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-~ Learning Objectives

Evaluate the sensitivity of cooling loads to building envelope parameters under future climate
projections

Analyze building energy performance under different weather datasets for a typical secondary
school in a hot and humid climate zone

Explain the meaning and importance of thermal resilience.

Describe the evaluation methods for thermal resilience.

Understand why a probabilistic approach to extreme weather is important

Elaborate the basic methods used in the Multi-scenario Extreme weather simulator

ASHRAE is a Registered Provider with The American Institute of Architects Continuing Education
Systems. Credit ru rned on completion mf{ is program will be reported to ASHRAE Records for
AIA members. Certificates m{ Comple frmjf;f non-AIA members are available on request.

[his program is registered with the AIA/ASHRAE for continuing professional education. As such,
it dm S N nI include content that may be deemed or construed to be an approval or endorseme nt
by the AIA of any material of construction or any method or manner of handling, using
distributing, or dealing in any material or product. Questions related to specific materi ||a
methods, and services will be addressed at the conclusion of this p presentation.
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Why extreme events?

* Global Climate Change

b) Change in global surface temperature (annual average) as observed and
simulated using human & natural and only natural factors (both 1850-2020)
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Why extreme events?

* Increased frequency, and intensity of extreme heat
Wa Ves Hot temperature extremes over land

10-year event 50-year event
Frequency and increase in intensity of extreme temperature Frequency and increase in intensity of extreme temperature
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Why a probabilistic approach?

* Scenario approach

* 242 Meters peak load data

* Create a set of heat wave = =g " 242 Meters loglinear fit iz 0.75
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« Safety factors = 2nd 95% 1ot as.aec o mean e
. . = 1 Weekend IX heat wave results
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* No weather based uncertainty
 Hopefully worst case!

30 32 34 36 38 40 42 44
Daily Maximum Temperature (° C)

Used with permission (Villa, 2021a)




Why a probabilistic approach?

" NOAA daily and
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* Probabilistic approach T —
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Comparison

* Probabilistic vs. Scenario

Hybrid Scenario/Probabilistic approaches can also work.

Advantages Disadvantages Advantages Disadvantages
Simple Indirect comparison of Direct comparison of Complex
normal vs. resilience normal vs. resilience
Shorter run time May be Quantifies chance of Often requires
unconservative or worst case, samples unavailable data
overly conservative possibilities
Facilitates higher Consistent with Longer run time
fidelity models probability based

resilience metrics

Fair playing field for Simplified models
other random, needed
correlated processes



Why a probabilistic approach?

* Fair comparison of normal vs. resilience conditions

We cannot “future proof” all tech! Who is going to pay the bill?

“Tornado proof” “Flood proof”

https://commons.wikimedia.org/wiki/File:Car_Boat_%3F_(3830832878).jpg

The TIV (Tornado Intercept Vehicle) built from a Ford F-450 (2006) Creative commons Wikimedia License: Creative Commons Attribution 2.0 Generic
Creative Commons Attribution 2.0 Generic license.



Objectives

1. Provide extreme weather files that contain statistically realistic increases in severity and frequency
based on climate model predictions and historical data

* Extreme temperature (heat waves and extreme cold)

* Future:
Extreme Precipitation, Drought, Hurricanes, ...

2. Quickly generate files with reasonable output with a data-driven approach

Data here includes climate model outputs

* Fuse historical data and climate projections into “best-guess” sampling distributions and Markov
processes

3. Keep the algorithm simple (as possible!)

4. Make it freely available:
e Software 1 is open source and listed in the bibliography (Villa, 2021b)
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Methods: software 1
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Step 1: Data and extreme temperature

National Oceanic and Atmospheric Association (NOAA)
* Climate norms (1991-2020)

* Daily summaries
Definition
Heat wave: 2 days of either daily maximum temperature greater than 90%

climate norm maximum temperature or daily minimum temperature
greater than climate norm daily 10 % minimum temperature

Cold snap: 2 days of either daily minimum temperature less than 10%
climate norm minimum temperature or daily maximum temperature less
than climate norm 10% daily maximum



Climate norms data

90% maximum hourly
* Hourly time scale 8760

* Statistical distributionson —~ 77 50% average hourly (used for severity
minimum, average,and /-~ 7 measure)

maximum data

10% minimum hourly

50% minimum hourly
o i




Daily summaries

Chosen because longest historical records available
Daily maximum, minimum, and average temperatures

Albuquerque NM 90 years of daily summary data
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2 Day heat wave example

Daily

maximum
Climate norm
90%
maximum

Daily
minimum

Climate norm
90%
minimum

Daily maximum > Climate norm /T oATT oo oo o ofmm oo oo

90% maximum temperature Daily minimum > Climate norm

10% minimum temperature



2 Dav cold shap examp

Daily maximum < Climate norm

Daily

maximum
Climate norm
10%
maximum

Daily
minimum

Climate norm
10%
minimum

Daily minimum < Climate norm



Step 2: Calculate the Markov probabilities for heat waves and cold snaps (Frequency and

Duration)

1. Probability of heat wave Py, ~ number of heat waves in historic record for month m / total hours in

historic record for month m

Drw
y hwsm

probability a heat wave is of a given duration divided by the sum of all heat wave’s duration
3. Similar reasoning for cold snaps

2. Probability of sustaining a heat wave when in a heat wave Py,s  find via regression of

1 — B‘twm o PCS:?: F, CSm BIWH?
MHT — 1 o PC.STS;” PCSSJH O

1 T P/ﬂfVSm O H?W?‘S‘-'”




Steps 3-7: Characterize extreme temperature event severity

Heat wave severity is magnitude measured above daily average of climate
norms. Each heat wave has a AT}, peak.
Forms a set {AT},, } for each month of the year.

The difference between the heat wave daily maximum temperature and daily
average of climate norms is also integrated to form the total energy AE},,, in
°C - day added by each heat waves.

Form a second set {AE},, } for each month of the year.

Perform several statistical steps to form truncated Gaussian distributions of
AT ~Nar(Upt, Oar, Apat, bar), Nnormalize the results by D and scale to -1...1



Truncated Gaussian

Enables

1. Maximum and minimum
historic cases to be the
bounds of the distribution

2. Fitting asymmetry (skew) in
data I

far(u, 0,a,b)




Step 8: Calculate shift in all parameters based on IPCC data

For each IPCC climate scenario, year, and month each
year, calculate shifts AM, Au, Ao, Aa, Ab

/ ! / /
})hwm + PCSm o })f”t Win IR P P - PCSH? })f”t Win IR })h Wi

CSy, CS
/ /
AMm — PC Sy Pc 58, Pc S, PC S8, 0
/ !
Ehs m Ph WS, 0 Ph WS Fhys m
Several assumptions needed here so that IPCC data provided for 10 and 50 year extreme temperature events is
adequate:

1. Assumeincreasein AT is proportional to AE
2. Weighted averages for modified sustained heat wave probabilities (cannot meet 10 and 50 year events exactly
with single Markov parameters)



IPCC scenarios (global average here)

IPCC scenarios drive how severe extreme temperature events become in future years

a) Global surface temperature change relative to 1850-1200

°C
> SSP5-8.5
4 SSP3-7.0
3
2 SSP1-2.6
1 M ~ SSP1-1.9
0

-1

1950 2000 2015 2050 2100
IPCC AR6 Physical Basis Report 2021 Figure SPM.8



Steps: 9-11 Produce stochastic realizations

1. Calculate extreme event initiation and duration for many future years from stochastic
sampling of the M + AM Markov process.

2. Sample extreme event duration normalized temperature and energy increases

3. Retrieve durations for each heat wave, reverse transform from -1...1 and denormalize
duration to produce physical AT and AFE for each extreme event

4. Solve for heat wave functional form narameters A.B.C

Asin( 2 ) +B(l —cos( 271 )) +C t<D,yy
AT (t.D, Ati,) = Podi A

B(l—kos (jf’f))JrC t > D,

ZAD(Jdd Bmmm . 2JTD
AE = ——~ +BD — sin | —— A P D
T 2 T AI”? . D(_Jdd Afnh'” [ Lﬁf,;-,m J 0 ( LAI””” J mod 2)]



Extreme event functional form
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Building Performance Demonstration

US DOE prototype EnergyPlus model (DOE, 2021)
* Total building area: 4,982 m?

e ASHRAE 90.1 2019 model in climate zone
e 18 thermal zones

Typical meteorological year version 3 weather input for baseline weather
100 weather instances from software 1

5 socioeconomic pathway (SSP) mean temperature rise scenarios
9O years (2020,2025,...2060)

Heat waves characterized by station ID USW0002305 (Albuquerque airport)
* Climate norms 1991-2020

* Daily summaries 1931-2021



Verification

* Post processing of output
showed heat waves were
found to have accurate
multiplication factors for
increased frequency of
heat waves

Event | IPcc | software 1

10yr, 2.5 2.8
SSP8.5

750 B Year 2020
B Year 2060

500

Number of heat waves in 100 instances

. J]JJJJJJ.___ 1 -

2 4 6 8 10 15 20) 25
Heat wave length (days)



Heat Waves

* Verification 0
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Results: Increase in Electric Load
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Thermal Comfort

Hours not comfortable based on simple

Hours cooling setpoint not met ASHRAE 55-2004 criterion
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' Conclusions

* An algorithm for shifting extreme events in a probabilistic context has
been successfully applied to building energy modeling

* Future studies need to combine extreme weather with power
outages and building system failures

* Significant enhancements are envisioned:

1. Validate MEWS against climate model future weather for several cases

2. Show convergence of multi-parameter stochastic resilience analysis

3. Generalize heat wave definition and functional form and show that it mimic weather

4. Extend heat waves to include humidity, pressure, wind, cloud, and other effects
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