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| Who does the heavy lifting in a PV system?
2
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Inverters are complicated machines I
-Power Conditioning
-Grid Monitoring
-Array reporting/monitoring
-Islanding protection, etc.

Handling much higher power densities
than rest of the system

Must endure harsh environments with
large temperature cycles (ambient and §
power handling)

* Increased DC/AC ratios

* Operating at P_ ., most of day
Not only is reliability more
challenging, but more consequential I

when failures occur

...and operational capabilities will only increase over time

Adapted from: S. Lokanath and P. Williams, [EC TC82 WG 3 & 6 Meeting, Tempe, AZ, May 14, 2016



‘ Advanced Inverter Operations and Reliability (1/2)
3

* Historically, inverters have had a very simple objective:

o Convert DC power to AC power regardless of grid conditions.

©)

Maximize power injected into the grid.

* Monumental shifts in inverter operations
occurred Sept 8% 2017:

©)

HI and CA required advanced inverter
functionalities.

Inverters expected to not only inject power,
but also support the grid through advanced
inverter functions.

> 1oltage support, frequency support, or grid

disturbance.

IEEE 1547-2018 standardized for all of
U.S.

Inverters become “good grid-izens”
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Advanced functions as defined in IEC TR 61850-90-7.
*FRT not included in IEC 61850-90-7, but is in Sandia Test Protocols. I



‘Advanced Inverter Operations and Reliability (2/2)

. . é : Y4 N( Grid Protection
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o Little to no discussion in long-term reliability impact N\ e * Low and High Frequency
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of advanced inverter functions. g Fre I/_\f\” T I —
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Advanced functions as defined in IEC TR 61850-90-7.

Does this require I/tp dated relzabzlz{y t€St21’lg p rotocols (by *FRT not included in IEC 61850-90-7, but is in Sandia Test Protocols.

either manufacturers or standards making bodies) to
capture this? I

* Using the System Validation Platform (SVP): I
o We have instrumented and autonomously measured inverter component stress for a variety of different advanced
inverter operating conditions
o Originally developed as flexible framework to autonomously measure system-level inverter operations for I
certification I



ISystem Validation Platform (SVP) (1/2)
5

SunSpec Test Tool m
¢ The Opeﬂ— source SyStem Ametek SCPI T ILE;":":W to python IEC 61850-90-7 Ametek SCP!I
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Validation Platform (SVP) b Data Acquisition functions sent over S b
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ance of equipment drivers and test scripts for interoperability/electrical characterization experiments.
* Range of equipment d d test scripts for DER interoperability/electrical characterizat p t

* Software platform written in Python:
o Includes ability to script actions for multiple hardware devices .
o Uses a library of device drivers and abstraction layers: |
» Drivers have been created for PV simulators, grid simulators, DER, data acquisition systems, load banks,
and switches I

» Allows the same test logic (SVP scripts) to be run at multiple laboratories with different equipment.
» Originally developed for interoperability requirements: IEEE 1547.1, ULL1741 SA, and IEC TR 61850-90-7 I

5
Used to autonomously evaluate parameteriged operation conditions over entive operation range I
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System Validation Platform (SVP) (2/2)

* UL 1741 SA test permutations are large due to the number of settings in each advanced DER function:
o ~75 measurements for fixed power factor = 25 minutes with SVP

O ~375 measurements for volt/var - = 90 minutes with SVP
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Instead of characteriging the ability of the system to perform advanced inverter functions, can we harness SVP to
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calculate component level stress metrics over a range of advanced inverter functions?
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Harnessing SVP for Reliability Measurements ml

New Tektronix oscilloscope driver and reliability script
were created

Directly measures/calculates component stress IEEE 488.2 (SCPI)
messages sent with
Paired with SVP script to automate stress evaluation PR ORI TR S;Zif’i:f;}:
for a range of PV irradiance values and power factors. R Modbus Read/
messages sent Write commands
. over TCP/IP over TCP/IP
Produce inverter component stress maps under
. . . . Modbus Client
different operating conditions IGBT
™ H-Bridge
AC  AC
Filter Breaker
.| N -K}le M
. w o '
Allows for flexible measurement of any o 8% L ; Utilty AC
i . i : O o ; Power
accessible component inside the inverter PV Simulator as —Lrm T A
o switches, capacitors, inductors, etc. 'K}
: e
Set of experiments to measure loss of
Transformerless PV Inverter

switches in H-bridge and DC bus
capacitor




Measuring loss in H-bridge Switch —Setup

8

* Autonomous run carried out to measure MOSFET switch loss in H-bridge: |
o Single-phase, 3 kW inverter.

12 T I
Loss measured at power factors from -0.85 to 0.85 in 0.01 increments. Provd 575
PF=+0.95000
10 H PF=+0.9254
PF=+0.9001

O
o Ateach PF, 20 measurements taken serially and averaged together e
o Irradiance values of 200 W/m? to 1000 W/m? in 200 W/m? increments.  o—"=

Energy Loss (J)

4. Increment PF, irradiance, etc.

1. Measure SWitCh VOltage/Current UlJ 0.002 EI.UIU*I EI.OIDS D.DIlJS U.Elll 0.0112 U.IJLH IJ.DIIS 0.018

time (s)

U

3. Cumulative switch loss per cycle

2. Calculate Switch Power I

6000 + I

4000
|
2000 1
04 " '“H.,A,.N'I.l"ll""...... . —— L I

0.0044375 0.0044380 0.0044385 0.0044390 0.0044395 0.0044400 0.0044405 I

10k points —4.,00 Y



‘Measuring loss in H-bridge Switch —Results

3.5 Switch Loss vs. Power Factor

& ® 2000w~z | | | * System level efficiency shows increased loss: |
- 400.0 W/m~2 . . . .
5.0 |[E# scoo w2 | o With increased irradiance.
B 1000.0 Wim~2 + + '}H o At increased positive power factor. |
25} ++H' ++ + * |
= #ﬁi .}H + ++{. ; + T HH"H' * 'Total change in efficiency is approximately1%o:
2 20} -H'I‘H%Hl l o Additional ~30 W of loss at high PF.
N 4
= 15} ++'H++§+i + ¥ + + _
7 I ey {,ﬁ.%{'ﬁ . Switching. loss 1s directly related to:
1.0} HH"I‘E * 1 o Irradiance level.
Py o Positive power factor:
021 H‘Hl}&& Irradiance t + l} | > A . i i i
t high irradiance, also increase in switch loss
0.0 | | | | | | | | for negative power factor.
—40 -30 -20 -10 0 10 20 30 40 50 .. :
Power Factor Angle (degrees) > Minimum loss at unlty PF.
* 1000 W/m? measurement switching loss affected by system curtailment. I
* Corresponds to device loss map as a function of irradiance and PF.
How can we use loss maps to extract information about expected useful life? I

J. Flicker, J. Johnson, P. Hacke, and R. Thiagarajan, "Automating Component-Level Stress Measurements for Inverter Reliability Estimation," 9
Energies, vol. 15, no. 13, p. 4828, 2022. I



IPreliminary Lifetime Calculations (1/4) |

* In any real system inverters respond based on programmed Volt-VAr curves

Utilized quasi-static time sertes (QSTS) simulations modified EPRI Ckt5 test feeder
* Yields time series power data (real/reactive) for each inverter in system
* Based on pre-programmed advanced inverter operation profile

& Substation
PV System u 5

Ckt5 Feeder
* Actual 12.47 kV distribution circuit
* 1,379 residential customers

*  Maximum bus distance of 3.24 miles
* Total of 701 PV systems

Reactive Power (p.u.)
(=]

0.5 — ' ' ' '

0.9 0.95 1 1.05 14
Voltage (p.u.)

Operating points of all 701 inverters at a

single time step for IEEE 1547 Category B

* J. A. Azzolini and M. J. Reno, "Impact of Load Allocation and High Penetration PV Modeling on QSTS-Based Curtailment Studies," in IEEE Power & Energy Society General Meeting (PESGM), 2021.
* EPRI, "Enhanced Load Modeling: Leveraging Expanded Monitoring and Metering," vol. 3002015283, 2019.



Preliminary Lifetime Calculations (2/4

11 Operational System Ad"'a“c%jr:ifl\’eggf ytliﬁSl;n Profile
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NB: Same process for any pairwise comparison. Same tnverter with different operating modes or two different tnverters in system

This is a generval framework, can substitute tn any system, opervating mode, stress map, and lifetime model




Preliminary Lifetime Calculations (3/4)

12

Counts

1.0005 1.001 1.0015 1.002 1.0025 1.003
Average Acceleration Factor

Calculated relative change in average acceleration
factor (AF, ) for 701 inverters operating in EPRI
Ckt5 test feeder

* Mean AF, for inverters in the system :

* 1.0015%0.00033

* Incorporation of IEEE 1547 Category B volt-var curve results in only a
0.15% faster degradation rate for the median inverter

* If standard inverter has a 20-year lifetime, the median inverter would fail
only 12 days earlier

* Depending on assumptions = corner case up to 1.8% faster degradation

]
* 45 month earlier failure |

Problem solved!?

Probably not

* Indicates that switching loss is probably not limiting failure mechanism for
Volt-Var operation

* Need to evaluate for all other competing failure mechanisms

Compared static unity power factor (PF=1) vs. IEEE e 100s to 1000s of other mechanisms

1547 Category B default volt-var curve



| Preliminary Lifetime Calculations (4/4)
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AF,, vs. distance fr'om feeder (A-phase)

1.004 ; . ; ' :
0.5 1 1.5 2 2.5 3 3.5 4 4.5

Distance from Substation (km)

Extract information on individual inverters in system

Aging rate for inverters correlated to distance from
the substation
* Additional aging -0.25%/km from substation
* Inverters closer to substation experience greater
stress

Substation operates at high end of ANSI (~1.05 pu)
to offset low voltage at end of feeder

Inverters near substation work more often to lower
the voltage and against stiff substation interconnect

* Operate at non-unity more often and at higher
PF than the inverters at ends of feeder

NB: Results Aighly dependent on system specifics (line length, voltage, inverter number/placement, etc.).

Not necessarily genervaliable to all systems

&



+ 1 Conclusions m

* Inverters are required to be good “grid-1zens” and provide grid support through advanced
inverter operating functions

* These functions may introduce additional stress compared to typical operational conditions

* Significant evaluation and testing is required to understand impacts to inverter reliability, similar
to certification testing (but harder)

* Introduced general experimental and simulation framework to couple experimental
component-level stress measurement data with system-level operational data

* SVP used to autonomously evaluate component stress for parameterized operating
conditions |

* QSTS simulations used to model expected inverter power factor operation 701 inverters |

* Degradation due to switch loss from volt-var operation zs not a significant contributor to
early failure I
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