of radionuclides for these reactors (57 radionuclides)
 - Identified knowledge gaps that still exist regarding reactor chemistry and system behavior

57 radionuclides identified in preliminary qualitative screening assessment

Chemical Group	Isotope	T _{1/2}	Reactor Type	Chemical Group	Isotope	T _{1/2}	Reactor Type	Chemical Group	Isotope	T _{1/2}	Reactor Type
New Proposed Group	H-3	12.3 y	HTGR, FHR, MSR, SFR	Halogens	Br-83	2.4 hr	MSR	Tetraovalents	Th-228	1.91 y	MSR
	C-14	5,730 y	HTGR, FHR		Br-84	31.8 min	MSR		Pa-233	27.0 d	MSR, MSR, LMR
Alkali Metals	Na-22	2.6 y	SFR	Platinoids	Pd-109	13.7 h	MSR	Uranium Group	Pu-242	373,300 y	HTGR, FHR, MSR, LMR
	Na-24	15 h	SFR		Pd-112	21.0 hr	MSR		U-232	68.9 y	MSR
Alkaline Earths	Ra-224	3.66 d	MSR	Tin Group	Ag-110m	250 d	HTGR, FHR		U-237	6.75 d	MSR, LMR
Noble Gas	Ar-41	110 m	SFR		Ag-111	7.45 d	MSR				
	Kr-83m	1.83 hr	MSR		Sn-117m	13.7 d	MSR				
	Xe-131m	11.9 d	MSR		Sn-119m	293 d	MSR				
	Xe-133m	2.2 d	MSR		Sn-121m	43.9 yr	MSR				
Early Transition Elements	Cr-51	27.7 d	SFR		Sn-123	129 d	MSR				
	Mn-54	312.3 d	SFR	Trivalents	Pr-146	24.2 hr	MSR				
	Fe-59	44.5 d	SFR		Pm-147	2.6 y	HTGR, FHR, MSR				
	Nb-93m	16.13 yr	MSR		Pm-148m	41.3 d	MSR				
	Ta-182	114.4 d	SFR		Pm-149	53.1 hr	MSR				
Cadmium Group	As-77	38.5 hr	MSR		Pm-151	28.4 hr	MSR				
	Cd-113m	14.1 yr	MSR		Sm-151	88.8 y	HTGR, FHR, MSR				
	Cd-115m	44.5 d	MSR		Sm-153	46.3 hr	MSR				
	Sb-125	2.8 y	HTGR, FHR		Eu-154	8.6 y	HTGR, FHR, MSR				
	Sb-126	12.3 d	MSR		Eu-155	4.8 y	HTGR, FHR, MSR				
	Sb-128	9.01 hr	MSR		Eu-156	15.2 d	MSR				
Chalcogens	Se-81	18.4 m	MSR		Eu-157	15.2 hr	MSR				
	Se-81m	57.3 m	MSR		Cm-243	29 y	MSR, LMR				
	Se-83	22.3 m	MSR		Cm-245	8,500 y	HTGR, FHR, MSR, LMR				
	Te-125m	57.5 d	MSR		Cm-246	4700 y	MSR, LMR				
	Te-133m	55.4 min	MSR		Am-242m	150 y	MSR, LMR				
	Te-134	41.8 min	MSR		Am-243	7400 y	MSR, LMR				

Source: Andrews et al., 2021. *Preliminary Radioisotope Screening for Off-site Consequence Assessment of Advanced Non-LWR Systems*, SAND2021-11703

Advanced reactor research is still underway, but some preliminary information does exist

- Information on half-life and potential biological hazard for 825 radionuclides in MACCS is available
- Still need reliable information for advanced reactors:
 - Inventories
 - Transport pathways
 - Chemistries
- Some preliminary inventories are available
 - INL Heat Pipe Reactor Design
 - See Walker et al. (2022) *SCALE Modeling of the Fast-Spectrum Heat Pipe Reactor*
- Available inventories allow us to illustrate a method that can be applied to identify a list of radionuclides for any advanced reactor technology, provided that a quantitative inventory is available
 - Method analogous to Alpert et al. to estimate relative importance assuming equal release fraction
 - Identify “most important” contributors based on relative importance
 - Consider doses to multiple organs, scaled to that of I-131 (early phase) and Cs-137 (long-term phase)

MACCS 4.1 was used to assess the relative importance of advanced reactor radionuclide suite

- **Step 1:** calculate an activity-normalized dose of combined list of 57 preliminary radionuclides and heat pipe reactor suite
 - Screen heat pipe reactor by eliminating radionuclides with short half-lives (<1 hour) and low contribution to the total inventory (<0.0001%)
 - > 1200 radionuclides reduced to 108
 - EARLY and CHRONC doses from a unit 1-Ci release were modeled for each of these radionuclides and normalized to equivalent releases of I-131 and Cs-137, respectively
 - In this manner, a relative biological hazard list was developed
- **Step 2:** illustrate using a heat pipe reactor inventory to scale these “hazard rankings” by the inventory (relative to I-131 or Cs-137 as appropriate)
 - Identify radionuclides that, if released in sufficient quantities, may be important to early or long -term dose
- **Step 3:** additionally screen this list by eliminating radionuclides with effective and organ doses less than 1% of those of I-131 (early phase) and Cs-137 (late phase doses)

The MACCS assumptions used for this analysis mirrored those in previous studies

- L-ICRP60ED dosimetric quantity used as surrogate for potential latent health effects from both EARLY and CHRONC phase doses. A-RED MARR and A-LUNG used for surrogates of early health effects from early phase doses
- Constant, "typical" weather conditions – D stability, 4 m/s windspeed, no rain
- Release occurs outside of the growing season
- Doses from elements/isotopes include the effect of radioactive decay and in-growth or decay progeny during transport.
- Nonbuoyant release from a single plume at 40 m elevation. Uniform 1-hour release immediately after accident initiation
- 0.002 m/sec dry dep. velocity, radiation protection factors of 0.75, 0.22, and 0.46 for cloudshine, groundshine, and inhalation and skin, respectively
- Uniform population distribution of approximate CONUS average
- No emergency protective actions, exposure duration of 7 days for EARLY, CHRONC duration of 1 year, no intermediate phase

Analysis suggests that 69 heat pipe reactor radionuclides may be of importance if released in sufficient quantities

- 48 of these radionuclides are already considered for LWR analyses
- 21 new radionuclides listed here
- Note: decay progeny not listed here

Isotope	EARLY Relative ICRP60 Effective Dose	EARLY Relative Red Marrow Dose	EARLY Relative Lung Dose	CHRONC Relative ICRP60 Effective Dose	CHRONC Relative Red Marrow Dose	CHRONC Relative Lung Dose
Ag-111			0.04			
Ag-112			0.01			
Cd-115			0.03			
Eu-155			0.017			
Eu-156		0.031	0.063			
Nb-95m			0.06			
Nd-149		0.014	0.22			
Pd-109			0.09			
Pm-147	0.34		1.57			0.03
Pm-148m			0.015			
Pm-149	0.035		0.97			
Pm-151	0.012	0.043	0.396			
Pr-145	0.03		1.58			
Sb-125		0.02	0.017	0.04	0.04	0.04
Sm-153			0.173			
Sn-121			0.011			
Sn-125			0.0301			
Sn-127			0.028			
Te-125m			0.0107			
U-234	0.40		0.663			0.03
U-237	0.035	0.041	0.663			

Summary and Limitations

- A method for the identification of radionuclides of potential for advanced reactors – based on half-life, biological hazard, and relative abundance in a core – is provided and illustrated using a radiological inventory developed for a heat pipe reactor
 - Provide a traceable and transparent basis for selecting radionuclides for inclusion in advanced reactor consequence analysis
- Radionuclides were progressively screened, first based on half-life and relative inventory, and then further based upon relative biological hazard to develop a list of 21 new radionuclides to consider for the heat pipe reactor
- In theory, this method can be applied to any advanced reactor inventory as they become available
- Some radionuclides did not have dose coefficients in MACCS
- Complexities of H-3 and C-14 are generally unaccounted for in MACCS
- Food ingestion ignored
- Normalizing to doses of volatile isotopes of iodine and cesium means that large releases not associated with high elemental volatility may need to be reassessed
- Other thresholds for half-life, relative abundance, or relative biological hazard may be used

Thank you!

Kyle Clavier, PhD, Sandia National Laboratories

kaclavi@sandia.gov

Dan Clayton, PhD, Sandia National Laboratories

djclayt@sandia.gov

Keith Compton, US Nuclear Regulatory Commission

Keith.Compton@nrc.gov

Authors would like to acknowledge the members of the larger MACCS team at SNL: Mariah Smith, Jennifer Leute, Joshua Dise, and John Fulton. Authors would like to additionally acknowledge the following NRC staff for their technical and programmatic contributions to this effort: Salman Haq, AJ Nosek and Nazila Tehrani.

References

United States Nuclear Regulatory Commission (US NRC) 2019. NRC Non-Light Water Reactor (Non-LWR) Vision and Strategy: Volume 3: Computer Code Development Plans for Severe Accident Progression, Source Term, and Consequence Analysis.

WASH-1400 Reactor Safety Study: An Assessment of Accident Risks in U.S. Commercial Nuclear Power Plants. NUREG-75/014.

Alpert, D.J., Chanin, D.I., Ritchie, L.T. 1986. Relative Importance of Individual Elements to Reactor Accident Consequences Assuming Equal Release Fractions. NUREG/CR-4467, SAND85-2575.

Chang, R., Schaperow, J., Ghosh, T., Barr, J., Tinkler, C., Stutzke, M. November 2012. State-of-the-Art Reactor Consequence Analysis (SOARCA) Report. NUREG-1935

Andrews, N.C., Higgins, M., Taconi, A., Leute, J. 2021. Preliminary Radioisotope Screening for Off-site Consequence Assessment of Advanced Non-LWR Systems, SAND2021-11703

2022 SCALE Non-LWR Models for NRC Volume 3. <https://code.ornl.gov/scale/analysis/non-lwr-models-vol3>

Walker, E., Skutnik, S., Wieselquist, W., Shaw, A., Bostelmann, F., 2022. SCALE Modeling of the Fast-Spectrum Heat Pipe Reactor. ORNL/TM-2021/2021

Nosek, A.J., Bixler, N. 2021. MACCS Theory Manual. SAND2021-11535

Naegeli, R.E. 2003. A MACCS2 Single Nuclide Downwind Dose Database for Sandia National Laboratories, Technical Area V. SAND2003-0883

Leute, J., Walton, F., Mitchell, R., Eubanks, L. 2021. MACCS (MELCOR Accident Consequence Code System) User Guide – Version 4.0. SAND2021-8998