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,/ Our Group at Sandia National Laboratories
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/  Albuquerque, New Mexico
* Optical measurements:
« Development and application
* Challenging environments
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// Subsonic CARS (1 of 2): CARS Thermometry in Rocket Propellants
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_,/ Subsonic CARS (2 of 2): CARS Thermometry in Explosive Fireballs
| £l

,/ Detonation Fireballs T | 60

/ * Energetic materials are used in many
industrial and military applications

« Extreme pressures and temperatures
* Fragments and debris
* 1D rotational CARS (N,, O,) instrument
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« Temporally and spatially resolved
temperature measurements

» Scattered two-beam CARS signals
suppressed using polarization scheme

« Measurements demonstrated at times
! and locations with significant mixing
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// Introduction and Motivation

Hyp
* Un

Goal: Develop an optical technique for gas-

phase pressure measurements in
hypersonic flows

1.

Technique development: 1D
measurements in bench-top jet

. Cryogenic linewidths: required for

applied measurements

. Initial demonstrations in Sandia’s cold-

flow hypersonic wind tunnel
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_,/ Previous Work: Nanosecond CARS Pressure Measurements
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Broadband fs pulse excites many rotational
Raman transitions

- Each transition has a different decay rate
(linewidth) from collisional dephasing

« Early probe to measure temperature
« Late probe to measure pressure

o . Pump/Stokes
Timing Diagram 800 nm, 35 fs
-~

Pump/Stokes

Probe
532 nm, 60 ps

Probe

/
Delay Stage

/ Previous Work: Femtosecond CARS for p, T
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// Previous Femtosecond CARS for p, T

rd

« Single-shot measurements demonstrated with
/ two-probe rotational CARS instruments

 Spectral fitting or ratio of intensities

Develop fs CARS for simultaneous

p, T measurements in cold-flow
hypersonic wind tunnels.




1) ,/ Sandia’s Hypersonic Wind Tunnel
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// Technique Development: Extend to Low-P Hypersonic Flows

/8 :
74 Demonstrate benchtop measurements in 20

relevant environment....

Underexpanded sonic jet:
* Exit diameter of 6.35 mm

* Stagnation conditions:
P,=7.62atm, T, =292 K
* Flow air or nitrogen
* Isentropic expansion to Mach disk
« Wide range of static T, p in jet:
« 3atm = 0.1 atm 5 Barrel Shock
« 240K - 80K
 Conditions near Mach disk are similar to Sandia’s
0 )

—
&)

“Reflected
Shock =

)

N
o

Mach Disk

Axial Position (mm)

hypersonic wind tunnel!
» Test measurement capability across shock
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// Technique Development: Extend to Low-P Hypersonic Flows

~ Dual-probe fs/ps rotational CARS instrument:

7 * 1D imaging scheme (2x) developed by Bohlin and Kliewer
e Pump: 50-fs, 4-mJ, 800-nm

* Probe: 60-ps, 50-m]J, 532-nm

* 6-mm long measurement line

* 1000 pm X 67 uym X 30 um resolution

)
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/ Technique Development: Sample Data
Schlieren Image Row-Normalized Experimental Rotational CARS Datg

Increasing probe time delay; more collisional dephasing
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* To determine pressure from CARS spectra, need to know
accurate S-branch Raman linewidths
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// Technique Development: Need for Cryogenic Linewidths

Cryogenic S-Branch Linewidths for even )

08 1.2
DENSITY (amagat)

TABLE 1. Temperature dependence of the self-broadening
coefficients for the rotational Raman lines of N,.
B (MHz/amagat)
SJ) 295 K 195 K 30 K
0 4730+700 31401470
2 41601400 35601350 2700+270
4 3580+ 60 3230£320 2490£250
6 3560130 307030 2520140
8 3270+60 2860130 2120+60
10 3060+60 2660+30 1940+40
12 2870150 23401260 1690+ 100
‘ 14 26601270 2150+215
16 20 16 1840+ 185

Herring, Phys. Rev. A 34 (1986)




Cryogenic S-Branch
Linewidths:




/ Cryogenic Linewidth Data: Experimental Approach
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// Cryogenic Linewidth Data: Experimental Approach

* Departure from MEG for low temperatures
« Experimental data fit to power law

/  Cryogenic linewidths found for N,-N,, N,-air, and O,-air
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// Cryogenic Linewidth Data: Applied to Underexpanded Jet
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// Cryogenic Linewidth Data: Impact on CARS Measurements

Extrapolation of MEG model leads to significant
errors in CARS pressure measurements!
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Measurements in a
Hypersonic Wind
Tunnel




// Sandia’s Hypersonic Wind Tunnel

/. Hypersonic wind tunnel (HWT)

/  Blowdown-to-vacuum tunnel

* Mach 8 flow, pure N,

* p,=60atm; T,=800K
*T.,~50K; p.~0.006 atm (5 Torr)

* Low gas density
* Pe ~ 5% Of Py

| Synthetc CARSSrum

* CARS signal in wind tunnel will be
0.25% of ambient CARS signal "] T-500K
- Long Raman dephasing times (10 ns) 08 ﬂ ?2_'”‘1? _—_—
- long optical delays (3 meters) " dwp =500
* Low gas temperatures g }
 Few rotational levels populated g 0.4 7
« Complex optical setup near large ~ 02-
facility with limited run times ]
0 50 100 150
Raman Shift (cm™1!)
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/ Femtosecond CARS for p, T in Hypersonic Wind Tunnel

* Fslaser: 100 fs, 1 kHz, 2.5 mJ * Polarization scheme used to reject
« Pump pulse for CARS process probe from CARS signals
* Pumps second-harmonic bandwidth  « CARS signals stacked vertically
compressor (SHBC) - Two single-shot spectra recorded at
* SHBC probe: 6 ps, 400 p 1kHz on a single camera

* Split to form early and late probes
* Filtered using Bragg grating

III

' fslaser




/ Measurements in Hypersonic Wind Tunnel: Initial Attempts

'/ * Dual-probe RCARS instrument
setup near Sandia’s HWT

* Strut-mounted, simple cone model|




// Measurements in Hypersonic Wind Tunnel: Initial Attempts
N, T=83 K, p=0.006 atm (5 Torr)

e Initial attempts to apply fs/ps RCARS in

the hypersonic wind tunnel led to some s nmyeye—————
experimental improvements: ~+- T, =0ns, without VBG;  5.95 cm-!
o« . —— T, = 5ns, with VBG; 3.48 cm’’
* Limit pump/Stokes pulse energy e T, =5ns, without VBG; 652 cm"
« Spectr JNic >ofF ' \ ' '
Bandyv Z) output |
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// Femtosecond CARS for p, T in Low-Pressure Cryostat

—Experiment - = Theoretical — Residual

» Single-shot CARS spectra recorded g TosL3K
/ in cryostat and fit for T, p . o 335"
. . = i T = - Ps
- Measurement discrepancies £ 05 chisar = 0.060
[
* CARS pressure lower than pressure 2 ]/
gauge SR
* Result of experimental setup and ~
placement of pressure gauges ————————
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// Femtosecond CARS for p, T in Hypersonic Wind Tunnel

'/ Single-shot CARS spectra recorded at 100
7 different axial locations
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// Femtosecond CARS for p, T in Hypersonic Wind Tunnel

75 0.06
7  Conical shock not readily observable o - 005
- Model removed and CARS spectra os {27 %) . 004
recorded in empty test section < 0 * 003 2
 Possible reasons for measurement S B R o
biases: x
« Position-dependent Raman excitation 7 X e
(nonresonant CARS spectra) P m - ) i o
» Changes in window birefringence between x (mm, wrt ficticious trailing edge of cone)
flow off and flow on (pressure loading)
*  Raman pumping from too much pump 801 _
energy 40{
» Changes in CARS measurement location E
« Unexpected tunnel operation > 40
80

-160 -120 -80 -40 0 40 80 120 160 200

X (mm)




. 0 ps
/ Conclusion ;

4 1
I

« fs CARS is being developed for single-
/ shot temperature and pressure
measurements in hypersonic flows

« One-dimensional measurements
demonstrated

* Pressure range 0.1-2

LJ; 'fn

,—.--——-

* Temperature range | . 5
. Cold (T < 295 K) S-bra Questions:
linewidths measured

e - gty

lllll

underexpanded jet
¢ Nz'Nz, Nz'alr, Oz'alr

* Initial measurements performed
in hypersonic wind tunnel
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/ Backup 3 71115 IV J16 12 8 4 0

/ UL A B Experiment' "' T T

. ---- Theoretical T = 98.7 ps

7/ 277 K B " 1.1 atm
P ) 400 ps

Representative single shot fits throughout the jet for both the %gﬁf’ pitm
temperature channel (left, T = 0 ps) and the pressure channel Tr = 585 ps

(right, r marked for each spectrum). Axial locations of the
spectra proceeding downstream as marked in the figure are y =
2.97,6.04,7.9,11.5, and 13.4 mm. Rotational transitions of O,
(N) and N, (J) are marked for the temperature and pressure
spectra, respectively. Raman lifetimes from Eq. (4) are listed
with each pressure spectrum for J = 6 at the fitted temperature
listed, using the low temperature S-branch linewidths.
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* Cryogenic N2 S-branch
linewidths recorded in
cryostat compared to
linewidth data from
underexpanded jet
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// Introduction and Motivation

"/~ Hypersonic Fluid-Structure Interaction

4 * Fluctuations in hypersonic flows can
drive surface loading on flight vehicles

inderks, AIAA 2004-2238  Mack, ] Spacecraft Rockets 42 (2005)

Hypersonic Gap Flows
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* Various geometries have been studigg

 Using a variety of measurement @ fiEIf= o Ne= 110l 5
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