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Abstract—We investigate the space complexity of two
graph streaming problems: MAX-CUT and its quan-
tum analogue, QUANTUM MAX-CUT. Previous work by
Kapralov and Krachun [STOC ‘19] resolved the clas-
sical complexity of the classical problem, showing that
any (2 − ε)-approximation requires Ω(n) space (a 2-
approximation is trivial with O(logn) space). We generalize
both of these qualifiers, demonstrating Ω(n) space lower
bounds for (2−ε)-approximating MAX-CUT and QUANTUM
MAX-CUT, even if the algorithm is allowed to maintain
a quantum state. As the trivial approximation algorithm
for QUANTUM MAX-CUT only gives a 4-approximation, we
show tightness with an algorithm that returns a (2 + ε)-
approximation to the QUANTUM MAX-CUT value of a
graph in O(logn) space. Our work resolves the quantum
and classical approximability of quantum and classical
Max-Cut using o(n) space.

We prove our lower bounds through the techniques of
Boolean Fourier analysis. We give the first application of
these methods to sequential one-way quantum communi-
cation, in which each player receives a quantum message
from the previous player, and can then perform arbitrary
quantum operations on it before sending it to the next. To
this end, we show how Fourier-analytic techniques may be
used to understand the application of a quantum channel.

Index Terms—quantum algorithms, graph algorithms,
streaming algorithms, fourier analysis

I. INTRODUCTION

Quantum approaches for discrete optimization, such
as the Quantum Approximate Optimization Algorithm
(QAOA) have received significant attention. The seminal
work of Farhi, Goldstone, and Gutmann [1] showed
that QAOA applied to an NP-hard classical constraint
satisfaction problem (CSP) gave a better worst-case
approximation than the best known classical approx-
imation algorithm at the time. An improved classi-
cal approximation algorithm subsequently followed [2];
however, this seeded the question of whether a quantum
approximation algorithm might offer a provably better
approximation guarantee than the best classical approxi-
mation for some CSP or discrete optimization problem,
which still remains open. One potential barrier is that

classical hardness of approximation results may also
restrict quantum approximation algorithms. For example,
it is generally not expected that NP ⊆ BQP, so a
quantum approximation is not expected to overcome
NP-hardness of approximation results. Even possibly
weaker hardness assumptions such as Unique-Games-
hardness may impede quantum approximations. It would
be surprising if a quantum approximation were able
to achieve a (1/0.878 . . . − ε)-approximation1 for the
Maximum Cut Problem (MAX-CUT), which is Unique-
Games-hard [3].

Although the prospects for quantum approximations
for classical CSPs may seem limited, a natural question
is whether quantum approximations can offer provably
better guarantees for quantum versions of CSPs. The
k-Local Hamiltonian Problem (k-LH) serves as the
canonical QMA-hard quantum generalization of k-CSP.
A recent line of work has enjoyed success in devising
nontrivial classical approximations for 2-LH [4], [5],
[6], [7], [8], [9], [10], [11]; however, truly quantum
approximations for LH remain elusive. Hardness of ap-
proximation results with respect to QMA are even more
elusive, as the existence of a quantum analogue of the
classical PCP theorem, a cornerstone for hardness of
approximation, remains a major open question [12], [13].

We seek to understand the power of quantum versus
classical approximations for 2-CSP and 2-LH in the
streaming setting, where space is the computational
quantity of interest. In particular we consider the MAX-
CUT (MC) and QUANTUM MAX-CUT (QMC) problems.
MAX-CUT is a prototypical CSP in the sense that ap-
proximation and hardness results are typically devised
for MAX-CUT and then generalized to other CSPs;
QUANTUM MAX-CUT has emerged to serve a similar
role in approximating 2-LH. QUANTUM MAX-CUT is

1This result is more typically stated as 0.878 . . .+ ε, where an α-
approximation is held to mean returning a value in [α ·OPT,OPT], for
OPT the correct value. However, we follow previous work on streaming
MAX-CUT by instead using a K-approximation to mean returning a
value in [OPT,K · Opt].
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MAX-CUT QUANTUM MAX-CUT

Approximation 2 + ε 2− ε 2 + ε 2− ε

Classical O(logn) Ω(n) O(logn) Ω(n)

Quantum O(logn) Ω(n) O(logn) Ω(n)

TABLE I: The space needed by quantum and classical
algorithms for quantum and classical Max-Cut. Results
from this paper are shown in bold.

also closely related to the quantum Heisenberg model
(see [7]), which is a well-studied model of quantum
magnetism introduced in the late 1920s.

For classical algorithms applied to classical
MAX-CUT, tight bounds2 for the space complexity in
terms of the approximation factor are known [14]—our
work generalizes these results in both ways, giving tight
bounds on the approximation factor attainable in o(n)
space by quantum streaming algorithms for classical
MAX-CUT and by quantum and classical algorithms for
QUANTUM MAX-CUT.

We find, perhaps surprisingly, that quantum stream-
ing algorithms offer no advantage over classical ones
in approximating MAX-CUT or QUANTUM MAX-CUT.
Although our main contribution is a quantum hardness
result, the matching upper bound for approximating
QUANTUM MAX-CUT in the stream requires analyzing
a nontrivial streaming algorithm, which is a departure
from the case of MAX-CUT.

A. Our Contributions

Ours is the first work to consider streaming versions
of 2-LH or any kind of quantum optimization problem.
Just as the results of [14] have been expanded for more
general CSPs, we expect that our results for QUANTUM
MAX-CUT will apply to more general instances of 2-
LH. Indeed there is precedent for this in the standard
approximation setting [15], [8].

We give tight (up to an arbitrarily small additive
constant in the approximation factor) characterizations of
the best possible approximation factor achievable in o(n)
space for quantum and classical algorithms for quantum
and classical Max-Cut. Our results are laid out in Table I.

Our lower bounds are encompassed in the
following theorem (the classical lower bound for
QUANTUM MAX-CUT is a special case of this, as any
classical streaming algorithm can be implemented as a
quantum streaming algorithm).

Theorem 1. For any ε > 0, any quantum streaming
algorithm for MAX-CUT or QUANTUM MAX-CUT that

2Up to log factors in the space complexity, as is typical for streaming
algorithms.

returns a (2 − ε)-approximation with probability 2/3
requires

n/2O(1/ε
2)

qubits of storage.

For MAX-CUT the upper bound for (2 + ε)-
approximation (in fact, even 2-approximation) is trivial,
as a graph on m edges always has MAX-CUT value be-
tween m/2 and m. However, for QUANTUM MAX-CUT
the trivial approximation is only a 4-approximation, so
we give an algorithm that returns a (2+ε)-approximation
using O(log n) space. We also give an algorithm for
weighted graphs, but in this case we are only able
to attain a (5/2 + ε)-approximation (the lower bound
remains a 2-approximation).

Theorem 2. Let G be a weighted graph on n vertices
with weights that are multiples of 1/ poly(n). Then for
any ε, δ ∈ (0, 1) there is a streaming algorithm that
returns a (5/2 + ε)-approximation to the QUANTUM
MAX-CUT value of G with probability at least 1 − δ
using O

(
1
ε2 log

1
δ log n

�
space. If all the weights in the

graph are 1, it returns a (2 + ε)-approximation instead.

We note here two lacunae in our results for (un-
weighted) graphs. Firstly, for classical MAX-CUT it is
possible to achieve a (1 + ε)-approximation in eO(n)
space, through the use of cut-preserving sparsifiers [16].
However, analogous results on sparsifiers for general
2-local Hamiltonians are not known, and indeed there
are results pointing in the opposite direction [17]. So
while we can characterize the approximation factors
possible in sublinear space the semi-streaming complex-
ity remains open. Secondly, our O(log n)-space upper
bound for QUANTUM MAX-CUT only gives a (2 + ε)-
approximation instead of a 2-approximation. This is
a consequence of the fact that it is based on graph
parameters that must themselves be approximated rather
than just the number of edges, which can be calculated
exactly.

a) Fourier Analysis for Quantum Channels: The
technical core of our lower bound is a quantum com-
munication complexity bound for a sequential one-way
communication problem (originally introduced in [14]
in the classical setting), in which the first player sends a
message to the second player, the second to the third,
and so on. Our bound for this problem is based on
a novel application of Boolean Fourier analysis3—in
particular, we prove that a key inequality associated
with this problem, analyzed in [14] for the classical
case, is preserved even in the presence of quantum
communication.

3For a general overview of Boolean Fourier analysis, see [18].



The application of Boolean Fourier Analysis to two-
player one-way communication problems in the classical
setting goes back to [19], in which it was used to prove
lower bounds for the Boolean Hidden Matching prob-
lem (and its application to communication complexity
more generally goes back further, e.g. [20], [21]). This
problem, and its generalization in the Boolean Hidden
Hypermatching problem (analyzed in [22]), are the main
route by which Fourier analysis has contributed to lower
bounds for streaming algorithms.

However, in later years these techniques have been
extended to communication lower bounds (and corre-
sponding streaming lower bounds) with different config-
urations of players. In [23] they were applied to problems
where many players communicate with a single referee,
while in [24] they were extended to problems where
players communicate in a line, as is the case in the
Distributed Implicit Partition Problem (from [14]) we
make use of in this paper. In [25], a generalization of this
problem was studied through the use of Fourier analysis
on Zn

q .

The core ingredient of most of these lower bounds is a
hypercontractive Fourier coefficients lemma from [26],
that can be seen as generalizing facts about sampling
protocols, where a player chooses some subset of their
input to send to protocols where players send arbitrary
(classical) messages. This lemma was generalized to
matrix-valued functions in [27], opening the door to the
application of Fourier-analytic methods to lower bounds
for quantum communication protocols, as these can be
seen as functions from inputs to density matrices.

This was first used to prove quantum lower bounds
on the complexity of the Boolean Hidden Hypermatch-
ing problem [28]. This result was further generalized
in [29], while [30] generalized the Fourier coefficients
lemma further, in order to obtain quantum lower bounds
for MAX-CUT and more general hypergraph problems.
However, these are all two-player one-way communica-
tion problems. We give the first application of Fourier-
analytic techniques to sequential quantum one-way com-
munication. The key technical challenge is in finding
methods for applying Fourier analysis to the application
of quantum channels.

In classical communication, as long as we consider
a single “hard” input distribution, a player’s message
can be without loss of generality assumed to be a deter-
ministic function of the message they received and their
input. In sequential quantum communication, however,
the player may apply an arbitrary quantum channel to the
message they receive. Our key insight is that, as quantum
channels are linear operators, many of the techniques of
Fourier analysis, including the convolution lemma for

Fourier coefficients, may be applied to them.

B. Other Related Work

a) Streaming bounds for MAX-CUT: The fact that
that a 2-approximation for MAX-CUT is possible in
O(log n) space is an immediate consequence of the fact
that the MAX-CUT value is always at least m/2. Less
immediately, but still a consequence of standard results
in streaming algorithms, is the fact that it can be (1+ε)-
approximated in eO(n) space, through sparsifiers that
preserve cut values [16]. The question, then, was whether
a better approximation than the first could be attained in
less space than the second.

In [31], [32], it was shown that any (2 − ε)-
approximation would require at least polynomial space
in n, while conversely, [24] showed that (1 + ε)-
approximation would require Ω(n) space. This left open
the possibility of intermediate results, but [14] closed
the door on this possibility, proving that (2 − ε)-
approximation would require Ω(n) space for any constant
ε > 0.

However, the above results are only for classical al-
gorithms. In [30], a polynomial lower bound was shown
that applies even to quantum streaming algorithms, but
this left open the possibility that a (2−ε) approximation
was possible in o(n) space for quantum algorithms.

b) Quantum streaming algorithms: The first work
on quantum streaming was [33], which showed that
there are problems that that are exponentially easier
for quantum streaming algorithms than classical ones.
In [34], it was shown that this is true even for a function
that does not depend on the order of the stream (the more
“standard” streaming model).

Later work has investigated the question of whether
quantum streaming can obtain advantages over classical
for problems of independent classical interest (as the
aforementioned work is for problems constructed for
the purpose of proving separations). The problem of
recognizing Dyck(2) in the stream was considered as a
candidate problem in [35], [36], but only negative results
were found. For problems where ω(1) passes are allowed
over the stream, [37] and [38] showed an advantage for
the well-studied moment estimation problem. Later, [39]
showed that an advantage exists in the one-pass setting
for the problem of counting triangles in graph streams.

c) Approximating QUANTUM MAX-CUT: QUAN-
TUM MAX-CUT was introduced in [7], where a classical
1/0.498-approximation algorithm was given, akin to
the Goemans-Williamson algorithm for MAX-CUT, that
produces an unentangled product state. Since the gap be-
tween the best product state and best entangled quantum



state on a single edge is two, at best a 2-approximation
is possible for algorithms that return product states, and
so the 1/0.498-approximation is nearly optimal among
such algorithms. By rounding to entangled states, [9]
gave the first approximation with guarantee better than
2. Subsequently [10] showed how to use higher levels of
the quantum Lasserre hierarchy of semidefinite programs
to obtain a slight improvement over [9].

II. PROOF OVERVIEW

A. Lower Bounds

Our lower bounds for the quantum streaming complex-
ity of MAX-CUT and QUANTUM MAX-CUT are derived
from a new analysis of the Distributional Implicit Hidden
Partition (DIHP) problem introduced in [14] to prove
lower bounds for the streaming complexity of approx-
imating classical MAX-CUT. We restate this problem
here.

1) The Distributed Implicit Hidden Partition Problem:
In an instance of DIHP(n, α, T ), T players are each
given a partial matching Mt of αn edges on n vertices,
with each edge labelled with a bit. Either these bit labels
are generated by choosing a random partition of [n] and
assigning 1 to the edges crossing the partition (a YES
case) or they are chosen uniformly at random (a NO
case).

The players are allowed one-way communication, from
player i to player i + 1 for each i, and are additionally
given the matching edges (but not the edge labels) of
every previous player for free. Their goal is to determine
whether their inputs were drawn from a YES case or a
NO case with probability at least 2/3 over the random
draw and any internal randomness they may use.

a) Reduction to Classical Max-Cut: If each player
t creates the graph Gt consisting of edges labelled 1 in
Mt, G =

S
t Gt will be bipartite in a YES case, and

close to random in a NO case. This means it is possible
to cut every edge in the first case, and not much more
than half of them in the second. Therefore, an algorithm
that returns a (2 − ε)-approximation to MAX-CUT can
distinguish them if ε is large enough (by making α small
enough and T large enough, we can make the necessary
ε arbitrarily small). Therefore, a MAX-CUT algorithm
using S space gives a protocol in which each player
sends a size-S message, by having each player run the
algorithm on their input and then send their algorithm’s
state to the next player. The graphs the players get with
this reduction are illustrated in Figure 1.

One problem with this is that, if the players’ matchings
are randomly chosen they may share edges. Our approach
to this differs somewhat from that of [14]. Instead of

(a) In a YES case, only edges crossing the underlying
partition are included.

(b) In a NO case, each edge received is included with
probability 1

2
.

Fig. 1: The graphs each player receives when reducing
DIHP to MAX-CUT.

considering multigraphs, we take advantage of the fact
that player t is allowed to know the matching (but not the
edge labels) of players s < t. This means we can have
them decline to add edges that are present in previous
matchings, guaranteeing that the final graph is simple.
We show that, as the number of edges thus removed is
small, it has little effect on the reduction.

b) Extending the Reduction to Quantum Max-Cut:
The reduction to Quantum Max-Cut uses exactly the
same mapping from DIHP instances to graphs. We
consider the following SDP,

max
f :V→Sn−1

X
uv∈E

−⟨f(u), f(v)⟩

which is a shifted version of the standard Goemans-
Williamson SDP for MAX-CUT. In particular, its optimal
value is an upper bound on 2K − m, where K is the
MAX-CUT value of a graph. Usefully, when 2K −m is
small, a converse property holds, as the optimal value of
this SDP is at most a constant factor times larger than
2K −m [40]. This means the graphs generated by NO
instances of DIHP will have small values of this SDP.

This gives us a QUANTUM MAX-CUT lower bound,
because this SDP also upper bounds 4

3Q − 3m, where
Q is the QUANTUM MAX-CUT value of the graph
(see Section 2.3 of [41]). So NO instances will create
graphs with QUANTUM MAX-CUT value approximately
m/4. Conversely YES instances will create graphs with
QUANTUM MAX-CUT value at least m/2, as they are
bipartite and the QUANTUM MAX-CUT value is always
at least half the MAX-CUT value. So a (2 − ε) approx-
imation algorithm would suffice to distinguish between
the two.

2) Quantum Communication Lower Bounds for
DIHP: In [14] it was shown that DIHP is hard when the
players are only allowed to send classical messages, re-
quiring Ω(n) space when α and T are constant. The ma-



jority of the technical difficulty of our lower bounds is in
proving that DIHP is hard even if the players are allowed
to send quantum messages. This immediately implies
that quantum algorithms must use Ω(n) space to (2−ε)-
approximate MAX-CUT or QUANTUM MAX-CUT, and so
no quantum advantage for either problem is possible.

a) Reduction to Boolean Fourier Analysis: As with
the classical lower bound of [14], our proof depends on
applying Fourier analysis to functions on the Boolean
cube. In particular, we will show that a bound on Fourier
coefficients used in the classical proof is maintained even
in the presence of quantum communication. We start by
providing an intuition for the significance of this bound.

Suppose the game is in a YES case, and so player t’s
input depends only on the matching Mt and the randomly
chosen partition (which we may write x ∈ {0, 1}n, with
the bit of vertex i determining which side of the partition
it is on). Then, fixing (Ms)

t
s=1, we can write a function

ft : {0, 1}n → C2β×2β

where f(x) is the density matrix sent by player t if the
partition is x, and β is the number of qubits used to
represent that state.

Now suppose player t + 1 would like to determine
whether they are in a YES or a NO case. They have
received ft(x) if they are in a YES case, and they want
to determine if it is consistent with being in a YES case.
In addition, they have the bit labels of the edges in Mt+1.
Therefore, for any odd-cardinality set of edges in Mt+1,
they know the parity of the set of vertices in x matched
by these edges. We write such sets of vertices as M tr

t+1s
for a string s ∈ {0, 1}αn indexing a subset of the edges
in Mt+1.

Now suppose the player looked at only one of these
sets s, and so knew the parity of the vertices M tr

t+1s
alone. To tell whether ft(x) could come from a YES
instance, they need4 its average value when the parity of
M tr

t+1s is 0 to be distinguishable from its average value
when the parity of M tr

t+1s is 1.

The distinguishability of two distributions over quan-
tum states is given by the trace norm of the difference
between their density matrices, so the quantity the player

4We are eliding the possibility that, for instance, the state player t+1
receives is impossible or unlikely in a YES case due to, for instance,
only arising if a triangle in previously arrived edges has every edge
labelled 1. However it turns out this possibility is already accounted
for by considering what a previous player would’ve seen on receiving
the third edge of that triangle.

would need to be large is

1

2











1

2n−1

X
x∈{0,1}n:
x·M tr

t+1s=0

ft(x)−
1

2n−1

X
x∈{0,1}n:
x·M tr

t+1s=1

ft(x)











1

which equals

1

2n








X

x∈{0,1}n

ft(x)(−1)x·M
tr
t+1s








1

= ∥ bft(M tr
t+1s)∥1

where we now introduce bft, the Fourier transform of ft,
given by

bf(S) = 1

2n

X
x∈{0,1}n

f(x)(−1)S·x.

It turns out that this sums nicely—it can be shown that
player T ’s ability to distinguish between a YES and a
NO case is bounded by

TX
t=1

X
s∈{0,1}αn\{∅}

∥ bft(M tr
t+1s)∥1

and so our goal will be to prove that this sum is small
in expectation over (Mt)

T
t=1.

To prove this, we bound the total value of weight-
2ℓ Fourier coefficients for every ℓ. As a ∼

(
αn
ℓ

�
/
(
n
2ℓ

�
fraction of these will end up being matched by a set of
ℓ matching edges, it suffices to prove that the value is
bounded by5 �√

βn

ℓ

�ℓ

where we have dropped some constants exponential in
T and ℓ. Then if β ≪ n, this expression will be small
enough for the final states to be hard to distinguish.

b) The Evolution of Fourier Coefficients: We will
bound the expression above by induction on t, con-
sidering how these coefficients evolve based on the
message sent from player t to player t + 1. This is
where the quantum difficulty of the proof will arise, and
is the most important novel element in our analysis—
the combinatorial aspects of the evolution are similar to
those in the classical case but now player t may apply
a quantum channel to generate ft rather than sending
a deterministic6 message based on their input and the
message ft−1.

5This expression changes somewhat when ℓ ≥ β, but we will
disregard those highest-order terms in this overview.

6When proving a lower bound for a classical communication prob-
lem with a known input distribution, one may without loss of generality
assume the players act deterministically.



The base case of the induction is straightforward (for
simplicity we can think of player 1 as receiving 0β

from a player 0, and consider only an inductive step).
For the inductive step, we need to understand the effect
of player t applying a quantum channel A to ft−1(x).
This quantum channel itself is determined by player t’s
input, and therefore (again fixing (Ms)

t
s=1) we can write

Ax for its value when the underlying partition is x. As
quantum channels are linear operators, we can define a
Fourier transform

bAS =
1

2n

X
x∈{0,1}n

Ax(−1)S·x

that in particular obeys the convolution lemma for the
Boolean Fourier transform, which tells us that

\Axft−1(x)(S) =
X
U

bAU
bft−1(U ⊕ S).

Using the fact that bAU is 0 whenever U is not Mts
for some s ∈ {0, 1}αn (intuitively, this is because Ax

only depends on the edge labels of the edges in Mt),
we can write down “mass transfer” lemmas describing
how coefficients of weight 2ℓ2 of ft are formed from
coefficients of weight 2ℓ1 of ft−1. We want to know how
much weight can be contributed to \Axft−1(x)(S) frombAU

bft−1(M
tr
t s⊕ S) where |S| = ℓ2 and M tr

t s⊕ S = ℓ1.

We can think of this in terms of three more parameters,
a the number of edges from M tr

t s that are entirely
contained in S, b the number of edges that each have
one endpoint in S, c the number that are entirely outside
of S (so ℓ2 = ℓ1−a+c). We end up with the amount of
“mass” transferred from ℓ1-weight coefficients via M tr

t s
with this property being bounded by

X
S∈{0,1}n

|S|=2ℓ1

X
u∈{0,1}αn

|u|=a

X
v∈{0,1}αn

|v|=b

IS(u)BS(v)

×
X

w∈{0,1}αn

|w|=c

∥ bAt
M tr

t (u⊕v⊕w)
bft−1(S)∥1

where IS(u) and BS(v) are indicator variables on
whether M tr

t u is entirely contained in S and M tr
t v has

one endpoint of each edge in S. See Figure 2 for an
illustration.

The final tool we need to bound this is an extension
of the matrix-valued Fourier coefficients inequality, a
consequence of Theorem 1 of [27] (itself a generalization
of a lemma of [26]) that has previously been used for

S

⇒
S ⊕M tr

t s

Fig. 2: When player t receives the matching Mt, each
subset s of the edges in Mt and each Fourier coefficientbft−1(S) corresponds to a new Fourier coefficient bft(S⊕
M tr

t s). In this example s includes a = 1 edge internal
to S, b = 2 edges with one endpoint in S, and c = 1
edge outside, so the resulting coefficient S ⊕M tr

t s has
weight |S|+ a− c = 5.

two-player quantum lower bounds [28], [29], [30]. This
will tell us that7X

w∈{0,1}αn

|w|=c

∥ bAt
M tr

t (u⊕v⊕w)
bft−1(S)∥1

is �
O(β)

c

�


 bft−1(S)




1
.

With this in place, and using the fact that

P[IS(u)BS(v)] ∼
(
ℓ1
a

�(
n
a

� ·
(
ℓ1
b

�(
n
b

�
we can bound the above in expectation over Mt, and
from then the proof becomes an exercise in carefully
evaluating sums.

B. Space Upper Bounds for Quantum Max-Cut

For classical MAX-CUT a trivial classical algorithm
achieving a 2-approximation in logarithmic space is
already known—count the number of edges (or total
weight for a weighted graph) m and report m, which
is at most twice the true value. As our lower bound
for quantum algorithms for classical MAX-CUT is the
same as the classical one, nothing more is needed here.
However, for QUANTUM MAX-CUT the story is a bit
different. The trivial lower bound in this case is m/4, and
so the aforementioned algorithm would only guarantee a
4-approximation.

We give a simple algorithm that achieves a (2 + ε)-
approximation in the unweighted case, and a (5/2 + ε)-
approximation in the weighted case. The basic idea will
be the same in both cases, so for ease of exposition
the rest of the discussion in this section will assume a
weighted graph, and we will point out where every edge
having unit weight allows a better approximation.

7Again, this has to be somewhat changed when c is particularly
large.



a) Upper Bounding the QMC Value: Let m
be the total weight of the graph, and let W =P

u∈V maxv∈N(u) wuv , the sum of the max-weight
edges incident to each vertex (so W is just the number
of non-isolated vertices in the unweighted case). It is
known [9] that

m

2
+

W

4

is an upper bound for QUANTUM MAX-CUT. So we want
lower bounds in terms of m and W .

b) Lower Bounding the QMC Value in General
Weighted Graphs: We use a modified version of an
argument of [9]. Consider the subgraph formed by taking
the highest-weight edge incident to every vertex. We can
decompose this into a matching M consisting of every
edge “chosen” by two vertices, and a forest F of all the
other edges (note that the two together are also a forest).
Abusing notation to use the names of the objects to also
denote their total weights, we have 2M + F = W .

Now, for any edge, it is possible to earn
QUANTUM MAX-CUT energy equal to its weight
by assigning its vertices the singlet. Secondly, when we
have a collection of vertex-disjoint graphs it is possible
to maximize each of their QUANTUM MAX-CUT
energies separately and still earn energy we/4 for each
edge e between distinct pairs of graphs. So there is a
solution earning M + (m−M)/4.

Secondly, as M ∪ F is a forest, cutting it clasically
earns energy (M + F )/2, as any classical cut gives a
quantum cut earning at least half as much energy. By
minimizing these two expressions subject to 2M +F =
W it can be shown that the QUANTUM MAX-CUT value
is at least

m

5
+

W
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giving a (5/2)-approximation determined only by m and
W . We illustrate this construction in Figure 3.

c) Lower Bounding the QMC Value in Unweighted
Graphs: In the unweighted case we have the advantage
that any method for choosing a maximal tree chooses
one of optimal weight, and so (inspired by a method
of [42]) we consider depth-first search trees. We will
assume the graph is connected—note that m, W , and
the QUANTUM MAX-CUT value all sum up over compo-
nents, so as long as the lower bound we show is linear
in m and W this will immediately generalize.

In the weighted case, trying to optimize the energy we
earned from our tree meant potentially earning nothing
from edges outside the tree, as we had no control over
how they might cross the tree. However, with a DFS
tree, we have the following useful property: for any
node in the tree, the subtrees rooted at its children are

4

3

5 6

4

2

1 1

Fig. 3: Proving a lower bound for the optimal QUANTUM
MAX-CUT value of a weighted graph. The edges “cho-
sen” by one vertex (in solid black) form a tree T , while
the edges “chosen” by two (in solid red) form a matching
M . There is an assignment earning energy T+M

2 = 12
from assigning a perfect classical cut to T ∪ M , and
one earning energy M + M−m

4 = 14 from assigning the
singlet to every edge in M and earning we/4 on every
other edge.

disconnected from each other (because otherwise those
connecting edges would have been explored before both
subtrees were). This means we can do the following:
choose either the even or odd levels (with level i being
edges from depth-i vertices to depth-(i + 1) vertices)
of the tree, one of which will contain at least half the
edges; call this set of edges H . Now, H consists of
disjoint bipartite subgraphs, and no edge outside the tree
connects two edges in the same level of H . Thus, as
noted above for the weighted case, there is an optimal
QUANTUM MAX-CUT solution for H that still earns 1/4
from every edge outside the tree, and from the edges in
the unchosen levels. An optimal classical solution of this
kind on H earns a QUANTUM MAX-CUT value of 1/2
on each edge in H (by randomly selecting either a fixed
assignment that cuts all the edges or the “bit-flipped”
assignment, independently for each component of H).

Now, as the tree contains W − 1 edges, merely using
the optimal classical solution would only earn us at least
W−1

4 + m−(W−1)/2
4 , which is not quite as strong as we

want. But each level of the tree is a disjoint union of
stars, and the optimal QUANTUM MAX-CUT assignment
for a star with d leaves earns d+1

2 . So we can earn at
least 1/2 more energy, giving us

W − 1

4
+

m− (W − 1)/2

4
+

1

2
>

m

4
+

W
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for a 2-approximation determined only by m and W . We
illustrate this construction in Figure 4.

d) Estimating W in the Stream: To obtain an
actual algorithm we will need a (1 + ε)-multiplicative
approximation to m/2 + W/4. Counting m is trivial,
and in the unweighted case W can be approximated with
cardinality estimation algorithms. So the problem we
need to resolve (ideally in O(log n) space) is estimatingX

u∈V

max
v∈N(u)

wuv



Fig. 4: Proving a lower bound for the optimal QUANTUM
MAX-CUT value of an unweighted graph based on a DFS
tree (the solid edges in the graph). The heavier half of the
levels in the DFS (colored in red) are given an optimal
assignment, and then every other edge (solid and dashed)
earns 1/4. The total energy earned in this example is
3
2 + 3

2 + 7
4 = 4.75.

in the stream. Our approach is to use reservoir sampling
to sample edges e with probability proportion to we,
choose an endpoint at random, and then check whether
they are higher-weight than every edge that arrives after
them in the stream (since we can’t check edges that arrive
earlier). If we defined an estimator that is 1 whenever this
happened and 0 otherwise, we would get a contribution
of we/2 for every vertex u and v ∈ N(u) such that wuv

was a “scenic viewpoint”, an edge of higher weight than
all subsequent edges incident to u.

To correct for this, we also check the weight w′ of
the highest-weight edge to arrive incident to u after uv
(calling it 0 if uv is the last edge) and then subtract
w′/wuv . This gives us an estimator with expectation

W/2m

and constant variance, that we can compute in log-
arithmic space. So we could have trouble getting a
multiplicative estimate of W if m ≫ W , but this isn’t a
problem—we only want an estimate of m/2+W/4, and
so a εm-approximation of W suffices. This then gives
us our full streaming algorithm, obtaining a (2+ε)- and
(5/2+ε)-approximation in the unweighted and weighted
case, respectively, using O(log n) space if ε is constant.

PROOFS

Detailed proofs of the above claims are deferred to the
full version of the paper.
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